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Abstract

Three permutation tests based Tn (Li et al. (2013)), KSn and BKRn (Blum et

al.(1961)) for unit root in the AR(1) time series are investigated and compared to

Dickey-Fuller tests with white noise from distributions at different levels of skewness

(symmetric distributions such as standard normal; slightly skewed distributions

such as Chisq (1); highly right skewed distributions such as Weibull (shape=1/3,

scale=1); highly left skewed distributions such as negative lognormal (µ = 0, σ = 2))

and two moderately skewed F distributions with numerator degree of freedom 1

and denominator degrees of freedom 7 and 4. As expected, Dickey-Fuller tests

overperform the permutation tests when white noise is from symmetric distributions

or slightly skewed distributions. The permutation tests based on BKRn perform

at least comparable to and most of the time overperform the permutation tests

based on KSn regardless of the levels of skewness of white noise distributions. The

permutation tests based on Tn could not compare to Dickey-Fuller tests when white

noise is from symmetric distributions and it could not compare to the permutation

tests based on BKRn when white noise is from skewed distributions.
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1 Introduction

Let Y1,...,Yn+1 be observations from the AR(1) model

Yt = aYt−1 + et,

where 0 < a < 1 and white noise et is a sequence of independent normally distributed

random variables with mean 0 and variance σ2. For large n, maximum likelihood estimator

(MLE) of a is normally distributed with mean a and variance 1−a2
n+1

. Fuller (1976), Dickey

and Fuller (1979) constructed test statistics and tables of critical values for tests of

H0 : a = 1 versus HA : 0 < a < 1,

which are often referred to as tests for unit root. The hypothesis that a = 1 is of interest

in applications because it corresponds to the hypothesis that it is appropriate to transform

the times series by differencing. For literature on autoregressive processes and tests for

unit root, the reader is referred to Brockwell and Davis (1996), Fuller (1976), Dickey and

Fuller (1979). In this paper, we will extend Fuller (1976), Dickey and Fuller (1979) so

that white noise from the AR(1) model in tests for unit root is not limited to normal

distributions. Define Xt = Yt+1 − Yt, t = 1, 2, ..., n. Then

Xt = (a− 1)Yt + et+1.

Under H0, Xt = et+1, t = 1, 2, ..., n are independent continuous random variables. Given

n+1 observations Y1, Y2, ..., Yn+1, testing for unit root is equivalent to testing X1,X2,...,Xn

are independent.

Lemma 1.1 (Li et al. (2013)) Under HA, for any integer m ≥ 1,

CORR(X1, X1+m) =
2am − am−1 − am+1

2(1− a)
= −1− a

2
am−1.

As defined in Li (2013,) Tn =
∑n−1

i=1 XiXi+1 .

Lemma 1.2 (Li et al. (2013)) Under HA, Tn

n−1 converges in probability to EX1X2 =

−σ2(1−a)
1+a

.
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Under H0,
Tn

n−1 converges in probability to EX1X2 = 0, which along with Lemma 1.2 form

a basis for testing for unit root.

2 Methods

Define Zt = (Xt, Xt+1), t = 1, 2, ..., n − 1. Assume that Zt has a continuous joint cu-

mulative distribution function F (·, ·) and a continuous marginal cumulative distribution

function F1(·). Observing Lemma 1.1, it is sufficient to test for unit root by testing

H0 : S(x) = 0 for all x = (x1, x2) ∈ R2 (2.1)

where

S(x) = F (x)− F1(x1)F1(x2)

versus

HA : S(x) 6= 0 for some x = (x1, x2) ∈ R2 (2.2)

Clearly,

S(x) = E{Π2
j=1I(Xj ≤ xj)} − Π2

j=1E{I(Xj ≤ xj)}

where I(A) is the indicator function of the event A. Define,

Sn(x) = (n− 1)−1
n−1∑
t=1

Π2
j=1I(Xt+j−1 ≤ xj)− Π2

j=1{(n− 1)−1
n−1∑
t=1

I(Xt+j−1 ≤ xj)}

for any x = (x1, x2) ∈ R2. Consider Kolmogorov-Smirnov statistic

KSn = max
1≤i≤n−1

|Sn(xi, xi+1)|

and

BKRn =

∑n−1
i=1 S

2
n(xi, xi+1)

n− 1

given X1 = x1, X2 = x2, ..., Xn = xn. Since KSn and BKRn takes small values under

H0 and larger values under HA, it forms a basis for testing for unit root. For reference,

Skaug and Tjφstheim (1993) and Blum et al.(1961) investigated nonparametric tests of

serial independence based on the fact that the null hypothesis of independence holds if

and only if the joint distribution function equals the product of the marginal distribution

functions.
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3 Main Results

3.1 Steps Used in Permutation Tests

Throughout the paper, we assume that white noise is a sequence of independent identically

distributed continuous random variables with mean zero and finite variance σ2.

Permutation tests are carried out as that is described in Li et al. (2013). For observations

X1, X2, ..., Xn, there are a total of n! permutations. This test is limited by prohibitive

calculations and takes a large amount of time to execute if n is a large number. Instead

of using all n! permutations to compute the p − value , we obtain a random sample of

R permutations. The statistics computed from each permuted sequence X1l, ..., X(n)l are

referred to as Tn,l, KSn,l and BKRn,l, and the statistics computed from the observations

are referred to as Tn,obs, KSn,obs and BKRn,obs. Note that under H0, Tn,l, KSn,l and

BKRn,l, 1 ≤ l ≤ R, are equally likely. The steps used in permutation tests are outlined

below.

1. Set a predetermined level α. Compute test statistics Tn,l, KSn,l and BKRn,l for each

sampled permutation 1 ≤ l ≤ R and observed test statistics Tn,obs, KSn,obs and BKRn,obs

based on original (not permuted) sample.

2. Compute p−value based on Tn as the proportion of Tn,l’s less than or equal to Tn,obs;

p−value based on KSn as proportion of KSn,l’s greater than or equal to KSn,obs; p−value

based on BKRn as the proportion of BKRn,l’s greater than or equal to BKRn,obs, that is,

p− value based on Tn =

∑R
l=1 I(Tn,l ≤ Tn,obs)

R
;

p− value based on KSn =

∑R
l=1 I(KSn,l ≥ KSn,obs)

R
;

p− value based on BKRn =

∑R
l=1 I(BKRn,l ≥ BKRn,obs)

R
.

Conclude that the tests are statistically significant if the corresponding p−values are less

than or equal to α.
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3.2 Consistency of Permutation Tests

Consistency of a hypothesis test is a desirable property. In this section, we will show that

the permutation tests based on random sampling of R permutations are consistent. In

Li et al. (2013), the permutation test based on Tn was shown to be consistent. We will

focus on the proof of consistency of the hypothesis test based on KSn because the proof

of consistency of the hypothesis test based on BKRn follows along.

Theorem 3.1 Suppose Ha is an arbitrary simple hypothesis that the autoregressive pa-

rameter a is between 0 and 1, that is Ha ∈ HA. Then for permutation tests based on

statistics KSn and BKRn defined above,

PHa [Reject H0]→ 1

as n→∞.

For large n, the permuted sequence (X1l, ..., Xnl), 1 ≤ l ≤ R, “behaves” like a sequence

of independent random variables under Ha (Li et al. (2013)). Hence, we have

Lemma 3.1 Under Ha, KSn,l → 0 and BKRn,l → 0 a.s. as n→∞ for all 1 ≤ l ≤ R.

Under Ha, KSn,obs → sup(x1,x2)∈R2 |S(x1, x2)| := β > 0 a.s. as n → ∞ following Newman

(1984) and Jabbari et al. (2009) and Lemma 1.1. Therefore,

PHa(KSn,obs >
β

2
)→ 1 (3.1)

Note that under Ha, BKRn,obs → ES2(X1, X2) := α > 0 a.s. as n→∞ . Therefore,

PHa(BKRn,obs >
α

2
)→ 1

If KSn,obs >
β
2
> KSn,l for all 1 ≤ l ≤ R, which means the fraction of KSn,l’s that are

greater than or equal to KSn,obs is zero. Consequently, the p-value is zero and H0 is

rejected. Therefore, we have

{KSn,obs >
β

2
} ∩Rl=1 {KSn,l <

β

2
} ⊂ Reject H0. (3.2)
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Note for any two sequences of events An and Bn, P (An ∩Bn) = P (Ān ∪ B̄n) ≤ P (Ān) +

P (B̄n). Therefore, if P (An) → 1 and P (Bn) → 1, we have P (An ∩ Bn) → 1. Hence, in

hypothesis test based on KSn, PHa(Reject H0)→ 1 based on Lemma 3.1, (3.1) and (3.2).

4 Simulation Studies

We generate n+ 1 observations from the real valued AR(1) model

Yt = aYt−1 + et,

We focus on six white noise distributions: (1) standard normal; (2) χ2 with 1 degree

of freedom; (3) Weibull with scale parameter=1 and shape parameter=1
3
; (4) negative

lognormal with µ = 0 and σ = 2; (5) F distribution with numerator degree of freedom=1

and denominator degrees of freedom=7; (6) F distribution with numerator degree of

freedom=1 and denominator degrees of freedom=4. Note that mean of χ2 with df= 1

is 1; mean of Weibull with scale parameter=1 and shape parameter=1
3

is 3!=6; mean of

negative lognormal with µ = 0 and σ = 2 is −e2; mean of F (1,7) is 7
(7−2) = 7

5
and mean

of F (1,4) is 4
(4−2) = 2. We will shift distributions (2), (3), (4), (5) and (6) by subtracting

their corresponding means so that the means of distributions (2), (3), (4), (5) and (6) after

shifting are equal to 0. Note also that shifted distributions (2), (3), (4), (5) and (6) have

finite variance. We will generate white noise from distribution(1) and shifted distributions

(2), (3), (4), (5) and (6). The six white noise distributions are presented in Figure 1. In

our simulations, we randomly select 100 permutations and repeat each test 10,000 for

powers and probabilities of type I error. For Dickey-Fuller tests, the test statistics are

obtained by standardizing, under H0: a = 1, the least square estimator â from simple

linear regression while regressing Yt on Yt−1 without the constant term. We use critical

values -1.947 for sample size 50, -1.944 for sample size 100 and -1.942 for sample size 250

in Dickey-Fuller tests. In our simulations, we consider a = 0.8, 0.9, 0.95, 0.99, 1 and

n = 50, 100, 250. We choose nominal level of significance α = 0.05. We summarize the

proportions of rejecting the null hypothesis out of 10,000 simulations based on the three

permutation test statistics Tn, KSn and BKRn and Dickey-Fuller tests, which are our

estimated powers (a 6= 1) and estimated probabilities of type I error (a = 1). Based on
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our simulations, we recommend Dickey-Fuller tests for unit root when white noise is from

symmetric or slightly skewed distributions (Table 1). We recommend permutation tests

based on BKRn for unit root when white noise is from heavily skewed distributions (Table

2). For white noise distributions with moderate skewness, performances of Dickey-Fuller

tests and permutation tests based on BKRn depend on the value of a and sample size n

(Table 3). For white noise from shifted F (1,7), in some cases (a = 0.8 and n = 50, 100;

a = 0.9 and n = 100, 250; a = 0.95 and n = 250), Dickey-Fuller tests are more powerful

than permutations tests based on BKRn; in other cases, permutation tests based on BKRn

are slightly more powerful than or comparable to Dickey-Fuller tests. For white noise from

shifted F (1,4), permutations tests based on BKRn are more powerful than or at least

comparable to Dickey-Fuller tests except a = 0.8 and n = 50, 100.

Figure 1: white noise distributions under investigation
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Table 1: Simulated power for white noise from Standard Normal or χ2

distribution

standard normal shifted χ2

Sample a Tn KSn BKRn Dickey-Fuller Tn KSn BKRn Dickey-Fuller

50 0.8 0.15 0.07 0.07 0.78 0.2 0.19 0.27 0.77

0.9 0.09 0.06 0.05 0.32 0.11 0.13 0.17 0.31

0.95 0.07 0.06 0.06 0.15 0.07 0.09 0.11 0.14

0.99 0.06 0.06 0.07 0.07 0.05 0.06 0.07 0.06

1 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.05

100 0.8 0.25 0.1 0.11 1 0.31 0.36 0.52 0.99

0.9 0.12 0.06 0.06 0.77 0.15 0.22 0.29 0.76

0.95 0.08 0.06 0.06 0.32 0.09 0.13 0.16 0.31

0.99 0.07 0.06 0.06 0.08 0.06 0.06 0.07 0.07

1 0.06 0.05 0.05 0.05 0.06 0.06 0.06 0.05

250 0.8 0.49 0.21 0.27 1 0.55 0.83 0.96 1

0.9 0.2 0.08 0.09 1 0.24 0.51 0.67 1

0.95 0.11 0.06 0.06 0.9 0.12 0.28 0.34 0.9

0.99 0.07 0.06 0.06 0.15 0.07 0.07 0.09 0.15

1 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.05
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Table 2: Simulated power for white noise from Weibull or -lognormal

distribution

Shifted Weibull shifted negative lognormal

Sample a Tn KSn BKRn Dickey-Fuller Tn KSn BKRn Dickey-Fuller

50 0.8 0.25 0.92 0.96 0.66 0.23 0.76 0.84 0.6

0.9 0.12 0.89 0.94 0.22 0.11 0.72 0.76 0.19

0.95 0.07 0.82 0.86 0.07 0.07 0.6 0.64 0.06

0.99 0.06 0.45 0.48 0.03 0.06 0.19 0.22 0.02

1 0.06 0.06 0.06 0.02 0.06 0.05 0.06 0.02

100 0.8 0.52 1 1 0.94 0.52 0.97 0.99 0.91

0.9 0.25 1 1 0.7 0.24 0.95 0.97 0.63

0.95 0.13 0.98 0.99 0.24 0.11 0.91 0.93 0.2

0.99 0.07 0.79 0.81 0.04 0.06 0.47 0.49 0.04

1 0.06 0.06 0.06 0.03 0.06 0.06 0.06 0.02

250 0.8 0.8 1 1 1 0.82 1 1 1

0.9 0.5 1 1 0.99 0.52 1 1 0.98

0.95 0.25 1 1 0.84 0.26 1 1 0.79

0.99 0.08 1 1 0.1 0.08 0.93 0.93 0.08

1 0.06 0.06 0.06 0.03 0.06 0.06 0.06 0.03
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Table 3: Simulated power for white noise from two F-distributions

Shifted F (1,7) Shifted F (1,4)

Sample a Tn KSn BKRn Dickey-Fuller Tn KSn BKRn Dickey-Fuller

50 0.8 0.22 0.34 0.44 0.74 0.24 0.52 0.63 0.69

0.9 0.12 0.26 0.31 0.28 0.12 0.42 0.49 0.23

0.95 0.08 0.17 0.2 0.11 0.08 0.28 0.32 0.09

0.99 0.06 0.06 0.08 0.05 0.06 0.09 0.11 0.03

1 0.06 0.06 0.06 0.04 0.06 0.06 0.06 0.02

100 0.8 0.38 0.62 0.79 0.99 0.44 0.81 0.91 0.97

0.9 0.17 0.47 0.56 0.75 0.2 0.71 0.78 0.7

0.95 0.11 0.29 0.34 0.29 0.11 0.53 0.59 0.24

0.99 0.06 0.08 0.1 0.07 0.06 0.15 0.17 0.05

1 0.06 0.06 0.06 0.04 0.06 0.05 0.06 0.03

250 0.8 0.64 0.98 1 1 0.73 1 1 1

0.9 0.3 0.87 0.94 1 0.41 0.98 0.99 0.99

0.95 0.15 0.67 0.74 0.89 0.21 0.92 0.95 0.84

0.99 0.07 0.15 0.17 0.13 0.07 0.4 0.42 0.1

1 0.06 0.06 0.06 0.04 0.06 0.06 0.06 0.03

10                                                                                                                                                     Jiexiang Li



References

[1] Blum, J. R., Kiefer, J. and Rosenblatt, M. (1961), Distribution free tests of inde-

pendence based on the sample distribution function, The Annals of Mathematical

Statistics, 32(2), 485-498. 405-417.

[2] Brockwell, P. J. and Davis, R. A. (1996), Introduction to time series and forecasting,

Springer.

[3] Fuller, Wayne A. (1976), Introduction to statistical times series, New York: John

Wiley & Sons.

[4] Dickey, David A. and Fuller, Wayne A. (1979), Distributions of estimates for Autore-

gressive Time series with a unit root, Journal of American Statistical Association,

74(365), 427-431.

[5] Jabbari H., Azarnoosh, H. A. and Fakoor V. (2009), Almost sure convergence of two-

dimensional distribution function under negative association, Journal of Applied

Probability and Statistics, 4(2), 157-166.

[6] Li, J., Tran, L. and Niwitpong, S. (2013), A permutation test for unit root in an

autoregressive model, Applied Mathematics, 4, 1629-1634.

[7] Newman, C. M. (1984), Asymptotic independence and limit theorems for positively

and negatively dependent random variables, Inequalities in statistics and probability,

IMS Lecture Notes-Monograph Series, 5, 127-140.

[8] Skaug, H. J. and Tjφstheim(1993), A nonparamentric test of serial independence

based on the empirical distribution function, Biometrika, 80(3), 591-602.

Comparing   Different   Permutation   Tests  with...                                                                                    11




