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Abstract 
 

New flexible-form and semi-parametric autoregressive non-linear count models for 

panel data are developed to analyse the spread and containment of the COVID-19 

pandemic. The models are based on a discrete time form of the SIR model. These 

methods lead naturally to estimators of the infection process and daily reproduction 

numbers by jurisdiction. Two semi-parametric versions of the reproduction 

numbers are developed corresponding to currently popular parametric estimators. 

The estimators are applied to a large international data set to estimate these 

parameters for 221 jurisdictions at both national and subnational levels. 
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1. Introduction  

Anyone who has followed the reporting of the COVID-19 pandemic is familiar with 

the graphical presentation and comparison of the data from a variety of jurisdictions, 

the characterization of the growth rates as potentially “exponential” and efforts to 

“flatten” the curves of new infections. A common, but not uniform, initial 

characteristic across jurisdictions was a roughly log-quadratic trend of new 

infections, although this seems to have been belied by numerous resurgences of the 

virus. The similar, but by no means identical time-paths5 seem to reflect a certain 

homogeneous underlying structure. In fact, although the time paths across 

jurisdictions may be eventually quite distinct, it would seem that since all spring 

from what is (basically) a common virus, there should be some homogeneity that 

can be exploited for better estimation. This paper seeks to add to this discussion by 

developing a number of panel and count data techniques based on an underlying 

epidemiological model and applying them to international data available on the 

pandemic. A central focus of this study are the basic or effective reproduction 

numbers which we show are naturally defined with respect to the parameters of the 

count data models we develop. By pooling the data we are able to obtain more 

efficient estimates, all the while allowing for heterogeneity across different 

jurisdictions. We allow for various assumptions regarding homogeneity of the 

pandemic processes across jurisdictions and time and explore the implications of 

these for our understanding of the pandemic. In doing so, we introduce some new 

statistical techniques, including variations of the basic exponential count model and 

flexible-form and semi-parametric modelling of the different deterministic trends 

across jurisdictions. 

At writing, the pandemic has been ongoing for many months with many 

jurisdictions accumulating daily data. This would seem to provide a substantial 

amount of data for each jurisdiction, commonly with one hundred or more 

observations. Nevertheless, estimates based on jurisdiction data have been criticized 

for their unreliability, notably in terms of poor forecasts. Unfortunately, there is 

substantial noise in daily data.6 

We focus in this paper on the infections equation. Most of the published aggregate 

level forecasts are based on deterministic trend (albeit sophisticated) analysis. 

Linton (2020) reports a variety of country-level estimates of models using a non-

parametric local polynomial approach. We refer back to this below. Many public 

and public health organizations have analysed the data using a variety of local trends 

to estimate and forecast. It is difficult to determine exactly the methods they use 

from any publicly available information. We model the infections equation as 

having stochastic and deterministic components. A non-linear long auto-regressive 

series can exhibit behaviour which appears to be moving along a log-quadratic 

 
5 Linton (2020) categorizes international data as falling into one of five groups: Early stages, Middle Age, Over the Hill, 

Twin Peaks, Resurgence. 
6 It is common to see rolling averages reported, these smooth out the noise but do not really impart more information. In fact, 

this may have a substantially harmful effect on inferences in that if the time-path of infections is non-linear, a rolling average 

may tend to obscure this. 
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deterministic trend. Simple examination of patterns in the data can lead to 

misleading conclusions. The notion of “flattening” the curve can be interpreted as 

referring to the raw moments of the reduced form projection of infections on a time 

trend. While this may be a pleasing from a policy perspective, it reflects the fact 

that the pandemic is evolving and that forecasts built on an estimated trend may be 

inaccurate.7 

Count models and panel data have been used extensively in empirical health 

economics and epidemiology. Most of the aggregate data available on the pandemic 

is by definition count data and is collected at a variety of jurisdictional levels, i.e., 

panel data. The principal advantage of panel data is the potential it has for providing 

more information than a single series. This usually entails a presumption of some 

poolability across units. There are various ways to incorporate homogeneity, from 

assuming all jurisdictions are identically distributed, to allowing certain forms of 

heterogeneity, to modelling each jurisdiction separately. If we maintain that 

biologically the disease is largely time and location invariant, then it makes sense 

to exploit the fact that certain key parameters of the process should be alike in 

different jurisdictions.8 

One important consideration makes panel data especially appropriate here. The 

infections (or renewal) equation, at least as modelled using daily observations, is a 

long autoregressive process requiring the estimation of many parameters. There is 

scant information available with individual time series to allow for estimation of a 

large number of parameters with a high level of accuracy. By assuming a certain 

homogeneity of the disease across jurisdictions, we are able to estimate these 

common parameters with a high degree of accuracy. 

We develop/apply a number of count data estimators to examine some of the main 

aggregate features of the pandemic including basic regression models and 

maximum likelihood estimators. The count models are used to estimate the 

parameters of the “renewal equation” popular in epidemiology. These are 

particularly amenable for constructing a model which is both epidemiologically and 

statistically sound. Much of the focus is in a Poisson framework and its extensions. 

This is done largely for mathematical convenience and coherence. Its extensions 

allow for a wide variety of assumptions. The Poisson assumption can be relaxed 

substantially, retaining its main components. Poisson estimators are known to have 

certain robust properties even when the underlying distribution is not Poisson.9 The 

panel Poisson model was perhaps first used by Hausman, Hall and Griliches (1984). 

There are various textbook discussions of the basic estimator including Cameron 

and Trevidi (2005) and Wooldridge (2010). The data is effectively an unbalanced 

panel with observations commencing with first reported incidence. 

 
7 The popular initial work used log-quadratic functional form of the pandemic in part to forecast “peaks” in the virus’ spread 

which is immediate with a quadratic model. Subsequent waves of the virus belie any such simple trend. 
8 There is some evidence that there are various strains or mutations of the virus. While this is quite possible, small differences 

in the virus across outbreaks should have minimal effects on the estimation. 
9 The textbook derivation of a Poisson distribution corresponds to situations of aggregated observations on binary events in 

which the individual probability of an infection is very small and the number at risk is very large. This is not a completely 

inaccurate characterization of the data used here on the COVID-19 pandemic. 
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One of the standard methods of incorporating heterogeneity is through allowing for 

unobserved heterogeneity, either random or fixed effects. We estimate the fixed 

effects version as one way of allowing for heterogeneity across jurisdictions. This 

of course only allows for time-invariant tilting in the regression function. To allow 

for differences in the trend between jurisdictions we introduce a flexible version of 

the fixed-effects model and a variant of Robinson’s (1988) semi-parametric 

estimator. If we assume that the autoregressive component of the reproduction 

equation is effectively homogeneous across jurisdictions, we can estimate this by a 

similar method. 

Some consideration should be given to the issue of stationarity of the pandemic 

process. On the one hand, plots of individual incidents often appear explosive at the 

beginning of most of the outbreaks. (If they were not we clearly would not have 

locked down good parts of the national economies of the world.) On the other hand, 

many if not most outbreaks have become under control and infection levels have 

decreased (at writing) in most jurisdictions. Thus, it is arguable that the contagion 

processes are stationary, either around a trend, or conditional on other factors. From 

an inferential perspective non-stationarity is problematic for various reasons, not 

the least of which is that standard asymptotic critical values based on stationarity 

may be invalid. Our implicit assumption is that the processes are stationary around 

some trend, albeit the specific form of which is unknown. We thus make use of 

standard asymptotic results using George Box’ caveat that any statistical model is 

at best an approximation. Hopefully our results can provide some useful insights. 

An additional argument for stationarity is that the usual tests for stationarity would 

not necessarily refute the hypothesis of non-stationarity if endogenous measures 

were taken such as to keep the spread of the pandemic in check to the side of 

explosiveness. Many countries have taken measures on an incremental basis, slowly 

ratcheting up off-setting measures. So (and this of course may sound self-serving 

on the side of stationarity), the “flattening of the curve” can be seen as a shifting of 

the trend line. Another argument for stationarity follows from the so-called herd-

effect. At a certain point the percentage of the population at risk naturally 

diminishes which eventually puts a damper on disease propagation. The immediate 

extent of a herd-effect is a disputed topic. At time of writing, the introduction of 

various successful vaccines would imply that the number of individuals at risk who 

are exposed to COVID-19 is decreasing. 

The standard models of COVID-19 incidence, while insightful, overlook a couple 

of important elements which can lead to misleading results. The analyses are 

typically presented on a country-by-country basis and are based on fitting data mid-

spell. They are often largely descriptive in nature, fitting what we could call a 

reduced form trend to the data without allowing for direct and accumulated 

feedback from existing infections. This can result in spurious correlations. Ignoring 

this and fitting a rolling trend can exaggerate the effect of a trend and potentially 

lead to what appears to be a flattening of the curve. While governmental policies 

most certainly had an impact on the spread of the disease, it is not clear to what 

extent this was the case, or whether individuals may have been collectively 
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changing their behaviour regardless of government fiat. 

The discussion is organized as follows. In the next section we discuss the data used 

in the study. Section 3 develops the simple discrete infections model linking this in 

a transparent way to the notion of a basic or effective reproductive number in 

epidemiology.10 Section 4 develops corresponding econometric estimators for this 

model, provides identification and asymptotic distributional results and discusses a 

number of other estimation issues. Section 5 provides a summary of our empirical 

results. Section 6 concludes. 

 

2. Data 

The principal source of data used in this study is the Johns Hopkins githubsite. This 

has data on over 260 jurisdictions. Some jurisdictions have been removed from this 

version. We retained only those that had observations from their first reported 

infection (i.e. no left censoring). The data for this version is up to June 29, 2021. 

The earliest observation is January 22, 2020. The data is an unbalanced panel data 

set due to the differences between the first reported infections in different 

jurisdiction. 

One of the issues of debate in the current COVID-19 pandemic literature is over the 

relation between reported and actual infection rate. This has an impact on the study 

in several ways. 

Reported infections are most certainly an understatement of actual infections. There 

already has been a number of studies on this and there will certainly to be many 

more studies of this issue. While we would most certainly prefer to work with actual 

infections, if we consider the proportion of observed to actual cases to be largely 

constant, then we can make inferences in terms of elasticities. For this study we are 

using reported infections. As more information becomes available this could be 

incorporated. We note that changes in reported infections brought on, say, by 

increased testing in most jurisdictions, are allowed for in the flexible form and semi-

parametric approached developed below. 

A second, not-unrelated issue is the period between infection of an individual and 

the date when that case is reported. We may think of this an an incubation period, 

although incubation as referring to the time between infection and manifestation of 

symptoms has a slightly different meaning. Some individuals may stay completely 

asymptomatic throughout their infection or some may not find their symptoms 

sufficiently extreme to warrant reporting/diagnosis so will not appear as infected.11 

Through testing, some who are in this category (and this may be increasing) may 

now show in this category. At any rate there is most typically a lag between infection 

and recorded infection. The renewal equation includes all infectious individuals. In 

principle this can generate a very long autoregressive process, from the date of 

infection, through the period of incubation and to the date of recovery (or death), or 

 
10 Since the reproductive numbers defined in this paper vary by jurisdiction and time, they are more appropriately referred to 

as effective reproduction numbers or ratios. 
11 The Stanford (Bendavid and Bhattacharya, 2020) and other studies emphasize this. 
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quarantine, with the latter being imperfect and of variable effectiveness. 

It is difficult to think of a situation in which data has been such a contentious 

political issue amidst claims of under or over-reporting and so on. We simply take 

the data as they are. It is certainly the case that there have been some administrative 

issues. We have, with minimal caveats used the data as collected by third parties 

and publicly available. Perhaps the one caveat, apart from deleting left-censored 

observations, is that in a few cases (probably) due to updates, cumulative numbers 

decreased resulting in negative counts. These were recoded as zeros when minimal; 

we deleted jurisdictions (including Italy and the UK) which had more than 10 

negative counts. We also omitted a few obviously anomalous cases such as the 

Island Princess. We retained 221 observations. 

The cases used in the study thus correspond (caveats mentioned above) to the data 

freely available at the Johns Hopkins website. Most of the cases or jurisdictions are 

at the national level of aggregation. Some, such as Canadian (province), Australian 

(state) and some Chinese data 12  are at a subnational level. These could be 

aggregated in various ways either by country or region. We have left as is for 

transparency and to allow for more heterogeneity.13 The heterogeneity in the cases 

in the data thus almost mirrors that of most international data sets. Thus, there are 

large differences between observations. This we view as a benefit as our analysis 

allows for a separation of the biological component of the pandemic from the 

environmental component. Conversely, the techniques in this paper could be 

applied to other data sets in which the collection is less aggregated, say at a county 

level. In this case, there would arguably be much more dependence between 

observations and this would need to be incorporated into the modelling strategy. 

 

3. Infections, 𝓡𝟎 and Count Models 

Much of the modern literature on the spread of pandemics is based on the original 

SIR differential model of Kermack and McKendrick (1927, 1932, 1933). The SIR 

model and its extensions are useful for conceptualizing the characteristics of disease 

spread within a deterministic setting, but may be somewhat limited to characterize 

the observational, heterogeneous and discretely sampled data which is typically 

available. The simplest idea in the study of contagious diseases is that of a 

reproduction number or ratio. As per Heesterbeek and Dietz (1996), “ℛ0 is the 

expected number of secondary cases produced by a typical infected individual 

during its entire infectious period, in a population consisting of susceptibles only”. 

“ℛ0” is a convenient and familiar generic term. For the most part we allow the 

reproduction number to vary by jurisdiction and jurisdiction and time and 

accordingly use the notations ℛ𝑗 and ℛ𝑗(𝑡). 

There are numerous versions of the continuous-time SIR model (see Heesterbeek 

and Dietz, 1996) with correspondingly somewhat varying definitions of ℛ0 which 

 
12 Note that since the data set begins January 22, 2020, a number of the Chinese provinces and other sub-national jurisdictions 

are unfortunately excluded. 
13 It could also lead to more violations of the independence assumption. See below for a discussion of this. 
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lead to somewhat different estimates (Chowell, Gerardo, Nishiura and Bettencourt, 

2006 and Li, Blakeley and Smith, 2011). In its most basic form, ℛ0 ignores or 

holds constant certain time factors (including a specific individual’s infectiousness), 

exposure intensity factors and responses to the infection, either medical or social. 

Nevertheless it is a useful place to start. An infection is seen as the event of being 

contaminated by the virus. The probability of such an event varies across individuals 

and each individual’s infectiousness will vary randomly. We develop a discrete 

version commonly (see, e.g. Allen, 1994 and Champredon et al, 2018) referred to 

in the epidemiology literature as the renewal equation. 

The discrete version of the renewal equation as in Allen (1994) is derived from a 

first-order difference equation which can be seen as a time-discrete version of the 

corresponding first-order differential renewal equation in the original SIR model. 

Chowell and Nishiura (2008) and Li, Blakeley and Smith (2011) survey various 

methods to estimate reproduction numbers including those from survival methods 

and imputation from empirical growth rates. 

Two alternative approaches to defining the reproduction number are reviewed by 

Fraser (2007). The first, the “case reproduction number” conforms with the above 

definition and which we develop for count models here. The second, the 

“instantaneous reproduction number” can be obtained from the case approach by 

imposing a constraint. The instantaneous number has been popularized by e.g. Cori 

et al. (2013) and has been widely adopted by public health authorities. It is 

numerically simpler to implement. We show at the end of this section how to adopt 

the methods here to obtain a semi-parametric version of it. We develop a discrete 

infections equation in an alternative manner from simple first principles and the 

concept of the effective reproduction number, which varies across jurisdictions and 

time. This leads directly into an estimable autoregressive count model. We first 

assume a constant (over time) exposure rate so that a random individual 𝑖 who 

becomes infected in a jurisdiction 𝑗 is considered to have the same number and 

kind of encounters with uninfected (susceptible or at-risk) individuals in jurisdiction 

𝑗 each day. This is a classic statistical experiment in a laboratory setting with exact 

replication each day. The assumption of a constant exposure rate is effectively 

plausible if a population is sufficiently large that those who become infected 

represent a small proportion of the at-risk set. Note that this excludes in a sense a 

“herd” effect which diminishes the exposure rate in terms of exposure to at risk 

individuals. Allowing for a herd effect is one way of thinking of subsequent draws  

without replacement. We want to connect this to an autoregressive framework. Note 

that in continuous time an individual may be immediately contagious and the 

disease’s virulence within that individual would be changing continuously over time. 

However, this needs to be modified for discrete time. Here, everything is framed 

within the context of the impact of new infections and allows that their case may be 

“primary”, “secondary” or otherwise. 

Consider an individual 𝑖  who becomes infected in time 𝑡 . In each subsequent 

period, 𝑡 + 𝑠, individual 𝑖 is introduced into an environment (call it jurisdiction 𝑗) 

which we first assume is homogeneous over time. A person is infectious up to a 
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maximum of 𝑚 periods. Individual 𝑖 will directly cause 𝐼𝑗(𝑡 + 𝑠) infections in 

jurisdiction 𝑗  in periods 𝑡 + 𝑠 , 𝑠 = 1, … , 𝑚 . The 𝐼𝑗(𝑡 + 𝑠)  are independent, 

which we assume is plausible with a fairly large population. Note that the 𝐼𝑗(𝑡 + 𝑠) 

are random: they depend primarily on the amount of the viral load ingested by 𝑖 
and the toxicity of 𝑖 . Thus the number of (secondary) infections caused by 

individual 𝑖 in jurisdiction 𝑗 is ∑𝑚
𝑠=1 𝐼𝑗(𝑡 + 𝑠). 

If we decompose transmission into the product of time-varying virulence, 𝑟𝑠 with 

a constant (over time) exposure factor we have  𝔼[𝐼𝑗(𝑡 + 𝑠)] = 𝑟𝑠𝐴𝑗, where 𝐴𝑗 is 

exposure rate in jurisdiction 𝑗. Normally, but not necessarily, we expect 𝑟𝑠 to be 

decreasing in 𝑠. There may be a hump corresponding to initial infectiousness. After 

𝑚 (𝑚 finite) periods a person is no longer infecting others (they may be still sick, 

completely quarantined, recovered or dead, but not infecting others so that 𝑟𝑠 = 0, 

𝑠 > 𝑚. Following Heesterbeek and Dietz (1996) we refer to 𝑟𝑠 as the reproduction 

function which may be seen as the product of a measure of the infectivity of an 

individual 𝑠 days from infection and the survival function of the infection. In our 

context these are not separately identifiable. We have that the basic (perhaps better 

referred to as the effective) reproduction number in jurisdiction 𝑗 is 

 

                 ℛ𝑗 = 𝐴𝑗 ∑𝑚
𝑠=1 𝑟𝑠.  (3.1) 

 

We have changed indexes to indicate that the reproduction number varies by 

jurisdiction. We connect this to an autoregressive process as follows. In period 𝑡 −
𝑚 suppose there are 𝑦𝑗,𝑡−𝑚  new infections, then this contributes in conditional 

expectation to 𝐴𝑗𝑟𝑚𝑦𝑗,𝑡−𝑚 new infections in period 𝑡. In 𝑡 − 𝑚 + 1 if there are 

𝑦𝑗,𝑡−𝑚+1  new infections, then this contributes in conditional expectation, to 

𝐴𝑗𝑟𝑚−1𝑦𝑗,𝑡−𝑚+1 new infections in 𝑡. In 𝑡 − 1 if there are 𝑦𝑗,𝑡−1 new infections, 

then this contributes in conditional expectation to 𝐴𝑗𝑟1𝑦𝑗,𝑡−1  new infections in 

period 𝑡 . So, adding these together, in terms of conditional expectations, if 

infectiousness lasts 𝑚 periods we have 

 

         𝔼[𝑦𝑗,𝑡|𝑦𝑗,𝑡−1, … , 𝑦𝑗,𝑡−𝑚] = 𝐴𝑗 ∑𝑚
𝑠=1 𝑟𝑠𝑦𝑗,𝑡−𝑠. (3.2) 

 

Consider now if the exposure rates, which we now indicate by 𝐴𝑗(𝑡), change by 

jurisdiction and time period. It’s useful to walk through a chain of examples.   

 

• If an individual 𝑖 (in jurisdiction 𝑗) gets ill in period 𝑡 − 𝑚, 

 

– in period 𝑡 − 𝑚 + 1 individual 𝑖 is expected to directly infect 𝑟1𝐴𝑗(𝑡 −

𝑚 + 1) individuals (these may go on to infect others),  

– in period 𝑡 − 𝑚 + 2 individual 𝑖 is expected to infect 𝑟2𝐴𝑗(𝑡 − 𝑚 + 2) 

individuals,  
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– in period 𝑡 − 1 individual 𝑖 is expected to infect 𝑟𝑚−1𝐴𝑗(𝑡 − 1) 

individuals and so on until  

– in period 𝑡 individual 𝑖 is expected to infect 𝑟𝑚𝐴𝑗(𝑡) individuals and  

– in period 𝑡 + 1 individual 𝑖 is expected to infect 0 individuals. 

 

• If an individual 𝑖 gets ill in period 𝑡 − 𝑚 + 1, 

  

– in period 𝑡 − 𝑚 + 2 individual 𝑖 is expected to infect 𝑟1𝐴𝑗(𝑡 − 𝑚 + 2) 

individuals,  

– in period 𝑡 − 𝑚 + 3 individual 𝑖 is expected to infect 𝑟2𝐴𝑗(𝑡 − 𝑚 + 3) 

individuals  

– in period 𝑡 individual 𝑖 is expected to infect 𝑟𝑚−1𝐴𝑗(𝑡) individuals,  

– in period 𝑡 + 1  individual 𝑖  is expected to infect 𝑟𝑚𝐴𝑗(𝑡 + 1) 

individuals and  

– in period 𝑡 + 2 individual 𝑖 is expected to infect 0 individuals and none 

thereafter. 

 

• If an individual 𝑖 gets ill in period 𝑡 − 1. 

  

– in period 𝑡 individual 𝑖 is expected to infect 𝑟1𝐴𝑗(𝑡) individuals, 

– in period 𝑡 + 1  individual 𝑖  is expected to infect 𝑟2𝐴𝑗(𝑡 + 1) 

individuals,  

– in period 𝑡 + 𝑚 − 1 individual 𝑖 is expected to infect 𝑟𝑚𝐴𝑗(𝑡 + 𝑚 − 1) 

individuals, 

– in period 𝑡 + 𝑚 individual 𝑖 is expected to infect 0 individuals. 

 

Noting which previous infections cause infections in period 𝑡 and by which factor, 

we have, in terms of conditional expectations, 

 

𝔼[𝑦𝑗,𝑡|𝑦𝑗,𝑡−1, 𝑦𝑗,𝑡−2, 𝑦𝑗,𝑡−𝑚 , 𝑡] = (𝑟1𝑦𝑗,𝑡−1 + 𝑟2𝑦𝑗,𝑡−2 + ⋯ + 𝑟𝑚𝑦𝑗,𝑡−𝑚)𝐴𝑗(𝑡) (3.3) 

                                                      ≡ 𝑌𝑗,𝑡−𝑚′𝑟𝐴𝑗(𝑡) 

 

noting that all terms are positive, where 𝑌𝑗,𝑡−𝑚′ ≡ (𝑦𝑗,𝑡−1, … , 𝑦𝑗,𝑡−𝑚)  and 𝑟 =
(𝑟1, … , 𝑟𝑚)′. We also have that the effective reproduction number, denoted here 

ℛ𝑗(𝑡), varies by jurisdiction and time period so that 

 

             ℛ𝑗(𝑡) = ∑𝑚
𝑠=1 𝑟𝑠𝐴𝑗(𝑡 + 𝑠) (3.4) 

 

with the same parameters as from the autoregression. Note that, from a count data 

perspective, the reproductive number can be seen as simply a weighted sum of 

upcoming exposure factors, wherein the weights are corresponding measures of a 

typical person’s infectivity at those times. 
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Note the formal similarity of this to the renewal equation in Cori et al. (2013) and 

Champredon et al. (2018).14 Cori et al. (2013) use a Poisson distribution for the 𝑦𝑡 

with conditional mean 𝑅𝑡(𝜃2) ∑𝑡−1
𝑖=1 𝑤𝑖(𝜃1)𝑦𝑗,𝑡−𝑖 where 𝑅𝑡(𝜃2) and the 𝑤𝑖’s are 

parametrically specified (e.g., as Gamma and serial interval distribution). 

Champredon et al. (2018) use a variation specified as (adapting for our notation) 

 

          𝑦𝑗,𝑡 =
𝑆𝑗𝑡

𝑁𝑗
ℛ0𝐵𝑗𝑡 ∑𝑚

𝑖=1 𝛾(𝑖)𝑦𝑗,𝑡−𝑖  (3.5) 

 

where 𝑆𝑗𝑡, 𝑁𝑗 and 𝐵𝑗𝑡 represent susceptible (at risk) individuals, population and 

other factors such as distancing. Champredon et al. (2018) have the same variables 

with two differences. First, in our case, the effective reproduction numbers are 

directly derived as functions of the autoregressive parameters of the process. In their 

studies 𝛾  is a distribution function whose parameters are estimated. Second, 

although in principle at-risk population density could be introduced, there are 

identification and normalization issues involved when multiplying these different 

factors. 

Note here that we are implicitly assuming independence across jurisdictions. An 

alternative multivariate time series count model, introduced by Held and Paul (2012) 

and Meyer and Held (2014), allows for interdependence across jurisdictions (or 

regions). They allow for only one lag in their approach and their focus is more on 

transmission across jurisdictions rather than the dynamics of the process. A gravity 

model similar to this would be an interesting extension of this study, but beyond its 

scope. We note that the almost global ban on international travel some weeks into 

the pandemic effectively imposed a high degree of independence across 

jurisdictions.15 The effective independence across jurisdictions is supported by the 

study by Valenti and Laurini (2021). 

Many writers have been critical of the notion of a constant reproduction number 

parameter, although the concept has seen widespread use and it certainly makes 

sense to assign some sort of measure to the transmissibility of a disease. In a 

laboratory setting it is useful to consider factors by which different diseases will be 

transmitted by a single person over the course of their infection (this itself is 

unlikely to be constant for various reasons) for given rates of exposure. There are 

numerous secondary factors which can be held constant. Where the problems really 

arise is in maintaining a constant exposure rate. We use Equation 3.3 as the basis 

for estimation. Note that 𝑟𝑠 ≥ 0. In the empirical work we parametrize so that the 

𝑟𝑠’s are positive. 

An important consideration is the multifaceted relationship between true infections 

(largely unobservable) and administratively recorded infections (observable with 

some error). That infections show up with a lag is one issue. That increasing 

 
14 This is a discrete time form of their equation as presented by Champredon (2020). 
15 There is also an implicit assumption that a (secondary) person is only infected by one (primary) person. This assumption 

is made in the original SIR work, the argument being that the initial contamination swiftly dominates any subsequent 

contamination. 
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numbers are being tested over the sampling is another. In our autoregressive models, 

if true and recorded infections are proportional and with a constant factor of 

proportionality, then the parameters of the autoregression are the same for the 

observed and unobserved models. 

Much is unknown about the corona virus and different mutations of it are likely to 

have somewhat different transmission properties and manifest themselves with 

somewhat different symptoms. Another issue is the incubation period (from initial 

transaction to manifestation in human symptoms). Indeed the extent to which the 

virus manifests itself is itself an important topic. From an estimation perspective we 

allowed for the length of infectiousness to be up to two weeks which seems quite 

adequate in most cases. 

To close off this section we consider the interdependence of observations across 

jurisdictions and how that effects the analysis here, potentially in two ways. First, 

ipso facto, infections across jurisdictions are clearly not independent due to 

migration. The above model could be modified to allow for individuals to cross 

from one jurisdiction to another during their infectiousness period. This kind of 

adjustment (not possible using the data set employed here) could have some effect 

on the analysis, but in our case the effects of such an adjustment would be small for 

a number of reasons. First, although the initial cases of the pandemic for any 

jurisdiction were introduced by individuals from a different jurisdiction (typically 

midstream of that individual’s infectiousness period), the ensuing secondary cases 

follow the modelling above and the relative contribution of the primary cases to 

secondary cases is soon dwarfed by domestically infected individuals. So while 

allowing for inter-jurisdictional transmission of the pandemic would be important 

to a study focused on that, it has little relative impact here. Moreover, the enhanced 

controls on travel introduced by almost all countries (and many sub-national 

jurisdictions) by March, 2020 virtually eliminated this concern as an issue for our 

purposes here. It is commonly reported that foreign sources account for no more 

than one or two per cent of total direct infections. A second indirect way in which 

the independence issue impacts here is a concern in many statistical studies that 

there are unobservable effects which impact on all observations making them in 

some way dependent. We choose, at this point, to address these kind of concerns by 

appropriate adjustment to standard errors. 

 

4. Econometric Models and Issues 
This section deals with a number of estimation issues. We first consider a number 

of econometric models and corresponding estimators which are consistent with the 

basic epidemiological count model of Section 3 for a range of assumptions 

regarding the time trend component. We show how new estimators of the 

reproduction numbers can be computed for each of these models. We provide 

discussions of identification of the parameters in each model as well as basic 

asymptotic results for the estimators. Finally, we consider a number of other 

estimation considerations that arise in this context. 
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Since we are modelling count variables it is convenient to specify a conditional 

Poisson distribution for the infections, 𝑦𝑗,𝑡 . This framework allows for 

incorporation of the non-negative integer nature of 𝑦𝑗,𝑡  and provides simple 

intuitive ways to capture heterogeneity and dependence. The approach can then 

simply be subsequently modified to allow for non-Poisson features while retaining 

the basic intuition. Poisson estimates are also robust to departures from the Poisson 

distribution. We first state a few well-established results regarding the standard 

fixed-effects Poisson model and then extend this in a couple of ways to flexible-

form estimation and semi-parametric estimation. 

 

4.1 Fixed Effects 

The basic fixed-effects model can be written such that the conditional mean for an 

observation 𝑦𝑗,𝑡  can be written as ℎ𝑗𝑡(𝑟)𝑒𝛼𝑗  where ℎ𝑗𝑡(𝑟)  is a function of 

conditioning variables and a parameter 𝑟 . The log-likelihood function for 

observation 𝑗, 𝑡 is written as 

 

          𝑙𝑗𝑡(𝑍𝑗𝑡; 𝛼𝑗 , 𝑟) = 𝑦𝑗,𝑡log𝜆𝑗𝑡 − 𝜆𝑗𝑡 − log𝑦𝑗𝑡! (4.1) 

 

where 𝜆𝑗𝑡 = ℎ𝑗𝑡(𝑟)𝑒𝛼𝑗  and 𝑍𝑗𝑡 denotes 𝑦𝑗,𝑡 and any conditioning variables. An 

equivalent parameterization which we also use sets 𝑐𝑗 = 𝑒𝛼𝑗 . 

In this paper we primarily use the specification 16  ℎ𝑗𝑡(𝑟) = 𝑌𝑗,𝑡−𝑚′𝑟 , although 

certain other specifications, including introduction of additional covariates, can be 

accommodated. For now we assume that all jurisdictions are infected on the same 

date, i.e., a balanced panel. This is modified below to allow for different first 

infection dates. The pooled Poisson estimator sets 𝛼𝑗 = 𝛼 for all 𝑗 = 1, … , 𝑁. The 

standard fixed-effects estimator of 𝑟 can be obtained in a couple of ways. For 

distributional results it is simplest to follow Andersen’s (1970) (adopted by 

Hausman, Hall and Griliches, 1984, for the Poisson case) method of deriving the 

likelihood of 𝑦𝑗,1, … , 𝑦𝑗,𝑇  conditional on �̅�𝑗 = ∑𝑇
𝑡=1 𝑦𝑗,𝑡/𝑇  which leads to a 

multinomial distribution for the 𝑦𝑗,1, … , 𝑦𝑗,𝑇’s. For modelling purposes we find it 

convenient to first maximize with respect to each 𝛼𝑗, for given 𝑟, and concentrate 

out the 𝛼𝑗’s. The distributional results may be more difficult to derive directly in 

this case, but we find the interpretation of the model simpler in this form and also 

more readily extendable. For given 𝑟, the maximizers of ∑𝑡 𝑙𝑗𝑡(𝑍𝑗𝑡; 𝛼𝑗, 𝑟) with 

respect to 𝛼𝑗 solve 

 

 

 

 
16 When 𝑦

𝑗,𝑡−𝑠
= 0, 𝑠 = 1, … , 𝑚 we set 𝑙𝑗𝑡 = 0. 
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            𝑒𝛼𝑗 =
�̅�𝑗

ℎ̅𝑗(𝑟)
≡ 𝑐𝑗 ,        𝑗 = 1, … , 𝑁 (4.2) 

 

where �̅�𝑗 and ℎ̅𝑗(𝑟) represent averages for jurisdiction 𝑗. Summing over 𝑡, the 

single observation concentrated log-likelihood (up to a constant ) is written 

 

𝑙𝑗(𝑟, 𝛼𝑗(𝑟)) = ∑𝑡 𝑙𝑗𝑡(𝑟, 𝛼𝑗(𝑟)) = ∑𝑡 𝑦𝑗,𝑡ln (
ℎ𝑗𝑡(𝑟)

∑𝑡 ℎ𝑗𝑡(𝑟)
) + const (4.3) 

 

It is common in count analysis to adjust for “exposure rates” by scaling each hazard 

by a measure of the jurisdiction’s population or population density. This is typically 

redundant with a fixed-effects model as multiplicative time invariant variables are 

absorbed into the fixed effects. Standard exposure rate adjustments do not affect the 

slopes of the fixed-effects estimators. 

Under wide ranging conditions the Maximum Likelihood Estimator of 𝑟 is known 

to be consistent and asymptotically normal. The score can be written as 

 

          𝑠𝑗(𝑟) = ∑𝑇
𝑡=1 (𝑦𝑗𝑡 −

�̅�𝑗

ℎ̅𝑗(𝑟)
ℎ𝑗𝑡(𝑟))

ℎ𝑗𝑡(𝑟)

ℎ𝑗𝑡(𝑟)
 (4.4) 

 

where ℎ𝑗𝑡 ≡ 𝜕ℎ𝑗𝑡/𝜕𝑟. Note that this holds for as few as 𝑇 = 2 although it does 

fall apart if 𝑇 = 1. 

The fixed-effects estimator is useful as a benchmark to compare against other 

estimators and also as a segue to understanding a class of flexible-form estimators 

we now look at. 

 

4.2 Time-Varying Fixed Effects 

From the renewal equation we allow for the autoregressive component to be 

homogeneous across individuals, but the deterministic component is allowed to 

vary across jurisdictions. We propose a variety of flexible form and semi-parametric 

approaches for which the asymptotics are straightforward. Consider first a count 

variable whose mean over an interval is proportional to a common factor. Denote 

the intervals as 

           ℐ𝑗𝑙 = {

[0, 𝑇1),                        l = 1 
[𝑇l−1, 𝑇l ),           1 < l < L  
[𝑇l,  ),                   l = L    

 (4.5) 

 

Where over interval ℐ𝑗𝑙 , we have 

                                            𝔼[𝑦𝑗,𝑡|𝑡 ℐ𝑗𝑙] = ℎ𝑗𝑡(𝑟)𝑒𝛼𝑗𝑙 . (4.6) 
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We will use somewhat of an oxymoron and refer to this as a time-varying fixed-

effects model. We write the single observation log-likelihood as 

 

 𝑙𝑗(𝑟, 𝛼𝑗) = ∑𝐿
𝑙=1 ∑𝑡∈ℐ𝑗𝑙

(𝑦𝑗,𝑡ln(ℎ𝑗𝑡𝑒𝛼𝑗𝑙) − ℎ𝑗𝑡(𝑟)𝑒𝛼𝑗𝑙) + const 

 

where 𝛼𝑗(𝑟) = (𝛼𝑗1(𝑟) ⋯ 𝛼𝑗𝐿(𝑟)). Let 𝑛𝑗𝑙 denote the number of observations 

in ℐ𝑗𝑙, �̅�𝑗𝑙, ℎ̅𝑗𝑙 denote the corresponding averages of the 𝑦𝑗𝑡 and ℎ𝑗𝑡 over those 

intervals. We see simply that with 𝑐𝑗𝑙 = �̅�𝑗𝑙/ℎ̅𝑗𝑙 , maximizing the corresponding 

likelihood over the 𝛼𝑗𝑙 ’s results in estimators: 𝑒𝛼𝑗𝑙 = 𝑐𝑗𝑙  and the single 

observation concentrated log-likelihood is written 

 

     𝑙𝑗 (𝑟, 𝛼𝑗(𝑟)) = ∑𝐿
𝑙=1 ∑𝑡∈ℐ𝑗𝑙

(𝑦𝑗𝑡ln(ℎ𝑗𝑡(𝑟)
�̅�𝑗𝑙(𝑟)

ℎ̅𝑗𝑙(𝑟)
) − ℎ𝑗𝑡(𝑟)

�̅�𝑗𝑙

ℎ̅𝑗𝑙(𝑟)
) + const (4.7) 

 = ∑𝐿
𝑙=1 ∑𝑡∈ℐ𝑗𝑙

𝑦𝑗𝑡ln(
ℎ𝑗𝑡(𝑟)

ℎ̅𝑗𝑙(𝑟)
) + const 

 

with the middle term on the first line being absorbed into the constant since  

                 ∑𝑡∈ℐ𝑗𝑙
(ℎ𝑗𝑡

�̅�𝑗𝑙

ℎ̅𝑗𝑙
) = 𝑛𝑗𝑙�̅�𝑗𝑙 (4.8) 

 

and we also note that we may interpret �̅�𝑗𝑙  and ℎ̅𝑗𝑙  as method of moments 

estimators of 𝔼[𝑦𝑗,𝑡|𝑡 ∈ ℐ𝑗𝑙] and 𝔼[ℎ𝑗𝑡|𝑡 ∈ ℐ𝑗𝑙]. 

 

We obtain the usual fixed effects estimator by setting 𝐿 = 1 in which case the �̅�𝑗𝑙 

and ℎ̅𝑗𝑙 are the averages over all the observations for jurisdiction 𝑗. Corresponding 

to the standard fixed-effects case we can write down the single observation score 

for this extension thereof as 

 

                   𝑠𝑗(𝑟) = ∑𝑇
𝑡=1 (𝑦𝑗𝑡 − 1𝑗𝑙𝑡

�̅�𝑗𝑟

ℎ̅𝑗𝑙(𝑟)
ℎ𝑗𝑡(𝑟))

ℎ𝑗𝑡(𝑟)

ℎ𝑗𝑡(𝑟)
 (4.9) 

 

where 

 

                 1𝑗𝑙𝑡 = {
1, 𝑡 ∈ ℐ𝑗𝑙

0, otherwise
.               (4.10) 

 

Note that for the estimator to work we need at least two observations to fall within 

each interval, although presumably more is better. Also note that we are dividing 

the observations up into intervals along the line, but in a more general sense we 

could divide the observations up into different subgroups or “clusters” so long as 

these are known. 
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We note that for given 𝑟  

                        
�̅�𝑗𝑙

ℎ̅𝑗𝑙(𝑟)
= 𝑒�̂�𝑗𝑙q  (4.11) 

 

provides estimates of the 𝛼𝑗𝑙’s, although without specifying the number of elements 

in ℐ𝑗𝑙 we need to be careful when using these individually for inferences. If the 

number of observations in an interval is large, then we may be fairly comfortable 

using asymptotic theory to make inferences about the 𝛼𝑗𝑙’s. 

Note that for fixed 𝐿 , this is a straightforward extension of the fixed-effects 

estimator. Its statistical properties follow from the Anderson set up. It can be seen 

as a multinomial estimator with the likelihood conditional on the �̅�𝑗𝑙 , 𝑙 = 1, … , 𝐿. 

This may be seen as a step-wise constant approximation to a time trend. We stay 

agnostic with respect to the choice of knots. Some authors have already effectively 

considered specific dates for these. We estimate these models for fixed values of 𝐿 

(actually modified to 𝐿𝑗 , 𝑗 = 1, … , 𝑁  to allow for different initial pandemic 

starting dates). We could also incorporate some curvature within regions, but stay 

simple leaving the fixed effects constant over each interval. 

It is important to link this variable fixed effects specification to the infections 

equation. Note here that the conditional mean of 𝑦𝑗,𝑡 can be written as 

 

          𝔼[𝑦𝑗,𝑡|𝑌𝑗,𝑡−𝑚 , 𝑡] = 𝑌𝑗,𝑡−𝑚′𝑟𝐴𝑗(𝑡), (4.12) 

 

where  

            𝐴𝑗(𝑡) = ∑
𝐿𝑗

𝑙=1
𝑒𝛼𝑗𝑙1[𝑡 ∈ ℐ𝑗𝑙], (4.13) 

where 1[] is the usual indicator function. Thus, in this set up we allow for a flexible 

approximation to the time trend via a step function. Note that the fixed-effects 

estimator is a special case with 𝐴𝑗(𝑡) = 𝑒𝛼𝑗 , the deterministic trend being constant 

for all 𝑗. 

In our empirical work we considered various choices for the length of these intervals. 

If these are too long, the trend effect is washed out; choosing intervals too short 

results in over-fitting and nonsensical values for the autoregression parameters. We 

found a good compromise was between 21 and 31 days. We rounded up the number 

of periods in the first interval for each jurisdiction (i.e. each ℐ𝑗𝑙  contained 𝐿 

observations with the first interval containing at least 𝐿 observations). We return 

to this estimator after the following discussion. 

 

4.3 Semi-Parametric Modelling 

The semi-parametric literature has generalizations that effectively allow for 

smoothing of the step-wise function. One is to allow for curvature over each interval 

such as having quadratic or cubic splines over the knots. The other is to allow 𝐿 to 

increase. The latter can be problematic for technical reasons but also because of 

what we are willing to assume regarding the size of 𝑇 : whether it is fixed or 
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growing and at what rate. We touch briefly on this but given our interest here is on 

applications we keep the discussion and assumptions at a high level. Introducing 

smoother functions via splines is one method of approximation which has been used 

by some analysts of the pandemic. We find a simpler way is through kernel and 

local polynomial estimators,17 which will lead to a more sophisticated estimation 

approach than the time-variant fixed effects estimator. 

To do so we consider a variation of Robinson’s (1988) partially linear regression 

model. Semi-parametric estimators for other similar non-linear models have been 

proposed so we keep the asymptotics fairly high level. The idea is as follows. We 

can tautologically decompose a count (or other) random variable into its regression 

(conditional mean) and residual and do non-linear regression noting that the count 

feature restricts the regression to be positive (and puts an inequality constraint on 

the residual). We maintain a Poisson-type framework while noting that this can 

either be modified, keeping the regression component of the Poisson and/or 

modified with results interpreted using robust inferential techniques. To allow the 

trend to be jurisdiction specific we let 𝜏𝑗,𝑡  denote periods following the first 

infection in jurisdiction 𝑗 at time 𝑡. In our case then, 

 

 𝔼[𝑦𝑗,𝑡|𝑌𝑗,𝑡−𝑚 , 𝜏𝑗,𝑡] ≡ 𝜆𝑗𝑡(𝑌𝑗,𝑡−𝑚 , 𝜏𝑗,𝑡) (4.14) 

                = ℎ1(𝑌𝑗,𝑡−𝑚)ℎ2(𝜏𝑗,𝑡), 

 

say, so that taking the expected value of 𝑦𝑗,𝑡 conditional on 𝜏𝑗,𝑡 we have 

 

 𝔼[𝑦𝑗,𝑡|𝜏𝑗,𝑡] = 𝔼[ℎ1(𝑌𝑗,𝑡−𝑚)|𝜏𝑗,𝑡]ℎ2(𝜏𝑗,𝑡) (4.15) 

 

and rearranging we have  

               ℎ2(𝜏𝑗,𝑡) =
𝔼[𝑦𝑗,𝑡|𝜏𝑗,𝑡]

𝔼[ℎ1(𝑌𝑗,𝑡−𝑚)|𝜏𝑗,𝑡]
 (4.16) 

 

and under the specification for the autoregressive component of the renewal 

equation we have 

 

    𝜆𝑗𝑡 ≡ 𝔼[𝑦𝑗,𝑡|𝑌𝑗,𝑡−𝑚 , 𝜏𝑗,𝑡] =
ℎ1(𝑌𝑗,𝑡−𝑚)

𝔼[ℎ1(𝑌𝑗,𝑡−𝑚)|𝜏𝑗,𝑡]
𝔼[𝑦𝑗,𝑡|𝜏𝑗,𝑡] (4.17) 

 = (
𝑌𝑗,𝑡−𝑚′𝑟

𝔼[𝑌′𝑗,𝑡−𝑚|𝜏𝑗,𝑡]𝑟
)𝔼[𝑦𝑗,𝑡|𝜏𝑗,𝑡] 

 ≡ 𝐻𝑗𝑡(𝑟)𝔼[𝑦𝑗,𝑡|𝜏𝑗,𝑡], 

 

say, again with 𝑟 = (𝑟1 … 𝑟𝑚)′. A number of points arise here. First, with 

respect to identification, note that multiplying each 𝑟𝑘  by a common constant 

leaves the conditional mean unaltered so a restriction is required.18 We provide a 

 
17 Linton (2020) uses local polynomials to estimate [𝑦𝑗,𝑡|𝑡]. 
18 In our initial applications we normalized ln𝑟1 = 𝜌1 = 1. Subsequently we used ∑𝑠 𝑟𝑠 = 1 to be consistent with other 
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more fulsome discussion of identification below. 

The multiplicative decomposition of 𝔼[𝑦𝑗,𝑡|𝑌𝑗,𝑡−𝑚 , 𝜏𝑗,𝑡] = 𝜆𝑗,𝑡  has an interesting 

interpretation. 𝔼[𝑦𝑗,𝑡|𝜏𝑗,𝑡] is the pure trend component of the pandemic. Note that 

if this understates the pandemic relative to its actual spread then the coefficient 

𝐻𝑗𝑡(𝑟) will be greater than one and this will adjust the pure trend component of the 

pandemic upwards. Conversely if 𝔼[𝑦𝑗,𝑡|𝜏𝑗,𝑡]  overstates the pandemic, 

𝔼[𝑦𝑗,𝑡|𝑌𝑗,𝑡−𝑚 , 𝜏𝑗,𝑡] will be smaller. 

 

4.3.1 Infeasible Semi-Parametric Modelling 

Were the conditional expectations known, maximum likelihood (or non-linear 

regression) could be applied directly to estimate 𝑟. In that case if we substitute 𝜆𝑗𝑡 

into the single observation log-likelihood we have 

 

     𝑙𝑗𝑡(𝑟) = −𝐻𝑗𝑡(𝑟)𝔼[𝑦𝑗,𝑡|𝜏𝑗,𝑡] + 𝑦𝑗,𝑡ln𝐻𝑗𝑡(𝑟) + const (4.18) 

 

and summing over all time periods we have 

 

𝑙𝑗(𝑟) = − ∑𝑇
𝑡=1 𝐻𝑗𝑡 (𝑟)𝔼[𝑦𝑗,𝑡|𝜏𝑗,𝑡] + ∑𝑇

𝑡=1 𝑦𝑗,𝑡ln𝐻𝑗𝑡(𝑟) + const. (4.19) 

 

The maximizer, �̂�∗, of the sum of these 𝑙𝑗(𝑟)’s we shall denote as the infeasible 

semi-parametric estimator. This log-likelihood is analogous to the time-varying 

fixed-effects case, but with an important difference. The middle term corresponds 

to the log-likelihood for the time-varying fixed-effects case. However, the 

equivalent to the lead term does not exist in the time-varying fixed-effects case 

(either with one or 𝐿 > 1 effects) as we have written it. Actually, there is an 

equivalent term, but, in the derivation of the fixed effects estimator, the equivalent 

of the numerator in the first term effectively cancels with the denominator and the 

lead term is absorbed into the constant. 

Here, differentiating and rearranging we see that the score function is of the form 

 

𝑠𝑗(𝑟) ≡
𝜕

𝜕𝑟
𝑙𝑗(𝑟) = ∑𝑇

𝑡=1 𝔼[𝑦𝑗,𝑡|𝜏𝑗,𝑡]𝐻𝑗𝑡(𝑟) (
𝑦𝑗𝑡

𝜆𝑗𝑡
− 1) (4.20) 

 

which has the familiar structure of a Poisson score function with zero mean. 

 

4.3.2 Feasible Semi-parametric Estimation 

In the absence of the conditional mean functions 𝔼[𝑦𝑗,𝑡|𝜏𝑗,𝑡] and 𝔼[𝑌𝑗,𝑡−1|𝜏𝑗,𝑡] we 

can first estimate the conditional means non-parametrically and then substitute these 

into the likelihood function and then maximize the likelihood over the 𝑟’s to obtain 

a feasible semi-parametric estimator, �̂� . There are numerous methods for 

 
work in the area. A scale restriction is also required for the aforementioned fixed-effects models. 
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estimating the non-parametric component, including splines, nearest neighbours, 

kernels or local polynomial which, under regularity conditions, result in estimators 

of the finite-dimensional component which are asymptotically equivalent. 

Note that the time-varying fixed effects estimator is a discrete approximation to a 

semi-parametric estimator with the time-varying fixed effects estimates viewed as 

a regresso-gram or nearest neighbours estimator with a fixed number of neighbours 

estimated around the mid-point of each interval. We also note that the time-varying 

fixed effects is analogous to Meyer’s (1990) step-wise approximation to an 

unknown hazard rate in duration analysis. For the semi-parametric estimator we 

assume that the preliminary first-step non-parametric estimate has no first-order 

distributional effects so that √𝑁𝑇(�̂� − �̂�∗) = 𝑜𝑝(1). Similar adaptive results are 

known to hold for a wide range of models including Robinson (1988) and numerous 

others including Carroll (1982) and Robinson (1987) and Escanciano, Jacho-

Chávez and Lewbel (2014). An often used, but not always necessary, condition for 

the asymptotic equivalence result is that the non-parametric first-stage estimator 

converge faster than the quartic root of the sample size. Since here we are using the 

𝑇𝑗  observations on jurisdiction 𝑗  to obtain non-parametric estimates on 

𝔼[𝑦𝑗,𝑡|𝜏𝑗,𝑡], this amounts to doing large 𝑇 asymptotics or at least that 𝑇 is growing 

at a rate faster than 𝑁. An alternative would be to do some pooling of the data 

across like-jurisdictions. 

Feasible estimation requires non-parametric estimation of the conditional mean 

functions in the likelihood. We used a variety of kernel based (Nadaraya-Watson 

and local polynomial) estimators for a number of reasons. One is that they are 

simple and the ones we use have explicit representations making them 

straightforward to incorporate into the estimation scheme. We focused on the usual 

kernel estimator and first and second-order local polynomials. (The latter is used by 

Linton, 2020.) We used the formulation in Wand and Jones (1995) for the fixed-

design case so that the trend for jurisdiction 𝑗 is transformed to 𝜏𝑗,𝑡/𝑇𝑗 so that 

these are uniform on 𝑈(0,1), eliminates a source of bias in the conditional mean 

estimates and simplifies the form of the estimates’ approximate standard errors. 

Non-parametric estimates are particularly useful as they provide preliminary 

unconditional estimates of the pandemic process based solely on the trend. One 

technical difficulty that initially concerned us with the polynomial is that it does not 

constrain estimates to be non-negative. In this regard we considered various 

methods to impose non-negativity 19 . However, after conducting some limited 

simulations with processes constructed similar to the observed pandemic (log-

quadratic), we simply redefine the local polynomial to be the max of 𝛿 where 𝛿 

is a small number such as 10−2 and �̂� where �̂� is the usual least squares estimate 

of the intercept in a local polynomial regression. We also used the standard kernel 

estimator for transparency and also because it leads to an intuitive representation of 

the coefficient in the semi-parametric regression function. (The kernel non-

 
19 Non-negativity is logically required for a well-defined likelihood in our case. 



An Econometric Panel Data Model of the COVID-19 Pandemic 51  

parametric estimator is biased although the bias may be small in the current context 

in that the distribution of the conditioning variable is known.) 

 

4.4 Estimation of 𝓡𝟎  

Riou and Althaus (2020) report a point estimate for ℛ0  of 2.2. Eichenbaum, 

Rebelo, and Trabandt (2020) use values of 1.50 and 1.45 in their analytical macro 

models based on an SIR model. Biggerstaff et al. (2014) report ℛ0 estimates for a 

wide variety of other epidemics. The count framework here allows for 

straightforward estimation of ℛ0 . We first consider the “case reproduction 

number”. From the definition we have 

 

             ℛ𝑗(𝑡) = ∑𝑚
𝑠=1 𝑟𝑠𝐴𝑗(𝑡 + 𝑠) (4.21) 

 

and we need to simply substitute estimates of 𝑟𝑠 and 𝐴𝑗(𝑡 + 𝑠). Note again that 

that in this count framework the reproduction number is simply the weighted sum 

of future exposure weights where the weights are measures of future toxicity of an 

infected individual. Note that for estimating ℛ𝑗(𝑇 − 𝑠) for 𝑠 ≤ 𝑚, this requires 

estimating outside the observed data. In the fixed-effects case 𝐴𝑗(𝑡) = 𝑒𝛼𝑗  is 

constant and we have ℛ𝑗(𝑡) = 𝑒𝛼𝑗 ∑𝑚
𝑠=1 𝑟𝑠. In the time-varying fixed-effects case 

𝐴𝑗(𝑡) is constant over intervals and we have 

 

             ℛ𝑗(𝑡) = ∑𝑚
𝑠=1 𝑟𝑠𝑒𝛼𝑗𝑙1[𝑡 + 𝑠 ∈ ℐ𝑙] (4.22) 

 

Note that although the exposure factors are constant across intervals, the ℛ𝑗(𝑡)’s 

in Equation 4.21 generally will vary as the infectivity factors straddle different 

intervals. A popular device used in the estimation of reproduction numbers as in 

Cori et al. (2013) is to consider variations in the length of windows of observations 

used to estimate ℛ0 . The analogous tuning parameter here is the length of the 

intervals used in the time-varying effects approach. 

In the semi-parametric model, 𝐴𝑗(𝑡) is the ratio of two conditional expectations 

and we have 

 

ℛ𝑗(𝑡) = ∑𝑚
𝑠=1 𝑟𝑠

𝔼[𝑦𝑗,𝑡+𝑠|𝜏𝑗,𝑡+𝑠]

𝔼[𝑌′𝑗,𝑡+𝑠−𝑚|𝜏𝑗,𝑡+𝑠]𝑟
= ∑𝑚

𝑠=1 𝑟𝑠
𝔼[𝑦𝑗,𝑡+𝑠|𝜏𝑗,𝑡]

𝔼[𝑌′𝑗,𝑡+𝑠−𝑚|𝜏𝑗,𝑡]𝑟
 (4.23) 

 

using 𝔼[𝑦𝑗,𝑡+𝑠|𝜏𝑗,𝑡+𝑠] = 𝔼[𝑦𝑗,𝑡+𝑠|𝜏𝑗,𝑡]. In each of these cases note that we need to 

be prudent when constructing standard errors and confidence intervals. If we 

assume that the estimators of the homogeneous parametric component (the 𝑟𝑠’s) 

converges faster than the respective estimates of the 𝐴𝑗(𝑡)’s, then we may treat the 

latter as effectively fixed and consider the distribution of the 𝐴𝑗(𝑡)’s. As is often 

the case, this can be a little problematic. Since 𝑇 is relatively large, each estimate 

of 𝑐𝑗 = 𝑒𝛼𝑗  is the ratio of two averages based on a large number of observations. 
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Standard errors based on this with approximations based on √𝑇  asymptotics 

should be fairly accurate. A similar, though somewhat weaker argument can be 

made for the time-varying fixed effects. With regard to the pure semi-parametric 

estimator, the asymptotic variance can be derived using basic results for estimators 

such as kernel or local-polynomial based. In this situation it is well known that the 

convergence rate will be √𝑇𝛾  where here 𝛾 ↓ 0  is the window width. 

Alternatively, in each of these cases, some kind of bootstrapping could be done. In 

our case, our empirical discussion below provides point estimates at various stages 

into the pandemic accompanied by the standard deviations and quantities across 

jurisdictions. The latter should provide a fairly accurate measure of the variability 

of the point individual estimates. 

In this context it is interesting to note that ℛ𝑗(𝑡) ’s are often referred to as 

reproduction ratios, highlighting the fact that these are often represented as a ratio 

whose numerator is the product of daily contacts and probability of transmission 

and the denominator is the product of the rate of exit from the susceptible population 

and the probability of contraction of the disease. In our case, note that with the basic 

fixed effects mode, the estimator of ℛ𝑗  is simply ∑ �̂�𝑠𝑐𝑗 = (∑ �̂�𝑠�̅�𝑗)/ℎ̅𝑗  which 

can be interpreted as an estimator of the ratio of new cases to the exit rate due to 

past infections. The same interpretation applies (albeit a little less cleanly) for the 

case of the time-varying fixed coefficients and semi-parametric estimators of the 

reproductive numbers. 

For estimation of the “instantaneous reproduction number”, denoted here by ℛ̅𝑗(𝑡) 

and to obtain this we simply set 𝐴𝑗(𝑡 + 𝑠) = 𝐴𝑗(𝑡)  in Equation 4.22 so that 

ℛ̅𝑗(𝑡) = 𝐴𝑗(𝑡) ∑𝑚
𝑠=1 𝑟𝑠. In the instantaneous case per Fraser (2007) and Cori et al. 

(2013) the 𝑟𝑠’s are normalized to sum to unity so that term does not appear. Note 

that in the form written here that ℛ̅𝑗(𝑡)  is invariant with respect to scale 

transformation of the 𝑟𝑠 as, for each of the estimation techniques, the 𝑟𝑠’s appear 

implicitly in numerator and denominator. 

Some programming remarks may be useful to practitioners. The estimation of all 

models is straightforward using any programmable language. We did so in two or 

three steps. Computation of any of the parametric models is standard. For estimating 

the 𝑟𝑠’s with the semi-parametric models the first step consisted of obtaining non-

parametric estimates of 𝔼[𝑦𝑗,𝑡−𝑠|𝜏𝑗,𝑡] , 𝑠 = 0,1, ⋯ , 𝑚 . (I.e. current and lagged 

predicted values.) In this step we also found it expedient to estimate 𝔼[𝑦𝑗,𝑡+𝑠|𝜏𝑗,𝑡+𝑠], 

𝑠 = 0,1, ⋯ , 𝑚. These are then inputted directly into standard optimization software 

for, say maximum likelihood or Poisson model estimation. This estimates the 𝑟𝑠’s. 

The third step computes the exposure rates 𝐴𝑗(𝑡)’s using the parametric or non-

parametric estimates. Weighting these by the estimated 𝑟𝑠’s produces the ℛ𝑗(𝑡) 

estimates. 

A final point can be made with respect to the connection between ℛ0(𝑡) and the 

statistical concept of stationarity. In a purely AR(𝑚) process with 𝔼[𝑦𝑡|𝑌𝑡−𝑚] =
∑𝑚

𝑠=1 𝜙𝑠𝑦𝑡−𝑠 the usual condition for stationarity is that the roots of the equation 
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1 = 𝜙1𝑧 + ⋯ + 𝜙𝑚𝑧𝑚 lie outside the unit circle. Sufficient conditions for these 

are if 𝜙𝑠 ≥ 0, 𝑠 = 1, … , 𝑚, and ∑𝑚
𝑠=1 𝜙𝑠 < 1. In the present context, assume that 

ℛ 𝑗
(𝑡) = ℛ0  is constant (or at some “steady-state” value). In our case 

𝔼[𝑦𝑡|𝑌𝑡−𝑚 , 𝑡] = ∑𝑚
𝑠=1 𝑟𝑠𝑦𝑡−𝑠ℛ0 = ∑𝑚

𝑠=1 𝜙𝑠𝑦𝑡−𝑠  with 𝜙𝑠 = 𝑟𝑠ℛ0.  Since 𝑟𝑠 ≥ 0 

and ∑𝑚
𝑠=1 𝑟𝑠 = 1 , ∑𝑚

𝑠=1 𝜙𝑠 < 1 , if ℛ0 < 1 . So the usual characterization of 

ℛ0(𝑡) ≥ 1 as corresponding to an explosive epidemic can also be characterized in 

this way as a non-stationary process. 

 

4.5 Identification 

For each jurisdiction, (we suppress 𝑗 subscripts in this subsection) the conditional 

means 𝔼[𝑦𝑡|𝑌𝑡−𝑚 , 𝑡]  and 𝔼[𝑦𝑡|𝑡]  are identified. However, due to the 

multiplicative separability of the regression function, 𝔼[𝑦𝑡|𝑌𝑡−𝑚 , 𝑡] = 𝑌𝑡−𝑚′𝑟𝐴𝑡 , 

there is an identification issue. Let 𝑟0  and 𝐴𝑡
0  denote true values so that 

𝔼[𝑦𝑡|𝑌𝑡−𝑚 , 𝑡] = 𝑌𝑡−𝑚′𝑟0𝐴𝑡
0 . For any 𝜅 > 0  we also have 𝔼[𝑦𝑡|𝑌𝑡−𝑚 , 𝑡] =

𝑌𝑡−𝑚′𝑟1𝐴𝑡
1  where 𝐴𝑡

1 = 𝜅𝐴𝑡
0  and 𝑟1 = 𝑟0/𝜅  so that 𝑟0  is not identified. We 

will establish conditions (scale and a form of exclusion restriction) sufficient for 

identification for the three basic models considered. 

Decompose 𝑟 = (𝑟1 𝑟(1)′)′ where 𝑟1 is the first element of 𝑟 and 𝑟(1) denotes 

the remaining 𝑚 − 1 elements of 𝑟. In each of the cases with true values of the 

individual parameters denoted, say, as 𝑟𝑞
0, 𝑞 = 1, … , 𝑚, we consider other possible 

values such as 𝑟𝑞
1 = 𝜅𝑞𝑟𝑞

0. We show that the 𝜅𝑞’s need to equal 1 to be compatible 

with the true values of 𝔼[𝑦𝑡|𝑡] and 𝔼[𝑦𝑡|𝑌𝑡−1, 𝑡]. 
For all models we impose a scale restriction. Here, for convenience, we impose 

𝑟1 = 1.20 Also, for this subsection, put 𝑌𝑡−2 = (𝑦𝑡−2 … 𝑦𝑡−𝑚)′. Let Ω denote 

those outcomes in the population such that 𝑦𝑡−1 ≠ 0 and 𝑌𝑡−2 = 0. Let 𝑌𝑡−2,𝑚\𝑞 

denote 𝑌𝑡−2, excluding 𝑦𝑡−𝑞. Let Ω𝑞, 𝑞 = 2, … , 𝑚 denote those outcomes in the 

population such that 𝑦𝑡−𝑞 ≠ 0 and 𝑌𝑡−1,𝑚\𝑞 = 0. Let Ω𝑞
+ denote those outcomes 

in the population such that 𝑦𝑡−𝑞 ≠ 0  and 𝑌𝑡−1,𝑚\𝑞 = 0  and 𝑦𝑡−1 = 0 . We 

assume that Pr[Ω] > 0  and for 𝑞 = 2, … , 𝑚 , Pr[Ω𝑞] > 0  for the parametric 

models. We assume that Pr[Ω] > 0 and for 𝑞 = 2, … , 𝑚 , Pr[Ω𝑞
+] > 0 for the 

semi-parametric models. Since the count variables we consider have positive mass 

at zero this is not an issue. 

 

4.5.1 Identification of the fixed coefficients model 

It is convenient to use the parameterization 𝑐 = 𝑒𝛼. Note that with the restriction 

on 𝑟1  we can identify 𝔼[𝑦𝑡|𝑌𝑡−𝑚 , 𝑡] = (𝑦𝑡−1 + 𝑌𝑡−2′𝑟(1)
0 )𝑐0 . Suppose (𝑟(1)

1 , 𝑐1) 

are other possible values of (𝑟(1), 𝑐)  with 𝑐1 = 𝜅𝑐0 . (a) On Ω  we have 

 
20 As mentioned, in the empirical section we set ∑ 𝑟𝑠 = 1 by parameterizing 𝑟𝑠 = 𝑒

𝜌
𝑠 /(1 + ∑𝑚

𝑙=2 𝑟𝑙), 𝑠 = 2, … , 𝑚 and 

setting 𝑟1 = 1/(1 + ∑𝑚
𝑙=2 𝑟𝑙) . Other restrictions will work as well. In this case the conditional mean [𝑦𝑡|𝑌𝑡−𝑚, 𝑡] =

𝑌𝑡−𝑚′𝜙𝐵𝑡  is equivalent with 𝜙
𝑠

= 𝜌
𝑠
/(1 + ∑𝑚

𝑠=2 𝑟𝑠) and 𝐵(𝑡) = (1 + ∑𝑚
𝑠=2 𝑟𝑠)𝐴(𝑡)  
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𝔼[𝑦𝑡|𝑌𝑡−1, 𝑡] = 𝑦𝑡−1𝑐0 = 𝑦𝑡−1𝜅𝑐0  so 𝜅 = 1  and 𝑐0  is identified. (b) On each 

Ω𝑞, we have 𝔼[𝑦𝑡|𝑌𝑡−1, 𝑡] = (𝑦𝑡−1 + 𝑟𝑞
0𝑦𝑡−𝑞)𝑐0 = (𝑦𝑡−1 + 𝑦𝑡−𝑞𝜅𝑞𝑟𝑞

0)𝑐0 so each 

𝜅𝑞 = 1 and the other 𝑟𝑞
0’s are identified. 

 

4.5.2 Identification of the time-varying fixed coefficients model 

Identification of the time-varying fixed effects model works similarly with the 

identification being established on the first (or potentially other) interval. 

 

4.5.3 Identification of the semi-parametric model 

In this subsection, put �̂�𝑡−1 = 𝔼[𝑌𝑡−1|𝑡] and �̂�𝑡 = 𝔼[𝑦𝑡|𝑡]. In the semi-parametric 

case we have 𝔼[𝑦𝑡|𝑌𝑡−1, 𝑡] = (𝑌𝑡−1′𝑟/�̂�𝑡−1′𝑟)�̂�𝑡  and with the restriction 𝑟1 = 1 

we have 

 

          
𝔼[𝑦𝑡|𝑌𝑡−1,𝑡]

�̂�𝑡
=

(𝑦𝑡−1+𝑌𝑡−2′𝑟(1)
0 )

(�̂�𝑡−1+�̂�𝑡−2′𝑟(1)
0 )

=
(𝑦𝑡−1+𝑌𝑡−2′𝑟(1)

1 )

(�̂�𝑡−1+�̂�𝑡−1−𝑚′𝑟(1)
1 )

. (4.24) 

For any 𝑞 = 2, … , 𝑚, we have on Ω𝑞
+ 

 

             
𝑦𝑡−𝑞𝑟𝑞

0

�̂�𝑡−1′𝑟0 =
𝑦𝑡−𝑞𝑟𝑞

1

�̂�𝑡−1′𝑟1 =
𝑦𝑡−𝑞𝜅𝑞𝑟𝑞

0

�̂�𝑡−1′𝑟1 . (4.25) 

 

so 

 

                
1

�̂�𝑡−1′𝑟0 =
𝜅𝑞

�̂�𝑡−1′𝑟1.  (4.26) 

 

which implies that 𝜅𝑞 = 𝑘𝑝 = 𝑘∗, say, for all 𝑝, 𝑞 ≥ 2 so that 

 

              
1

�̂�𝑡−1′𝑟0 =
𝜅∗

(�̂�𝑡−1+�̂�𝑡−2′𝜅∗𝑟(1)
0 )

. (4.27) 

or 

       (�̂�𝑡−1 + �̂�𝑡−2′𝜅∗𝑟(1)
0 ) = 𝜅∗(�̂�𝑡−1 + �̂�𝑡−2′𝑟(1)

0 ). (4.28) 

 

and hence 𝑘∗ =
�̂�𝑡−2′𝑟(1)

0 −�̂�𝑡−1

�̂�𝑡−2′𝑟(1)
0 −�̂�𝑡−1

= 1. 

 

4.6 Asymptotics: Autoregressive Parameter Estimates 

We state some high-level assumptions for the models at hand which allow us to 

expeditiously establish asymptotic results. Throughout we assume the log-

likelihood functions are twice continuously differentiable. Throughout, we let �̂� 

denote one of the four generic estimators we consider: fixed effects, time-varying 

fixed-effects, infeasible semi-parametric and feasible semi-parametric estimators. 

Where necessary we denote these respectively as �̂�𝐹𝐸, �̂�𝑇𝐹𝐸, �̂�𝐹𝑆𝑃 and �̂�𝑆𝑃. 
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For each of the fixed effects, time-varying fixed-effects and infeasible semi-

parametric estimators, continue to denote by 𝑠𝑗 their respective score functions and 

in each case denote 

 

         𝑣𝑗𝑡(𝑟) ≡
𝜕

𝜕𝑟′
𝑠𝑗𝑡(𝑟),        𝑣𝑗(𝑟) = ∑𝑇

𝑡=1 𝑣𝑗𝑡(𝑟) (4.29) 

 

𝐿𝑁𝑇(𝑟) =
1

𝑁𝑇
∑𝑁

𝑗=1 𝑙𝑗(𝑟), 𝑆𝑁𝑇(𝑟) =
1

𝑁𝑇
∑𝑁

𝑗=1 𝑠𝑗(𝑟), 𝑉𝑁𝑇(𝑟) =
1

𝑁𝑇
∑𝑁

𝑗=1 𝑣𝑗(𝑟) (4.30) 

 

whose exact forms will be model-specific. 

 

Proposition 1: (Fixed effects, time-varying fixed-effects and infeasible semi-

parametric estimators) Assume: 1, the true value of 𝑟, 𝑟0, lies in the interior of a 

compact subset of ℝ𝑚−1 ; 2, 𝐿𝑁𝑇(𝑟)  converges uniformly in probability to a 

function 𝐿0(𝑟)  which has a unique maximum at 𝑟0 ; 3, 𝑉𝑁𝑇(𝑟)  converges 

uniformly in probability to a matrix Φ(𝑟)  where Φ(𝑟0)  is strictly positive 

definite. 4, √𝑁𝑇𝑆𝑁𝑇(𝑟0) →𝑑 𝑁(0, Λ). Then for each of the fixed effects, time-

varying fixed-effects and infeasible semi-parametric estimators �̂�  is consistent 

(given that the model is correct) and √𝑁𝑇(�̂� − 𝑟0) →𝑑 𝑁(0, Φ−1ΛΦ−1). 

 

Proof: Follows from standard asymptotic theory as in Newey and MacFadden 

(1994). 

 

We note that the forms of Λ  and Φ  will depend on which model is being 

estimated. For the feasible semi-parametric estimator modify the notation for the 

infeasible likelihood functionals with parametric components replaced by their 

corresponding non-parametric estimates as 𝑙𝑗𝑡, �̂�𝑗𝑡, 𝑣𝑗𝑡, �̂�𝑁𝑇, �̂�𝑁𝑇  and �̂�𝑁𝑇 with 

the first three potentially scaled by a trimming indicator to reduce the contribution 

of observations near the boundary. 

 

Proposition 2: (Feasible semi-parametric estimators) Let the assumptions of 

Proposition 1 hold and assume (𝐿𝑁𝑇(𝑟)) − �̂�𝑁𝑇(𝑟)) = 𝑜𝑝(1) , (𝑉𝑁𝑇(𝑟)) −

�̂�𝑁𝑇(𝑟)) = 𝑜𝑝(1) uniformly in 𝑟 and √𝑁𝑇(𝑆𝑁𝑇(𝑟0)) − �̂�𝑁𝑇(𝑟0)) = 𝑜𝑝(1). Then, 

�̂�𝑆𝑃 is consistent and √𝑁𝑇(�̂�𝐹𝑆𝑃 − �̂�𝑆𝑃) = 𝑜𝑃(1). 

 

Proof: Consistency follows immediately from (𝐿𝑁𝑇(𝑟)) − �̂�𝑁𝑇(𝑟)) = 𝑜𝑝(1) and 

Proposition 1. Asymptotic first-order equivalence follow from a standard mean-

value expansion of the estimator so that with probability approaching one. 

 

          0 = √𝑁𝑇�̂�𝑁𝑇(�̂�𝑆𝑃) = √𝑁𝑇(�̂�𝑁𝑇((𝑟0))) + �̂�𝑁𝑇(�̅�)(�̂�𝑆𝑃 − 𝑟0) (4.31)    

= √𝑁𝑇𝑆𝑁𝑇(𝑟0) + 𝑉𝑁𝑇(�̅�)(�̂�𝑆𝑃 − 𝑟0) + 𝑜𝑃(1) 
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where �̅� = 𝑟0 + 𝑜𝑃(1) is a mean value so that 

 

              √𝑁𝑇(�̂�𝑆𝑃 − 𝑟0) = −(𝑉𝑁𝑇(𝑟0))−1√𝑁𝑇𝑆𝑁𝑇(𝑟0) + 𝑜𝑃(1) (4.32) 

        = √𝑁𝑇(�̂�𝑁𝑆𝑃 − 𝑟0) + 𝑜𝑃(1). 
 

Remark 3: Consistency of the semi-parametric estimator is straightforward given 

that the underlying pointwise non-parametric regression estimators are uniformly 

consistent for the true population regression functions so that the feasible log-

likelihood converge to the same expectation as the infeasible log-likelihood. (The 

same applies to �̂�𝑁𝑇.) The asymptotic results (apart from considerations we have 

enumerated throughout the paper) for the parametric and infeasible estimators are 

unremarkable. To rigorously obtain the results of Proposition 2 from first principles 

requires considerable work, but, were the data i.i.d., the score for the semi-

parametric estimator is of a form which fits into the analytical framework of 

Escanciano, Jacho-Chávez and Lewbel (2014) who used empirical process theory 

to prove results such as in Proposition 2. In that paper the authors demonstrate 

convergence of (scaled) averages such as our √𝑁𝑇(𝑆𝑁𝑇(𝑟0)) − �̂�𝑁𝑇(𝑟0)). In their 

case the summands are averages of multiples of semi-parametric residuals. In our 

case the residual is effectively 𝑦𝑗,𝑡 − 𝜆𝑗𝑡 . In our case the data is dependent and 

heterogeneous. A rigorous demonstration of Proposition 2 from primitive 

conditions in that case is far beyond the applied scope of this paper, although the 

empirical process results in Andrews (1994), Hansen (2009) and Hagemann (2014) 

for dependent and/or non-stationary observations suggest the high-level 

assumptions of Proposition 2 are quite reasonable. 

 

Remark 4: We note that each of the estimators of the auto-regressive parameters is 

√𝑁𝑇-consistent. It may be possible to analytically compare the asymptotic variance 

matrices. Conceptually, the estimators can be viewed as progressively less 

restrictive, allowing for increasing heterogeneity over jurisdictions and over time. 

We do not as yet have analytic results in this regard. 

 

4.7 Asymptotics: Estimates of the time trend, 𝑨𝒋(𝒕) and 𝓡𝒋(𝒕)  

In this subsection we approximate the distribution of the estimators the 𝐴𝑗(𝑡)’s and 

ℛ𝑗(𝑡)’s. To simplify notation, in this subsection we suppress the subscript 𝑗’s and 

set 𝑇𝑗 = 𝑇. This can be simply modified in applications. With both 𝑁 and 𝑇 large, 

we can treat the 𝑟’s as fixed. For the case of the purely parametric models, the 

estimators of the 𝐴(𝑡) ’s and the ℛ(𝑡)  are ratios of averages and linear 

combinations of these, respectively, and we can approximate standard errors 

accordingly. 

With respect to the semi-parametric estimation of the AR parameters, it was not 

necessary to specify the particular form of the non-parametric component so long 

as some generic conditions were satisfied. Various non-parametric estimators will 
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commonly lead to the same asymptotic results for the parametric component. 

However, to derive explicit results for the point-wise estimates of the 𝐴(𝑡)’s and 

ℛ(𝑡)’s we consider local polynomial estimators. 

 

4.7.1 Estimation of the time trend 

We adapt the following from Wand and Jones (1995) and Li and Racine (2007). To 

facilitate the analysis we redefine the trend variable as 𝑋𝑡 = 𝑡/𝑇 which does not 

change conditional expectations but which will allow us to better quantify the 

relationship between estimates at adjacent points. Note that 𝑋𝑡±𝑗 = 𝑋𝑡 ± 𝑗/𝑇. Note 

that doing so allows us to approximate non-stochastic averages as 

𝑇−1 ∑𝑇
𝑡=1 𝑓(𝑋𝑡) = ∫ 𝑓(𝑦)𝑑𝑦 + 𝑂(𝑇−1)  and 𝛾−1𝑇−1 ∑𝑇

𝑡=1 𝑔(𝑋𝑡)𝑓((𝑋𝑡 − 𝑥)/
𝛾) = ∫ 𝑔(𝑥 + 𝛾𝑤)𝑓(𝑤)𝑑𝑤 + 𝑂(𝑇−1) . For succinctness we write 𝑔(𝑋𝑡) =
𝔼[𝑌𝑡|𝜏𝑡] and decompose infections into the time trend and residual:  

                𝑦𝑡 = 𝑔(𝑋𝑡) + 𝑢𝑡  (4.33) 

 

where we assume  

    𝔼[𝑢𝑡|𝑋𝑡] = 0,        𝔼[𝑢𝑡𝑢𝑠|𝑋𝑡] = {
𝑣(𝑋𝑡), 𝑡 = 𝑠
0,        𝑡 ≠ 𝑠

 (4.34) 

 

The assumption of uncorrelated residuals may be restrictive, but enables us to obtain 

tractable results. To define and manipulate the local polynomial estimators put 

 

𝑦 = (

𝑦1

𝑦2

⋮
𝑦𝑇

) ,    𝑢 = (

𝑢1

𝑢2

⋮
𝑢𝑇

) ,    𝑋 = (

𝑋1

𝑋2

⋮
𝑋𝑇

) ,        𝑔(𝑋) = (

𝑔(𝑋1)
𝑔(𝑋2)
⋮
𝑔(𝑋𝑇)

) (4.35) 

 

 

𝑋𝑥 = 𝑋 − 𝑥,        𝐾𝑥 = [𝐾(𝑋𝑥/𝛾)],        𝑉(𝑋) = [(𝑣(𝑋1) ⋯ 𝑣(𝑋𝑇))] (4.36) 

 

 

𝑍𝑥 = (𝜄𝑇 𝑋𝑥
⊙1 ⋯ 𝑋𝑥

⊙𝑝)
𝑇×𝑝1

,        𝑧(𝑤) = (1 𝑤 ⋯ 𝑤𝑝)⊤  (4.37) 

 

with 𝑝1 = 𝑝 + 1  where 𝑝  is the order of the polynomial, ⊙  denotes the 

Hadamard product and 𝑋𝑥
⊙𝑝

 denotes the Hadamard product of 𝑋𝑥 with itself, 𝑝 

times. 

The regression and regression derivative estimators are obtained from a local 

regression with  

�̂�(𝑥) = 𝑒𝑝
⊤𝑏(𝑥),        �̂�(1)(𝑥) = 𝑒𝑝

⊤𝑏(1)(𝑥),        𝑏(𝑥) = (𝑍𝑥
⊤𝐾𝑥𝑍𝑥)−1𝑍𝑥

⊤𝐾𝑥𝑦 (4.38) 

and 𝑒𝑝 = (1,0, ⋯ ,0)1×𝑝1
. Note that �̂�(1)(𝑥) denotes the derivative of �̂�(𝑥) and 
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not necessarily the second element of 𝑏(𝑥).21  We do not necessarily need to 

calculate �̂�(1)(𝑥), but its definition and properties facilitate the derivation of the 

properties of �̂�(𝑡) and ℛ̂(𝑡). 

Basic properties of regression and regression derivative estimators are well-

established. We state a proposition in this regard and provide some derivations at 

the end of this section which may not be immediately obvious. 

The following moment matrices appear in the asymptotic variances of �̂�(𝑥) and 

�̂�(1)(𝑥). 

 

 �̂�𝑝 =
1

𝑇𝛾
𝑍𝑥

⊤𝐾𝑥𝑍𝑥 ,        𝑀𝑝 = ∫ 𝑧(𝛾𝑤)𝑧(𝛾𝑤)⊤𝐾(𝑤)𝑑𝑤 (4.39) 

 �̂�𝑝
∗ =

1

𝑇𝛾
𝑍𝑥

⊤𝐾𝑥
⊙2𝑍𝑥 ,        𝑀𝑝

∗ = ∫ 𝑧(𝛾𝑤)𝑧(𝛾𝑤)⊤𝐾(𝑤)2𝑑𝑤 

 �̂�𝑝
∗∗ =

1

𝑇𝛾
𝑍𝑥

⊤𝐾𝑥
(1)⊙2

𝑍𝑥 ,        𝑀𝑝
∗∗ = ∫ 𝑧(𝛾𝑤)𝑧(𝛾𝑤)⊤𝐾(1)(𝑤)2𝑑𝑤 

 

where �̂�𝑝 = 𝑀𝑝 + 𝑂(1/𝑇) , �̂�𝑝
∗ = 𝑀𝑝

∗ + 𝑂(1/𝑇)  and �̂�𝑝
∗∗ = 𝑀𝑝

∗∗ + 𝑂(1/𝑇) . 

Put  

𝜅𝑝 = 𝑒𝑝
⊤𝑀𝑝

−1𝑀𝑝
∗𝑀𝑝

−1𝑒𝑝,        𝜅𝑝′ = 𝑒𝑝
⊤𝑀𝑝

−1𝑀𝑝
∗∗𝑀𝑝

−1𝑒𝑝 

where in the cases of interest neither 𝜅𝑝 nor 𝜅𝑝′ depend on 𝑇. 

 

Proposition 3: For some neighbourhood of 𝑥  assume 𝑔(𝑥)  is (𝑝 + 2)-times 

continuously-differentiable. Let 𝐾: [−1,1] → [0,1]  be a twice continuously-

differentiable symmetric kernel. 𝛾 → 0, 𝑇𝛾 → ∞. Then 

 

 √𝑇𝛾(�̂�(𝑥) − 𝑔(𝑥)) →𝑑 𝑁(0, 𝑣(𝑥)𝜅𝑝) (4.40) 

 √𝑇𝛾3(�̂�(1)(𝑥) − 𝑔(1)(𝑥)) →𝑑 𝑁(0, 𝑣(𝑥)𝜅𝑝′). 

 

The first statement is a standard result. See below for a proof of the second statement. 

We implicitly assume that �̂�(𝑥) may be bias adjusted. There are a variety of 

methods to reduce or remove bias such as under-smoothing, higher-order kernels, 

local polynomials, analytic corrections and resampling techniques. The result for 

�̂�(𝑥) can be used to obtain approximate confidence intervals for the time trend. 

Note also for below that √𝑇𝛾3(�̂�(𝑥) − 𝑔(𝑥)) = 𝑜𝑃(1). Note that 𝑣(𝑥) can be 

estimated using a local regression of the squared residuals, �̂�𝑡
2 = (𝑦𝑡 − �̂�𝑡)2, on the 

time trend. 

 

4.7.2 Estimates of 𝑨𝒋(𝒕) and 𝓡𝒋(𝒕)  

To derive the asymptotic distribution of �̂�(𝑡)  and ℛ̂(𝑡)  it would seem 

straightforward to write these as functions of estimates of the time trend at various 

leads and lags and apply the delta method. As noted, there is a problem in doing so. 

 
21 With local polynomial estimation the second element of 𝑏(𝑥) is an estimate of 𝑔

(1)
(𝑥). This does not exist for 𝑝 = 0. 
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Although kernel estimates at distinct points are asymptotically independent, the 

points where we are estimating are of the form 𝑥  and 𝑥𝑗 = 𝑥 +
𝑗

𝑇
, with 𝑥𝑗 

converging quickly to 𝑥. This needs to be taken into account. Referring back to 

Proposition 3, it is straightforward to show that the asymptotic variance, of say, 

�̂�(𝑥𝑗)  is 𝑣(𝑥)𝜅𝑝  and the asymptotic covariance of �̂�(𝑥𝑗)  and �̂�(𝑥)  is also 

𝑣(𝑥)𝜅𝑝  hence the (usual) covariance matrix of �̂�(𝑥)  and �̂�(𝑥𝑗)  is singular 

(proportional to a matrix of ones). Ergo, the usual delta method is not applicable to 

derive the asymptotic distribution of non-parametric estimates of 𝐴(𝑡) and ℛ(𝑡). 

We fix a point 𝑥 = 𝑥0 and, with some abuse of notation, respecify arguments 

accordingly so that we have 𝐴(𝑥)  and ℛ(𝑥) , �̂�(𝑥)  and ℛ̂(𝑥) . Putting 𝑔𝑗 =

𝑔(𝑥𝑗) and �̂�𝑗 = �̂�(𝑥𝑗) we have 

𝐴(𝑥0) =
𝑔0

∑𝑚
𝑗=1 𝑟𝑗𝑔𝑗

,    ℛ(𝑥0) = ∑

𝑚

𝑙=1

𝑟𝑙𝐴(𝑥𝑙),   

                                  �̂�(𝑥0) =
�̂�0

∑𝑚
𝑗=1 𝑟𝑗�̂�𝑗

,   ℛ̂(𝑥0) = ∑𝑚
𝑙=1 𝑟𝑙�̂�(𝑥𝑙). (4.41) 

 

Note that 

 

𝑔𝑗 = 𝑔0 +
𝑗

𝑇
𝑔0

(1)
+ 𝑂(1/𝑇2),        �̂�𝑗 = �̂�0 +

𝑗

𝑇
�̂�0

(1)
+ 𝑂𝑝(1/𝑇2) (4.42) 

Examining the latter we note that �̂�(𝑥0) = 1 + 𝑂𝑝(1/𝑇)  which leads to a 

degeneracy if we use standard first order asymptotics to approximate the 

distribution of �̂�(𝑥0) . To circumvent this problem we use a second-order 

approximation to obtain approximate results. Put 

 

            Σ(𝑥) =
𝑣(𝑥)

𝑔(𝑥)2 𝜅𝑝′(∑𝑚
𝑗=1 𝑟𝑗𝑗)2 (4.43) 

 

Proposition 4: Let the assumptions of Proposition 3 hold with 𝑔(𝑥0) > 0. Then  

 √(𝑇𝛾)3Σ(𝑥0)−1/2(�̂�(𝑥0) − 𝐴(𝑥0)) →𝑑 𝑁(0,1) (4.44) 

 √(𝑇𝛾)3Σ(𝑥0)−1/2(ℛ̂(𝑥0) − ℛ(𝑥0)) →𝑑 𝑁(0,1) (4.45) 

 

This is proven below. The result is obtained by using the expansions in Equation 

4.41 to approximate the denominators of 𝐴(𝑥0) and �̂�(𝑥0) which explains why 

we use the results on the derivative of �̂�(𝑥)  and why 𝜅′𝑝  appears in the 

asymptotic variance. Note that ℛ̂(𝑥0)  has the same asymptotic distribution as 

�̂�(𝑥0), but this does not imply they are the same. They are each centred at different 

points and the equality of their asymptotic distributions follows from the fact that 

the 𝑟𝑙 ’s in their definition sum to one and the points at which their respective 

summands are calculated are converging to 𝑥0 . Note that the instantaneous 

reproduction number, ℛ(𝑥0), with ∑ 𝑟𝑙 = 1, corresponds to 𝐴(𝑥0). 



60                                             Djogbenou et al.   

4.7.3 Special cases with quadratic kernel 

We provide some details here for the applications in the paper. Note that the various 

asymptotic variances above are functions of 𝜅𝑝  and 𝜅𝑝′  which are in turn 

functions of 𝑀𝑝, 𝑀𝑝
∗ and 𝑀𝑝

∗∗. Since these are obtained as limits of �̂�𝑝, �̂�𝑝
∗ and 

�̂�𝑝
∗∗, the latter can be used as estimates. Alternatively we can obtain 𝑀𝑝, 𝑀𝑝

∗ and 

𝑀𝑝
∗∗ analytically as we do here for the application we employed. 

 

Put 𝜇𝑗 = ∫ 𝑤𝑗𝐾(𝑤)𝑑𝑤 , 𝜇𝑗
∗ = ∫ 𝑤𝑗𝐾(𝑤)2𝑑𝑤  and 𝜇𝑗

∗∗ = ∫ 𝑤𝑗𝐾(1)(𝑤)2𝑑𝑤 

Note that 𝑀𝑝, 𝑀𝑝
∗ and 𝑀𝑝

∗∗ have individual elements [𝑖, 𝑗] 

 

𝑀𝑝[𝑖, 𝑗] = ∫ 𝑧(𝛾𝑤)𝑧(𝛾𝑤)⊤𝐾(𝑤)𝑑𝑤[𝑖, 𝑗] = 𝛾𝑖+𝑗−2𝜇𝑖+𝑗−2 (4.46) 

𝑀𝑝
∗[𝑖, 𝑗] = ∫ 𝑧(𝛾𝑤)𝑧(𝛾𝑤)⊤𝐾(𝑤)2𝑑𝑤[𝑖, 𝑗] = 𝛾𝑖+𝑗−2𝜇𝑖+𝑗−2

∗  (4.47) 

𝑀𝑝
∗∗[𝑖, 𝑗] = ∫ 𝑧(𝛾𝑤)𝑧(𝛾𝑤)⊤𝐾(𝑤)(1)2𝑑𝑤[𝑖, 𝑗] = 𝛾𝑖+𝑗−2𝜇𝑖+𝑗−2

∗∗  (4.48) 

 

Note by symmetry of the kernel that every second element of these is zero, that is 

𝜇𝑗 = 𝜇𝑗
∗ = 𝜇𝑗 ∗∗= 0 if 𝑗 odd. We consider cases for 𝑝 ≤ 2. 

 

𝑀0 = 1,    𝑀0
∗ = 𝜇0

∗ ,    𝑀0
∗∗ = 𝜇0

∗∗ 

 

 

𝑀1 = (
1 0
0 𝛾2𝜇2

) , 𝑀1
∗ = (

𝜇0
∗ 0

0 𝛾2𝜇2
∗) , 𝑀1

∗∗ = (
𝜇0

∗∗ 0

0 𝛾2𝜇2
∗∗) 

 

 

𝑀2 = (

1 0 𝛾2𝜇2

0 𝛾2𝜇2 0

𝛾2𝜇2 0 𝛾4𝜇4

) , 𝑀2
∗ = (

𝜇0
∗ 0 𝛾2𝜇2

∗

0 𝛾2𝜇2
∗ 0

𝛾2𝜇2
∗ 0 𝛾4𝜇4

∗

), 

𝑀2
∗∗ = (

𝜇0
∗∗ 0 𝛾2𝜇2

∗∗

0 𝛾2𝜇2
∗∗ 0

𝛾2𝜇2
∗∗ 0 𝛾4𝜇4

∗∗

) 

 

 

 𝜅𝑗 = {
𝜇2

∗ , 𝑗 = 0,1

(𝜇4
2𝜇0

∗ − 2𝜇2𝜇4𝜇2
∗ + 𝜇2

2𝜇4
∗)(𝜇4 − 𝜇2

2), 𝑗 = 2
 (4.49) 

 

 

 𝜅𝑗′ = {
𝜇2

∗∗, 𝑗 = 0,1

  (𝜇4
2𝜇0

∗∗ − 2𝜇2𝜇4𝜇2
∗∗ + 𝜇2

2𝜇4
∗∗)(𝜇4 − 𝜇2

2), 𝑗 = 2
 (4.50) 

 

In the empirical work we used zero, first and second-order polynomials with a 

quadratic kernel. For the quadratic kernel: 𝐾(𝑤) = (3/4)(1 − 𝑤2)1[|𝑤| ≤ 1] , 
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𝐾(𝑤)2 = (9/16)(1 − 𝑤2)2 and 𝐾(1)(𝑤)2 = (9/4)𝑤2. Also, 

 

 𝜇0 = 1, 𝜇2 = 1/5, 𝜇4 = 3/35 (4.51) 

 𝜇0
∗ = 3/5, 𝜇2

∗ = 3/35, 𝜇4
∗ = 1/35 

 𝜇0
∗∗ = 3/2, 𝜇2

∗∗ = 9/10, 𝜇4
∗∗ = 9/14. 

 

4.8 Derivations 

Proof of Proposition 3: The basic properties of �̂�(𝑥) are well-established. We 

confirm the properties of �̂�(1)(𝑥). To obtain the mean and variance of �̂�(1) note 

that (𝑀𝑝𝑏(𝑥))(1) = 𝑀𝑝𝑏(1)(𝑥)  since 𝑀𝑝
(1)

= 0 . With (�̂�𝑝𝑏(𝑥))(1) =
1

𝑇𝛾
(𝑍𝑥

⊤𝐾𝑥)(1)𝑦, [�̂�𝑝𝑏(𝑥))(1)] =
1

𝑇𝛾
(𝑍𝑥

⊤𝐾𝑥)(1)𝑔(𝑋). To order 𝑂(1/𝑇), 

 

     𝑀𝑝[𝑏(1)(𝑥)] =
1

𝛾
∫

𝑑

𝑑𝑥
(𝑍(𝑦 − 𝑥)𝐾(𝑦 − 𝑥))𝑔(𝑦)𝑑𝑦 (4.52) 

 = −
1

𝛾
∫

𝑑

𝑑𝑦
(𝑍(𝑦 − 𝑥)𝐾((𝑦 − 𝑥)/𝛾))𝑔(𝑦)𝑑𝑦 

 = ∫ 𝑍(𝛾𝑤)𝐾(𝑤))𝑔(1)(𝑥 + 𝛾𝑤)𝑑𝑤 

= ∫ 𝑍(𝛾𝑤)𝐾(𝑤)𝑍(𝛾𝑤)⊤𝑑𝑤 ((𝑔(1)(𝑥) ⋯
𝑔(𝑝1)(𝑥)

𝑝1!
)

⊤

) + 𝛾𝑝1𝑂(1). 

 

So  

 [�̂�(1)(𝑥)] = [𝑒⊤𝑏(1)(𝑥)] = 𝑔(1)(𝑥) + 𝛾𝑝1𝑂(1). (4.53) 

 

Next, to order 1/𝑇  

     [�̂�(1)(𝑥)] = [𝑒𝑝′�̂�𝑝
−1 1

𝑇𝛾
∑ 𝑢𝑡(𝑍(𝑋𝑡 − 𝑥)𝐾(𝑋𝑡 − 𝑥))(1)] (4.54) 

                       =
1

(𝑇𝛾)2
𝑒′𝑝�̂�𝑝

−1 ∑ 𝑣(𝑋𝑡)(𝐾(𝑋𝑡 − 𝑥)𝑍(𝑋𝑡 − 𝑥))(1)(𝐾(𝑋𝑡 − 𝑥)𝑍(𝑋𝑡

− 𝑥)⊤)(1)�̂�𝑝
−1𝑒𝑝 

          =
1

𝑇𝛾3 𝑒′
𝑝𝑀𝑝

−1 ∫ 𝑣(𝑥 + 𝛾𝑤)(𝐾(1)(𝑤)2𝑍(𝛾𝑤))𝑍(𝛾𝑤))′𝑑𝑦𝑀𝑝
−1𝑒𝑝 +

                             𝑂((𝑇𝛾2)−1) 

    =
𝑣(𝑥)

𝑇𝛾3 𝑒𝑝′𝑀𝑝
−1 ∫ 𝐾(1)(𝑤)2𝑍(𝛾𝑤))𝑍(𝛾𝑤))′𝑑𝑦𝑀𝑝

−1𝑒𝑝 +

                                 𝑜((𝑇𝛾3)−1) 

                       ≡
𝑣(𝑥)

𝑇𝛾3
𝜅𝑝′ + 𝑜((𝑇𝛾3)−1)). 

 

Asymptotic normality follows since �̂�(1)(𝑥) is proportional to a weighted average 

of the 𝑢𝑡’s. 
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Proof of Proposition 4: We decompose  

 �̂�(𝑥0) − 𝐴(𝑥0) =
�̂�0−∑𝑚

𝑗=1 𝑟𝑗�̂�−𝑗

∑𝑚
𝑗=1 𝑟𝑗�̂�−𝑗

−
𝑔0−∑𝑚

𝑗=1 𝑟𝑗𝑔−𝑗

∑𝑚
𝑗=1 𝑟𝑗𝑔−𝑗

 (4.55) 

 �̂�(𝑥0) − 𝐴(𝑥0) =
(�̂�0−∑𝑚

𝑗=1 𝑟𝑗�̂�−𝑗)−(𝑔0−∑𝑚
𝑗=1 𝑟𝑗𝑔−𝑗)

∑𝑚
𝑗=1 𝑟𝑗𝑔−𝑗

+ 𝑅1𝑇  

 =
(�̂�0−∑𝑚

𝑗=1 𝑟𝑗�̂�−𝑗)−(𝑔0−∑𝑚
𝑗=1 𝑟𝑗𝑔−𝑗)

𝑔0
+ 𝑅2𝑇 + 𝑅1𝑇 

 = 𝑅3𝑇 + 𝑅2𝑇 + 𝑅1𝑇 

where  

𝑅1𝑇 = (�̂�0 − ∑𝑚
𝑗=1 𝑟𝑗�̂�−𝑗)

∑𝑚
𝑗=1 𝑟𝑗(𝑔−𝑗−�̂�−𝑗)

(∑𝑚
𝑗=1 𝑟𝑗𝑔−𝑗)(∑𝑚

𝑗=1 𝑟𝑗�̂�−𝑗)
= 𝑂𝑝(

1

𝑇
)𝑂𝑝(|�̂�0 − 𝑔0|) (4.56) 

𝑅2𝑇 = ((�̂�0 − ∑𝑚
𝑗=1 𝑟𝑗�̂�−𝑗) − (𝑔0 − ∑𝑚

𝑗=1 𝑟𝑗𝑔−𝑗))(
𝑔0−∑𝑚

𝑗=1 𝑟𝑗𝑔−𝑗

𝑔0 ∑𝑚
𝑗=1 𝑟𝑗𝑔−𝑗

) = 𝑂𝑝(
1

𝑇
)𝑂(

1

𝑇
)   

(4.57) 

 

and  

        𝑅3𝑇 =
(�̂�0−∑𝑚

𝑗=1 𝑟𝑗�̂�−𝑗)−(𝑔0−∑𝑚
𝑗=1 𝑟𝑗𝑔−𝑗)

𝑔0
 (4.58) 

 

We see that  

   𝑅3𝑇 =
(∑𝑚

𝑗=1 𝑟𝑗�̂�0
(1)

𝑗/𝑇+𝑂𝑝(𝑇−2))−(∑𝑚
𝑗=1 𝑟𝑗𝑔0𝑗/𝑇+𝑂(𝑇−2))

𝑔0
 (4.59) 

 =
1

𝑇

(�̂�0
(1)

−𝑔0
(1)

)

𝑔0
(∑𝑚

𝑗=1 𝑟𝑗𝑗) + 𝑂𝑝(𝑇−2) 

 

Putting these terms together, noting that 𝑇√𝑇𝛾3𝑅2𝑇 = 𝑜𝑝(1) = 𝑇√𝑇𝛾3𝑅1𝑇 , we 

have, from Proposition 3,  

𝑇√𝑇𝛾3�̂�(𝑥0) − 𝐴(𝑥0) 

= √𝑇𝛾3(�̂�0
(1)

− 𝑔(1))
(∑𝑚

𝑗=1 𝑟𝑗𝑗)

𝑔0
+ 𝑜𝑝(1) →𝑑 𝑁(0, Σ(𝑥0)). 

 

To derive the distribution of ℛ̂(𝑥0), note that it is the weighted sum of �̂�(𝑥0)’s 

and we can decompose it similarly as 

 

ℛ̂(𝑥0) − ℛ(𝑥0) = ∑𝑚
𝑙=1 𝑟𝑙𝑅3𝑇(𝑥𝑙) + 𝑂𝑝(𝑇−1)𝑂𝑝(|�̂�0 − 𝑔0|) (4.60) 

 

where  

             𝑅3𝑇(𝑥𝑙) =
(�̂�𝑙−∑𝑚

𝑗=1 𝑟𝑗�̂�𝑙−𝑗)−(𝑔𝑙−∑𝑚
𝑗=1 𝑟𝑗𝑔𝑙−𝑗)

𝑔𝑙
 (4.61) 

 =
(

𝑙

𝑇
�̂�0

(1)
−(∑𝑚

𝑗=1 𝑟𝑗�̂�0
(1)

(𝑙−𝑗)/𝑇)−(
𝑙

𝑇
𝑔0

(1)
−(∑𝑚

𝑗=1 𝑟𝑗𝑔0
(1)

(𝑙−𝑗)/𝑇)

𝑔0
+ 𝑂𝑝(𝑇−2) 

 =
1

𝑇

(�̂�0
(1)

−𝑔0
(1)

)(∑𝑚
𝑗=1 𝑟𝑗𝑗)

𝑔0
+ 𝑂𝑃(𝑇−2). 
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Thus, 

 

      ℛ̂(𝑥0) − ℛ(𝑥0) = ∑𝑚
𝑙=1 𝑟𝑙𝑅3𝑇(𝑥𝑙) + 𝑂𝑝(𝑇−1)𝑂𝑝(|�̂�0 − 𝑔0|) (4.62) 

    =
1

𝑇

(�̂�0
(1)

−𝑔0
(1)

)

𝑔0
(∑𝑚

𝑗=1 𝑟𝑗𝑗) + 𝑂𝑝(𝑇−1)𝑂𝑝(|�̂�0 − 𝑔0|) 

 

which corresponds to the approximation to �̂�(𝑥0). 

 

4.9 Other Considerations  

For each jurisdiction a trend is constructed commencing on the first incidence day 

and incremented by 1 each subsequent day.22 

One manner in which to compare jurisdictions is with respect to their specific fixed 

effect. (𝛼𝑗’s below.) There are a variety of ways to do this. One is to simply compare 

the rankings. Some caution needs to be taken here. If the approximations are as 

𝑁 → ∞  then the distribution of 𝑁  of these is effectively unknown and 

constructing confidence intervals around them will be problematic. However, if 𝑇 

is relatively large then approximate intervals can be constructed based on 

asymptotic theory for any fixed number of these.23 Alternatively, if we are focused 

simply on one jurisdiction we can introduce separate parameters for that jurisdiction 

and impose homogeneity on the rest. Note that the modelling does not allow 

separately for demographic considerations such as population density. This is a 

fixed effect and is incorporated into the 𝐴𝑗(𝑡) parameters. 

To allow for day-of-the-week effects (most certainly administrative, which do show 

up) we defined indicators 7 × 1 indicators 𝐷𝑡 = (𝐷𝑡1 ⋯ 𝐷𝑡7). The resulting 

regression function can then be modified to 𝑔(𝜏, 𝐷) in the obvious way. The kernel 

used then was for mixed data of the form 

 

           𝐾(𝜏, 𝐷) =
1

𝑇𝑗𝛾𝑗
𝐾(

𝜏𝑗,𝑡−𝜏

𝛾𝑗
) ∏7

𝑙=1 𝜋1−𝐷𝑡𝑙  (4.63) 

 

with 𝜋 ∈ [0,1]. The asymptotic distribution for the non-parametric components 

becomes amended with 𝑇𝑗 replaced by 𝑇𝑗/7 in the standard errors. For window-

width we cross-validated as follows. Putting 𝛾𝑗 = 𝑠𝑗𝑇𝑗
−1/5

𝑐  where 𝑇𝑗  is the 

number of observations on jurisdiction 𝑗  and 𝑠𝑗  the standard deviation of the 

𝜏𝑗,𝑡’s we minimized over the leave-one-out estimates over 𝑐 > 0 and 𝜋 > 0 . As 

stated, we used a quadratic kernel. 

 

 

 
22 With the parametric benchmark estimates these are multiplied by 1/100 for numerical purposes. When interpreting the 

results and/or doing simulations, the estimates need to be rescaled. 
23 For a few cases there are 𝑇𝑗 is quite small and we would be very hesitant to read much into these. 
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4.9.1 Outliers and trimming 

Numerical difficulties can arise in semi-parametric estimation when the non-

parametric component can cause an argument to be undefined or unbounded. 

Typically this problem occurs when the estimand is close to zero and appears in a 

denominator or logarithm. In these cases it is common to trim the estimators in some 

way. In our case this difficulty manifests itself in two ways. First, the lagged values 

of expected infections appear in the denominator of the semi-parametric time trend 

and these are often zero or close to zero. Second, this is compounded in a very few 

cases, but enough to create numerical difficulties by a few instances where the 

number of infections jumped from zero to quite large numbers. Although this is 

remotely possible in real life, it is more likely that some administrative clumping of 

reporting occurred. One possible remedy for this would be to do some preliminary 

smoothing.24 However, any smoothing of this form is invariably ad hoc and risks 

removing valuable movement in the data. To alleviate the problems we trimmed the 

data in two ways. First, we set the minimum for expected infections at .01. Second, 

we truncated expected infections to be no higher than 10 times the expected 

infections of the previous period.25 

 

4.9.2 Goodness of Fit 

There are numerous measures of goodness of fit used with Poisson models.26 Our 

use of these is largely for indicative purposes rather than for rigorous model 

selection. We have several objectives. One is to compare models, another is to 

provide a rough decomposition of the relative impact of subsets of considerations, 

stochastic heterogeneity, deterministic trends. To maintain comparability across 

models we report: �̅�2, simply based on the ratio of squared residuals or the model 

at hand to deviations from the jurisdictional average. 

 

Let 𝑇(𝑗) denote the date of the first reported infection in jurisdiction 𝑗, 𝑇𝑗 the total 

number of observations after the first reported infection in jurisdiction 𝑗 (𝑇(𝑗) =

𝑇 − 𝑇𝑗 + 1) and 𝑇(𝑁) = ∑𝑁
𝑗=1 𝑇𝑗. We define 

 

          𝑆 =
1

𝑇(𝑁)
∑𝑁

𝑗=1 ∑𝑇
𝑡=1 𝑝𝑗𝑡(𝑦𝑗,𝑡 − �̂�𝑗𝑡)2, (4.64) 

 

          𝑆0 =
1

𝑇(𝑁)
∑𝑁

𝑗=1 ∑𝑇
𝑡=1 𝑝𝑗𝑡(𝑦𝑗,𝑡 − �̅�𝑗)2, (4.65) 

 

 
24 It is common to see infections reported in rolling average form. 
25 Despite this, there are still a few anomalous results that crop up. Note in the tables the presence of some skewness/outliers 

in our estimated ℛ0’s which cause the mean and median across jurisdictions to occasionally diverge (also the maximum 

values). Since these do not affect the overall results we have chosen to leave in all observations rather than remove in an ad 

hoc manner. 
26 Note that the non-linearity and implicit heterogeneity of count models invalidates some of the statistical properties of 

standard 𝑅
2
 statistics. 
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where �̂�𝑗,𝑡 denotes a “fitted value” from the model at hand and 

 

                 𝑝𝑗𝑡 = {
0, 𝑡 < 𝑇(𝑗)

1, otherwise
 (4.66) 

 

 

         �̅�𝑗 =
1

𝑇𝑗
∑𝑇

𝑡=1 𝑝𝑗𝑡𝑦𝑗,𝑡 ,        �̅� =
1

𝑁�̂�
∑𝑁

𝑗=1 ∑𝑇
𝑡=𝑇𝑗

𝑦𝑗,𝑡, (4.67) 

 

The measure of goodness of fit for the Poisson models was thus 

 

 �̅�2 = 1 −
𝑆

𝑆0
. (4.68) 

 

Note that this is not necessarily in [0,1] . Given the heterogeneity between 

jurisdictions it makes sense to use different benchmarks measures of deviation than 

simply overall deviations from overall mean. The 𝑅2 ’s reported below for the 

parametric Ordinary Least Squares and Fixed Effects estimators are the usual 𝑅2 

statistics. Note that these are for goodness of fit for the logs of counts (+1). 

As a practical matter the autoregression parameters were constrained to be positive 

and sum to one by using the estimates 𝑟𝑠 = 𝑒𝜌𝑠/(1 + ∑𝑚
𝑙=2 𝑒𝜌𝑙), 𝑠 = 2, … , 𝑚 and 

𝑟1 = 1/(1 + ∑𝑚
𝑙=2 𝑒𝜌𝑙). (This constraint makes them comparable to the popular 

device of making them fit a probability distribution such as the gamma, but without 

the implied constraints on the coefficients including uni-modality.) The 𝜌𝑠’s were 

then estimated without constraint with standard information matrices obtained from 

the Hessian of the likelihood function and gradient method. Put 

 

       𝑟(𝜌) = (

𝑟1

𝑟2

⋮
𝑟𝑚

) = (

1/(1 + ∑𝑚
𝑠=2 𝑒𝜌𝑠

𝑟1𝑒𝜌2

⋮
𝑟1𝑒𝜌𝑚

) (4.69) 
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To obtain standard errors for the estimates of the 𝑟𝑠’s the delta method was used 

with the 𝑚 × 𝑚 − 1 Jacobian matrix: 

 

𝐽 =
𝜕𝑟

𝜕𝜌
= (

−𝑟1𝑟2 −𝑟1𝑟3 ⋯ −𝑟1𝑟𝑚

−𝑟1𝑟2𝑒𝜌2 + 𝑟1𝑒𝜌2 −𝑟1𝑟3𝑒𝜌2 ⋯ −𝑟1𝑟4𝑒𝜌2

⋮ ⋮ ⋮ ⋮
−𝑟1𝑟2𝑒𝜌𝑚 −𝑟1𝑟3𝑒𝜌𝑚 ⋯ −𝑟1𝑟𝑚𝑒𝜌𝑚 + 𝑟1𝑒𝜌𝑚

) (4.70) 

 

    =
𝜕𝑟

𝜕𝜌
= (

−𝑟1𝑟2 −𝑟1𝑟3 ⋯ −𝑟1𝑟𝑚

−𝑟2
2 + 𝑟2 −𝑟2𝑟3 ⋯ −𝑟2𝑟𝑚

⋮ ⋮ ⋮ ⋮
−𝑟𝑚𝑟2 −𝑟𝑚𝑟3 ⋯ −𝑟𝑚

2 + 𝑟𝑚

) (4.71) 

 

     = −𝑟𝑟(1)
⊤ + (

01×𝑚−1

diag[𝑟(1)]) (4.72) 

 

 

5. Empirical Results  

The estimators proposed in the previous section generate many different results: 

estimates of the autoregression parameters common across jurisdictions, as well as 

the daily predicted values for each of the jurisdictions as well as their daily 

reproduction numbers. We will summarize these as well as some benchmark 

estimates using the data set. 

 

5.1 Benchmark Estimates 

Many individuals and institutions have worked on various COVID-19 data sets, 

both formally and informally using a wide range of estimators. We initially 

conducted fairly extensive analysis of the data using standard regression modelling 

for panel data as well as purely non-parametric estimation. We report here as 

benchmarks estimates using a variety of specifications for the parametric regression 

function. These would largely agree with the literature published in the popular 

media. For illustrative purposes we summarize a few of these results. We first 

summarize some basic results using OLS and fixed effects estimators using ln(1 +
𝑦𝑗,𝑡) as the dependent variable. Note again that not all jurisdictions had the same 

start date. 
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Table 1: Pooled OLS Results with 14 lags count and/or quartic trend 

Variables Lags and trends Lags Trends 

Lag 1 0.0787 ∗ 0.0831 ∗  

Lag 2 0.1226 ∗ 0.1264 ∗  

Lag 3 0.1105 ∗ 0.1137 ∗  

Lag 4 0.1042 ∗ 0.1071 ∗  

Lag 5 0.0802 ∗ 0.0829 ∗  

Lag 6 0.1301 ∗ 0.1325 ∗  

Lag 7 0.3258 ∗ 0.3271 ∗  

Lag 8 0.0590 ∗ 0.0565 ∗  

Lag 9 -0.0476 ∗ -0.0510 ∗  

Lag 10 -0.0592 ∗ -0.0629 ∗  

Lag 11 -0.0673 ∗ -0.0712 ∗  

Lag 12 -0.0446 ∗ -0.0487 ∗  

Lag 13 0.0037 -0.0008  

Lag 14 0.1995 ∗ 0.1946 ∗  

𝑡 -0.6877 ∗  2.5205 ∗ 

𝑡2 0.4408 ∗  -1.1683 ∗ 

𝑡3 -0.1119 ∗  0.2843 ∗ 

𝑡4 0.0097 ∗  -0.0264 ∗ 

Constant 0.3879 ∗ 0.0705 ∗ 1.0012 ∗ 

𝑅2 0.9029 0.9024 0.0533 
Note: The table presents the parameter estimates. We use ∗  to denote statistically significant 

parameters at the level of 5%.   

 

Various pooled least squares estimates are given in the first table. Here the 

dependent variable is ln(1 + 𝑦𝑗,𝑡)  with 14 lagged values of ln(1 + 𝑦𝑗,𝑡)  as 

explanatory variables as well as a quartic polynomial in the time trend. When the 

pandemic first broke out, it appeared as if a quadratic trend would (perhaps 

hopefully) explain the spread of infections. Subsequently, although this has been 

the case in some jurisdictions, surges or second waves of the infection would imply 

that its spread is not so easily quantified. From an inspection of the coefficients in 

the first table we can infer that the pandemic has a fairly long lag structure, but the 

value of the lagged effects does dissipate over time. In our initial analysis of the 

data we conducted separate similar regressions on a case by case basis. What is 

evident is that although there is some similarity between some jurisdictions there is 

also substantial heterogeneity across them. We also, again more to get a sense for 

the data and highlight a few of its characteristics, include a variety of fixed effects 

estimators. These correspond to the pooled OLS results with a variety of results 

using 14 period lags, quartic trend and various combinations of same. We note the 

similarity to the pooled OLS results. We also note that (in terms of goodness of fit) 

there is much to be gained by including both stochastic and deterministic elements 

as explanatory variables. 
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Table 2: Fixed Effects Results with 14 lagged counts and quartic trend 

Variables Lags and trends 

Lag 1 0.0690 ∗ 

Lag 2 0.1137 ∗ 

Lag 3 0.1028 ∗ 

Lag 4 0.0976 ∗ 

Lag 5 0.0748 ∗ 

Lag 6 0.1256 ∗ 

Lag 7 0.3223 ∗ 

Lag 8 0.0578 ∗ 

Lag 9 -0.0485 ∗ 

Lag 10 -0.0608 ∗ 

Lag 11 -0.0697 ∗ 

Lag 12 -0.0479 ∗ 

Lag 13 -0.0003 

Lag 14 0.1954 ∗ 

𝑡 -0.4979 ∗ 

𝑡2 0.3531 ∗ 

𝑡3 -0.0917 ∗ 

𝑡4 0.0079 ∗ 

𝑅2 0.6893 
Note: See note for Table 1. 

 

One component of the semi-parametric results are the first stage non-parametric 

trends by jurisdiction. These are useful as benchmarks and correspond with some 

caveats to the estimates in Linton (2020). The first caveat is that there are two 

conditioning variables. One is the time trend which for each jurisdictions 

commences on the day of the first recorded infection. The other is a smoothed 

indicator for day-of-the-week. It became apparent that the latter has a substantial 

impact, probably the result of administrative recording. This was important to 

include: omitting it distorts the estimates of the autoregressive parameters. The plots 

of some of the non-parametric estimates are in the graphs. The goodness of fit for 

three kernel based non-parametric estimates is in the table immediately following 

the log-linear fixed-effects results. These correspond to using 1, local constant (aka 

kernel), 2, local linear and 3, local quadratic polynomials. We note that the local 

polynomials have a (theoretical) advantage over the local constant estimators in 

terms of bias at the boundary of the support which may be advantageous for 

forecasting. 
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Table 3: Fixed Effects Results with 14 lagged counts 

Variables Lags 

Lag 1 0.0702 ∗ 

Lag 2 0.1146 ∗ 

Lag 3 0.1036 ∗ 

Lag 4 0.0983 ∗ 

Lag 5 0.0754 ∗ 

Lag 6 0.1261 ∗ 

Lag 7 0.3225 ∗ 

Lag 8 0.0567 ∗ 

Lag 9 -0.0499 ∗ 

Lag 10 -0.0623 ∗ 

Lag 11 -0.0713 ∗ 

Lag 12 -0.0496 ∗ 

Lag 13 -0.0021 

Lag 14 0.1933 ∗ 

𝑅2 0.6888 
Note: See note for Table 1. 

  

Table 4: Fixed Effects Results with just quartic trend 

Variables Trends 

𝑡 2.2956 ∗ 

𝑡2 -0.9490 ∗ 

𝑡3 0.2115 ∗ 

𝑡4 -0.0190 ∗ 

𝑅2 0.0000 
Note: See note for Table 1. 

 

Thus, in addition to the estimators developed in this paper, we provide, for 

comparison, a variety of benchmark estimators which range from entirely 

parametric, assuming a great deal of homogeneity (log-linear pooled and fixed 

effects regression estimators) to the least parametric, which assume no homogeneity 

across jurisdictions (kernel and local polynomial estimators). 

 

5.2 Count Model Estimates 

There are six sets of count model results containing estimates using a wide range of 

Poisson-like specifications. All have in common a stochastic AR(14) component. 

Table 5 contains three sets of parametric results: for a “pooled” Poisson model 

where there is one 𝐴𝑗(𝑡) = 𝑒𝛼 estimated, constant across jurisdictions and time; 

the second corresponds to the fixed effects where there are jurisdiction-varying, 

time invariant 𝐴𝑗(𝑡) = 𝑒𝛼𝑗’s. The third set of results correspond to time-varying 

fixed effects where the 𝐴𝑗(𝑡)’s vary across jurisdictions but are constant over 
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intervals of 26 weeks. (Estimates over 21 and 31 weeks were very similar.) Table 6 

contains three sets of results corresponding to semi-parametric estimates using, 

respectively, kernel, local linear and local quadratic polynomial estimators of the 

trend. With the semi-parametric estimators the 𝐴𝑗(𝑡)’s vary across jurisdictions on 

a daily basis. We note that there is a wide agreement across all these models as to 

the general shape of the auto-correlation pattern. 

  

Table 5: Point Estimates and t-stats Parametric Models 

Variables Poisson Fixed FX Variable Fixed FX 

Lag 1 0.1166 ∗ 0.2503 ∗ 0.1244 ∗ 

Lag 2 0.1195 ∗ 0.1072 ∗ 0.0668 ∗ 

Lag 3 0.0647 ∗ 0.0363 ∗ 0.0214 ∗ 

Lag 4 0.0407 ∗ 0.0193 ∗ 0.0162 ∗ 

Lag 5 0.0445 ∗ 0.0178 ∗ 0.0072 ∗ 

Lag 6 0.1380 ∗ 0.1334 ∗ 0.1153 ∗ 

Lag 7 0.4210 ∗ 0.4026 ∗ 0.4026 ∗ 

Lag 8 0.0031 ∗ 0.0073 ∗ 0.0381 ∗ 

Lag 9 0.0019 ∗ 0.0011 ∗ 0.0036 ∗ 

Lag 10 0.0013 ∗ 0.0010 ∗ 0.0018 ∗ 

Lag 11 0.0004 ∗ 0.0005 ∗ 0.0007 ∗ 

Lag 12 0.0007 ∗ 0.0005 ∗ 0.0012 ∗ 

Lag 13 0.0070 ∗ 0.0013 ∗ 0.0077 ∗ 

Lag 14 0.0405 ∗ 0.0214 ∗ 0.1928 ∗ 
Note: See note for Table 1. 

  

Table 6: AR Point Estimates and t-stats: Semiparametric Models 

Variables SP-Kernel SP-Local Linear SP-Local Quadratic 

Lag 1 0.0654 ∗ 0.0770 ∗ 0.0467 ∗ 

Lag 2 0.2621 ∗ 0.2742 ∗ 0.2470 ∗ 

Lag 3 0.0000 ∗ 0.0000 ∗ 0.1108 ∗ 

Lag 4 0.0741 ∗ 0.1163 ∗ 0.0462 ∗ 

Lag 5 0.0001 ∗ 0.0002 ∗ 0.0276 ∗ 

Lag 6 0.0911 ∗ 0.0644 ∗ 0.0752 ∗ 

Lag 7 0.0010 ∗ 0.0004 ∗ 0.0006 ∗ 

Lag 8 0.1410 ∗ 0.1650 ∗ 0.0933 ∗ 

Lag 9 0.1601 ∗ 0.1412 ∗ 0.1274 ∗ 

Lag 10 0.0367 ∗ 0.0148 ∗ 0.0607 ∗ 

Lag 11 0.0332 ∗ 0.0476 ∗ 0.0384 ∗ 

Lag 12 0.0188 ∗ 0.0188 ∗ 0.0395 ∗ 

Lag 13 0.1113 ∗ 0.0785 ∗ 0.0816 ∗ 

Lag 14 0.0049 ∗ 0.0014 ∗ 0.0049 ∗ 
Note: See note for Table 1. 
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Table 7: R-squares for local polynomials 

 SP-Kernel SP-Local Linear SP-Local Quadratic 

𝑅2 0.9290 0.9288 0.9289 

  

5.2.1 Parametric Count Model Estimates 

The first set of results is when the conditional mean consists of the stochastic trend 

with 14 lags and a common multiplicative constant, i.e., 𝑒𝛼. This corresponds to an 

assumption of complete homogeneity across time and jurisdictions. Note the 

estimated values of 𝑟𝑠 are relatively large for small 𝑠 and then largely decreasing 

with 𝑠. Note that there is one implied common ℛ𝑗(𝑡) estimate across time and 

jurisdictions. The estimate is 1.0118. We note that values of ℛ𝑗(𝑡) greater than one 

generate exponential growth rates for pandemic spread. This is not an obscure point, 

a value of ℛ𝑗(𝑡) even slightly above one can lead to widespread illness in a very 

short time. 1.0118 may seem relatively small, but note that this is an average over 

jurisdictions and time so that this reflects gradual overall reductions (albeit non-

monotonic) over time in infections in many if not most jurisdictions. 

  

Table 8: Poisson Reproduction Number with Lagged Infections and Constant 

 

 

 

 

Table  9: Fixed Effects Reproduction Number Distribution 

 Q1 Median Q3 Q3-Q1 

𝑅0 1.0008 1.0049 1.0179 0.0171 

𝑅2 0.8382    

 

  

The second set of results allow for different rates of spread across jurisdictions, but 

again with no deterministic trend. This corresponds to an assumption of 

homogeneity across time but not jurisdictions.The pattern of the autoregressive 

coefficients is similar to the completely homogenous case. There are 𝑁 different 

coefficients and ℛ𝑗(𝑡)’s estimated implicitly and we do not report these here, but 

we report their quartiles mean and standard deviation across jurisdictions. Note that 

the median and average values are 1.0049 and 1.0170 which are quite close to the 

estimate with complete homogeneity. Note that with no time variation in the 

𝐴𝑗(𝑡)’s there are no separate case and instantaneous reproduction numbers. 

 

 

 

 

   𝑅0   1.0118  
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5.2.2 Flexible-Form and Semi-Parametric Count Model Estimates  

We have four sets of count model results which incorporate a deterministic trend 

(either piecewise constant for the time-varying fixed coefficients case or smooth, 

for the three semi-parametric estimators). For these cases we include tables of 

estimates of the autoregression parameters and tables describing the distribution of 

the daily, jurisdiction level estimates of the ℛ𝑗(𝑡)’s. The latter tables provide the 

quartiles of these on a weekly basis27. There are also two sets of illustrative graphs 

for five of the countries in the sample. One set plots the daily observed counts, non-

parametric and semi-parametric fitted values of infections. The second set plots the 

estimated case and instantaneous ℛ𝑗(𝑡)’s for these same countries. 

The first set of results for models incorporating a deterministic trend, corresponds 

to the time-varying fixed-effects model. Here the pattern of the estimates of the 

autoregressive coefficients is not so precise as in the fixed-coefficients case 

although the coefficients for the later lags are definitely smaller. Here and in the 

semi-parametric cases it useful to examine the ℛ𝑗(𝑡) ’s and their distribution 

overtime. These diminish fairly monotonically. The quantiles’ tendencies are 

similarly decreasing over time, though note the first quantile estimate is above 1.5 

and the third quantile at 2.8 are very high from a public health perspective. There 

are many interesting aspects to these estimates. For example, with respect to the 

first quantile, note that it was only after the third week that barely a quarter of 

jurisdictions had their ℛ𝑗(𝑡) under one. Note that over half the jurisdictions in the 

sample had estimated ℛ𝑗(𝑡)’s greater than one throughout most of the sample 

period. 

The final three sets of tables correspond to the distribution of semi-parametric 

estimates of the case and instantaneous ℛ𝑗(𝑡)’s across jurisdictions on a weekly 

basis. They correspond to estimates using local constant, linear and quadratic 

polynomials in the first stage. Each give similar results with some caveats. The point 

estimates are all consistent with gradually decreasing infectiousness but with 

resurgences (note in particular the third quartile). We report quartiles and 

interquartile ranges across jurisdictions. (The means and standard deviations are 

susceptible to occasional outliers which can have a large impact on some of the 

estimates.) The quartiles of the ℛ𝑗(𝑡)’s, including the median, are quite consistent 

with each other and the flexible form results. In terms of goodness of fit, the second-

order polynomial dominates the other two somewhat, although as a caveat we found 

the second-order polynomial could result in some anomalous fitted values. 

 

 

 

 

 

 

 
27 That is, the ℛ𝑗(𝑡)’ as estimated on days 1,8,15, …, with the sample statistics over the 𝑁 jurisdictions on that day. 
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Table 10: Variable Fixed Effects Reproduction Number Estimator Distribution 

  Case Instantaneous 

Week N Q1 Median Q3 Q3-Q1 Q1 Median Q3 Q3-Q1 

1 221 1.11 1.33 1.68 0.57 1.11 1.33 1.68 0.57 

2 221 1.11 1.33 1.68 0.57 1.11 1.33 1.68 0.57 

3 221 1.12 1.34 1.69 0.57 1.11 1.33 1.68 0.57 

4 221 1.02 1.30 1.73 0.71 1.11 1.33 1.68 0.57 

5 221 0.81 1.15 1.59 0.78 1.09 1.31 1.74 0.65 

6 221 0.61 1.07 1.5 0.89 0.81 1.17 1.60 0.79 

7 221 0.48 1.01 1.41 0.93 0.47 1.04 1.50 1.03 

8 221 0.61 1.02 1.40 0.79 0.47 1.00 1.41 0.94 

9 221 0.75 1.04 1.36 0.61 0.53 1.00 1.37 0.84 

10 221 0.73 1.03 1.34 0.61 0.72 1.03 1.38 0.66 

11 221 0.73 1.00 1.31 0.58 0.73 1.03 1.37 0.64 

12 221 0.62 0.97 1.23 0.61 0.73 1.01 1.29 0.56 

13 221 0.56 0.98 1.23 0.67 0.52 0.95 1.23 0.71 

14 221 0.64 0.99 1.25 0.61 0.55 0.97 1.23 0.68 

15 221 0.72 1.02 1.22 0.50 0.56 0.98 1.23 0.67 

16 221 0.81 1.04 1.26 0.45 0.70 1.02 1.26 0.56 

17 221 0.80 1.04 1.25 0.45 0.73 1.03 1.24 0.51 

18 221 0.82 1.04 1.23 0.41 0.76 1.04 1.24 0.48 

19 221 0.81 1.02 1.23 0.42 0.81 1.05 1.26 0.45 

20 221 0.82 1.03 1.22 0.40 0.79 1.02 1.22 0.43 

21 221 0.82 1.03 1.24 0.42 0.81 1.02 1.24 0.43 

22 221 0.80 1.00 1.26 0.46 0.80 1.02 1.23 0.43 

23 221 0.84 1.00 1.28 0.44 0.81 1.00 1.28 0.47 

24 221 0.80 0.99 1.25 0.45 0.81 1.01 1.30 0.49 

25 221 0.80 0.97 1.20 0.40 0.80 0.99 1.23 0.43 

26 221 0.84 0.99 1.16 0.32 0.80 0.98 1.20 0.40 

27 221 0.85 1.00 1.17 0.32 0.80 1.00 1.17 0.37 

28 221 0.83 0.99 1.17 0.34 0.82 0.99 1.17 0.35 

29 221 0.84 1.01 1.18 0.34 0.82 0.99 1.16 0.34 

30 221 0.86 1.01 1.17 0.31 0.85 1.00 1.20 0.35 

31 221 0.87 1.02 1.19 0.32 0.86 1.01 1.21 0.35 

32 221 0.91 1.03 1.23 0.32 0.85 1.01 1.18 0.33 

33 220 0.91 1.05 1.26 0.35 0.88 1.02 1.21 0.33 

34 220 0.92 1.06 1.28 0.36 0.91 1.04 1.26 0.35 

35 219 0.94 1.09 1.33 0.39 0.91 1.06 1.31 0.40 

36 219 0.93 1.07 1.31 0.38 0.93 1.08 1.34 0.41 

37 219 0.90 1.06 1.22 0.32 0.90 1.07 1.33 0.43 

38 219 0.89 1.04 1.22 0.33 0.89 1.04 1.24 0.35 

39 218 0.87 1.00 1.19 0.32 0.87 1.02 1.23 0.36 
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Table 10 (cont.): Variable Fixed Effects Reproduction Number Estimator 

Distribution  

  Case Instantaneous 

Week N Q1 Median Q3 Q3-Q1 Q1 Median Q3 Q3-Q1 

40 218 0.86 0.98 1.18 0.32 0.86 0.99 1.19 0.33 

41 218 0.85 1.00 1.17 0.32 0.86 0.98 1.19 0.33 

42 218 0.83 0.99 1.15 0.32 0.83 0.98 1.17 0.34 

43 218 0.83 0.99 1.15 0.32 0.83 0.99 1.16 0.33 

44 218 0.82 0.98 1.13 0.31 0.83 0.98 1.15 0.32 

45 218 0.83 0.97 1.11 0.28 0.82 0.99 1.14 0.32 

46 218 0.83 0.95 1.09 0.26 0.83 0.97 1.14 0.31 

47 218 0.8 0.93 1.10 0.30 0.82 0.93 1.10 0.28 

48 218 0.81 0.95 1.12 0.31 0.78 0.93 1.10 0.32 

49 218 0.82 0.96 1.12 0.30 0.78 0.92 1.10 0.32 

50 218 0.83 0.98 1.14 0.31 0.81 0.97 1.13 0.32 

51 218 0.86 1.00 1.17 0.31 0.82 0.97 1.14 0.32 

52 218 0.88 1.00 1.16 0.28 0.86 0.99 1.18 0.32 

53 218 0.82 0.98 1.15 0.33 0.86 1.00 1.18 0.32 

54 218 0.8 0.99 1.13 0.33 0.79 0.97 1.17 0.38 

55 218 0.81 1.00 1.15 0.34 0.8 0.98 1.14 0.34 

56 218 0.82 0.99 1.16 0.34 0.8 0.99 1.18 0.38 

57 218 0.85 1.01 1.16 0.31 0.81 1.01 1.18 0.37 

58 218 0.81 1.00 1.15 0.34 0.82 1.02 1.18 0.36 

59 218 0.79 0.97 1.10 0.31 0.8 1.00 1.17 0.37 

60 217 0.77 0.97 1.11 0.34 0.77 0.96 1.11 0.34 

61 217 0.77 0.97 1.13 0.36 0.73 0.95 1.10 0.37 

62 215 0.74 0.97 1.14 0.40 0.75 0.97 1.13 0.38 

63 215 0.76 0.97 1.12 0.36 0.74 0.97 1.13 0.39 

64 215 0.75 0.95 1.08 0.33 0.74 0.97 1.13 0.39 

65 214 0.72 0.93 1.10 0.38 0.72 0.94 1.10 0.38 

66 208 0.71 0.92 1.09 0.38 0.72 0.92 1.10 0.38 

67 196 0.69 0.87 1.07 0.38 0.71 0.90 1.10 0.39 

68 170 0.69 0.88 1.05 0.36 0.66 0.86 1.06 0.40 

69 121 0.66 0.88 1.07 0.41 0.66 0.88 1.07 0.41 

70 88 0.67 0.89 1.07 0.40 0.67 0.88 1.06 0.39 

71 59 0.68 0.89 1.08 0.40 0.67 0.93 1.09 0.42 

72 46 0.57 0.82 1.14 0.57 0.67 0.91 1.07 0.40 

73 45 0.57 0.84 1.16 0.59 0.57 0.84 1.16 0.59 

74 45 0.57 0.84 1.16 0.59 0.57 0.84 1.16 0.59 

75 36 0.00 0.79 1.14 1.14 0.00 0.79 1.14 1.14 

𝑅2 0.8548         
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Table 11: SP estimates Zero Order (Kernel) local Polynomial Case and 

Instantaneous Reproduction Number Distribution 

  Case Instantaneous 

Week N Q1 Median Q3 Q3-Q1 Q1 Median Q3 Q3-Q1 

1 221 1.37 1.98 2.68 1.31 2.38 4.31 11.1 8.72 

2 221 1.16 1.65 2.37 1.21 1.43 2.55 4.75 3.32 

3 221 1.05 1.49 1.95 0.90 1.07 1.66 2.93 1.86 

4 221 0.86 1.34 1.79 0.93 0.68 1.34 2.09 1.41 

5 221 0.67 1.17 1.70 1.03 0.55 1.18 1.70 1.15 

6 221 0.67 1.10 1.61 0.94 0.38 1.01 1.52 1.14 

7 221 0.77 1.14 1.67 0.9 0.21 0.94 1.43 1.22 

8 221 0.75 1.18 1.62 0.87 0.18 0.88 1.43 1.25 

9 221 0.78 1.20 1.52 0.74 0.41 0.89 1.49 1.08 

10 221 0.71 1.11 1.42 0.71 0.40 0.92 1.49 1.09 

11 221 0.7 1.07 1.42 0.72 0.30 0.94 1.43 1.13 

12 221 0.65 1.07 1.38 0.73 0.20 0.89 1.28 1.08 

13 221 0.75 1.09 1.39 0.64 0.10 0.87 1.23 1.13 

14 221 0.78 1.10 1.45 0.67 0.01 0.89 1.26 1.25 

15 221 0.83 1.10 1.60 0.77 0.03 0.89 1.27 1.24 

16 221 0.87 1.10 1.54 0.67 0.06 0.88 1.26 1.20 

17 221 0.81 1.08 1.48 0.67 0.14 0.90 1.31 1.17 

18 221 0.83 1.06 1.46 0.63 0.26 0.91 1.31 1.05 

19 221 0.82 1.09 1.46 0.64 0.15 0.94 1.29 1.14 

20 221 0.83 1.10 1.40 0.57 0.24 0.93 1.31 1.07 

21 221 0.82 1.06 1.49 0.67 0.30 0.96 1.32 1.02 

22 221 0.85 1.10 1.49 0.64 0.33 0.95 1.28 0.95 

23 221 0.83 1.08 1.50 0.67 0.18 0.95 1.30 1.12 

24 221 0.78 1.05 1.46 0.68 0.28 0.94 1.44 1.16 

25 221 0.84 1.07 1.40 0.56 0.29 0.93 1.32 1.03 

26 221 0.86 1.06 1.37 0.51 0.28 0.93 1.32 1.04 

27 221 0.87 1.04 1.38 0.51 0.33 0.97 1.32 0.99 

28 221 0.88 1.04 1.37 0.49 0.49 0.99 1.33 0.84 

29 221 0.84 1.03 1.40 0.56 0.53 0.99 1.36 0.83 

30 221 0.83 1.04 1.33 0.5 0.52 1.00 1.40 0.88 

31 221 0.83 1.07 1.38 0.55 0.48 0.97 1.34 0.86 

32 221 0.86 1.08 1.42 0.56 0.48 0.97 1.34 0.86 

33 220 0.88 1.11 1.42 0.54 0.53 0.98 1.34 0.81 

34 220 0.88 1.09 1.45 0.57 0.50 0.97 1.33 0.83 

35 219 0.91 1.12 1.45 0.54 0.46 1.02 1.30 0.84 

36 219 0.89 1.12 1.44 0.55 0.45 1.02 1.30 0.85 

37 219 0.9 1.12 1.38 0.48 0.59 1.03 1.35 0.76 

38 219 0.89 1.10 1.35 0.46 0.67 1.04 1.31 0.64 

39 218 0.9 1.06 1.37 0.47 0.72 1.07 1.38 0.66 
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Table 11 (cont.): SP estimates Zero Order (Kernel) local Polynomial Case and 

Instantaneous Reproduction Number Distribution  

  Case Instantaneous 

Week N Q1 Median Q3 Q3-Q1 Q1 Median Q3 Q3-Q1 

40 218 0.89 1.05 1.34 0.45 0.55 0.99 1.29 0.74 

41 218 0.9 1.04 1.37 0.47 0.42 0.97 1.29 0.87 

42 218 0.88 1.07 1.36 0.48 0.39 0.95 1.36 0.97 

43 218 0.87 1.05 1.29 0.42 0.35 0.91 1.28 0.93 

44 218 0.81 1.03 1.28 0.47 0.39 0.91 1.23 0.84 

45 218 0.82 1.03 1.29 0.47 0.38 0.88 1.18 0.80 

46 218 0.79 0.99 1.30 0.51 0.35 0.86 1.14 0.79 

47 218 0.76 0.97 1.29 0.53 0.29 0.87 1.17 0.88 

48 218 0.78 0.99 1.23 0.45 0.39 0.85 1.17 0.78 

49 218 0.81 1.02 1.27 0.46 0.44 0.90 1.15 0.71 

50 218 0.83 1.03 1.27 0.44 0.47 0.94 1.19 0.72 

51 218 0.85 1.06 1.26 0.41 0.49 0.96 1.23 0.74 

52 218 0.86 1.04 1.29 0.43 0.51 0.99 1.24 0.73 

53 218 0.84 1.04 1.33 0.49 0.47 0.98 1.27 0.80 

54 218 0.83 1.06 1.33 0.50 0.42 1.01 1.30 0.88 

55 218 0.85 1.09 1.34 0.49 0.49 1.00 1.36 0.87 

56 218 0.82 1.09 1.31 0.49 0.42 0.96 1.36 0.94 

57 218 0.81 1.01 1.32 0.51 0.49 0.97 1.36 0.87 

58 218 0.79 1.01 1.23 0.44 0.43 0.97 1.28 0.85 

59 218 0.78 1.00 1.23 0.45 0.47 0.95 1.26 0.79 

60 217 0.74 0.99 1.24 0.50 0.42 0.92 1.24 0.82 

61 217 0.77 0.98 1.27 0.50 0.45 0.91 1.23 0.78 

62 215 0.76 0.97 1.29 0.53 0.44 0.90 1.22 0.78 

63 215 0.74 1.00 1.29 0.55 0.38 0.91 1.15 0.77 

64 215 0.74 0.99 1.24 0.50 0.42 0.89 1.16 0.74 

65 214 0.74 0.99 1.28 0.54 0.33 0.88 1.19 0.86 

66 208 0.72 0.97 1.32 0.60 0.48 0.90 1.19 0.71 

67 196 0.68 0.95 1.30 0.62 0.42 0.84 1.16 0.74 

68 170 0.7 0.97 1.28 0.58 0.33 0.81 1.14 0.81 

69 121 0.71 0.94 1.13 0.42 0.39 0.76 1.15 0.76 

70 88 0.73 0.90 1.13 0.40 0.38 0.80 1.13 0.75 

71 59 0.61 0.88 1.10 0.49 0.17 0.79 1.14 0.97 

72 46 0.2 0.77 1.05 0.85 0.01 0.69 1.15 1.14 

73 45 0.53 0.90 1.24 0.71 0.00 0.76 1.16 1.16 

74 45 0.63 0.92 1.30 0.67 0.01 0.78 1.26 1.25 

75 36 0.00 0.85 1.32 1.32 0.00 0.67 1.29 1.29 

𝑅2 0.9383         
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Table 12: SP estimates First Order local Polynomial Case and Instantaneous 

Reproduction Number Distribution 

  Case Instantaneous 

Week N Q1 Median Q3 Q3-Q1 Q1 Median Q3 Q3-Q1 

1 221 1.31 2.00 2.70 1.39 2.90 5.44 20.89 17.99 

2 221 1.20 1.64 2.25 1.05 1.45 2.54 5.39 3.94 

3 221 1.03 1.44 1.88 0.85 1.03 1.63 2.83 1.80 

4 221 0.89 1.33 1.77 0.88 0.68 1.32 2.02 1.34 

5 221 0.73 1.18 1.66 0.93 0.60 1.11 1.60 1.00 

6 221 0.74 1.11 1.58 0.84 0.44 1.00 1.56 1.12 

7 221 0.83 1.14 1.65 0.82 0.29 0.96 1.47 1.18 

8 221 0.85 1.21 1.63 0.78 0.49 1.00 1.43 0.94 

9 221 0.93 1.19 1.57 0.64 0.56 0.99 1.44 0.88 

10 221 0.89 1.11 1.43 0.54 0.61 1.00 1.49 0.88 

11 221 0.82 1.06 1.39 0.57 0.60 1.00 1.43 0.83 

12 221 0.84 1.05 1.37 0.53 0.60 1.00 1.34 0.74 

13 221 0.87 1.10 1.41 0.54 0.55 0.99 1.21 0.66 

14 221 0.93 1.12 1.50 0.57 0.55 0.99 1.25 0.70 

15 221 0.94 1.10 1.60 0.66 0.68 1.00 1.32 0.64 

16 221 0.97 1.10 1.50 0.53 0.69 1.00 1.32 0.63 

17 221 0.94 1.08 1.45 0.51 0.71 1.00 1.34 0.63 

18 221 0.93 1.06 1.45 0.52 0.70 1.00 1.38 0.68 

19 221 0.95 1.07 1.48 0.53 0.72 1.00 1.33 0.61 

20 221 0.95 1.08 1.39 0.44 0.72 1.00 1.36 0.64 

21 221 0.93 1.07 1.46 0.53 0.71 1.00 1.33 0.62 

22 221 0.91 1.09 1.49 0.58 0.70 1.00 1.34 0.64 

23 221 0.89 1.07 1.51 0.62 0.77 1.00 1.47 0.70 

24 221 0.89 1.04 1.45 0.56 0.74 1.00 1.41 0.67 

25 221 0.91 1.05 1.38 0.47 0.71 1.00 1.36 0.65 

26 221 0.92 1.05 1.35 0.43 0.71 1.00 1.37 0.66 

27 221 0.93 1.05 1.37 0.44 0.78 1.00 1.37 0.59 

28 221 0.92 1.03 1.38 0.46 0.81 1.00 1.34 0.53 

29 221 0.87 1.03 1.35 0.48 0.75 1.00 1.31 0.56 

30 221 0.91 1.04 1.29 0.38 0.70 1.00 1.36 0.66 

31 221 0.90 1.06 1.39 0.49 0.70 1.00 1.38 0.68 

32 221 0.92 1.09 1.39 0.47 0.74 1.00 1.39 0.65 

33 220 0.92 1.10 1.40 0.48 0.71 1.00 1.36 0.65 

34 220 0.94 1.10 1.42 0.48 0.71 1.00 1.35 0.64 

35 219 0.97 1.11 1.48 0.51 0.60 1.00 1.29 0.69 

36 219 0.97 1.13 1.45 0.48 0.68 1.03 1.29 0.61 

37 219 0.94 1.11 1.35 0.41 0.79 1.03 1.32 0.53 

38 219 0.94 1.09 1.35 0.41 0.84 1.04 1.33 0.49 

39 218 0.93 1.05 1.34 0.41 0.83 1.04 1.33 0.50 
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Table 12 (cont.): SP estimates First Order local Polynomial Case and Instantaneous 

Reproduction Number Distribution  

  Case Instantaneous 

Week N Q1 Median Q3 Q3-Q1 Q1 Median Q3 Q3-Q1 

40 218 0.92 1.04 1.36 0.44 0.77 1.00 1.33 0.56 

41 218 0.92 1.04 1.34 0.42 0.63 0.98 1.30 0.67 

42 218 0.93 1.06 1.34 0.41 0.66 1.00 1.41 0.75 

43 218 0.92 1.05 1.31 0.39 0.54 0.98 1.27 0.73 

44 218 0.87 1.03 1.31 0.44 0.53 0.98 1.21 0.68 

45 218 0.86 1.05 1.30 0.44 0.56 0.94 1.20 0.64 

46 218 0.87 1.02 1.32 0.45 0.56 0.94 1.14 0.58 

47 218 0.86 1.00 1.28 0.42 0.52 0.96 1.17 0.65 

48 218 0.87 1.00 1.23 0.36 0.60 0.97 1.17 0.57 

49 218 0.86 1.01 1.29 0.43 0.62 0.97 1.16 0.54 

50 218 0.89 1.04 1.27 0.38 0.62 0.99 1.17 0.55 

51 218 0.90 1.04 1.26 0.36 0.73 1.00 1.26 0.53 

52 218 0.91 1.05 1.30 0.39 0.68 1.00 1.24 0.56 

53 218 0.89 1.04 1.38 0.49 0.67 1.00 1.28 0.61 

54 218 0.90 1.06 1.35 0.45 0.57 1.02 1.29 0.72 

55 218 0.91 1.09 1.36 0.45 0.56 1.00 1.33 0.77 

56 218 0.88 1.06 1.31 0.43 0.62 1.00 1.33 0.71 

57 218 0.89 1.03 1.30 0.41 0.69 1.00 1.36 0.67 

58 218 0.86 1.01 1.26 0.4 0.70 1.00 1.29 0.59 

59 218 0.84 1.01 1.29 0.45 0.65 1.00 1.25 0.60 

60 217 0.83 1.00 1.25 0.42 0.63 1.00 1.24 0.61 

61 217 0.84 1.00 1.33 0.49 0.67 1.00 1.27 0.60 

62 215 0.84 1.00 1.30 0.46 0.65 1.00 1.22 0.57 

63 215 0.84 1.00 1.26 0.42 0.65 0.97 1.20 0.55 

64 215 0.84 1.01 1.23 0.39 0.62 0.97 1.18 0.56 

65 214 0.81 1.00 1.31 0.50 0.64 0.99 1.19 0.55 

66 208 0.84 1.00 1.36 0.52 0.64 0.97 1.17 0.53 

67 196 0.82 1.00 1.39 0.57 0.66 0.95 1.16 0.50 

68 170 0.81 1.00 1.39 0.58 0.62 0.91 1.13 0.51 

69 121 0.81 1.00 1.25 0.44 0.57 0.87 1.16 0.59 

70 88 0.83 1.00 1.18 0.35 0.61 0.89 1.13 0.52 

71 59 0.79 0.96 1.12 0.33 0.43 0.99 1.14 0.71 

72 46 0.74 0.97 1.03 0.29 0.61 1.00 1.24 0.63 

73 45 0.82 1.00 1.26 0.44 0.76 1.00 1.31 0.55 

74 45 0.89 1.00 1.22 0.33 0.80 1.00 1.44 0.64 

75 36 1.00 1.00 1.37 0.37 1.00 1.00 1.41 0.41 

𝑅2 0.9387         
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Table 13: SP estimates Second Order local Polynomial Case and Instantaneous 

Reproduction Number Distribution 

  Case Instantaneous 

Week N Q1 Median Q3 Q3-Q1 Q1 Median Q3 Q3-Q1 

1 221 1.50 2.14 2.72 1.22 3.06 5.36 17.20 14.14 

2 221 1.28 1.64 2.25 0.97 1.52 2.46 5.02 3.50 

3 221 1.00 1.46 1.87 0.87 1.02 1.55 2.78 1.76 

4 221 0.88 1.29 1.69 0.81 0.72 1.34 1.93 1.21 

5 221 0.71 1.14 1.60 0.89 0.58 1.15 1.63 1.05 

6 221 0.73 1.07 1.56 0.83 0.45 1.03 1.45 1.00 

7 221 0.81 1.09 1.58 0.77 0.29 0.97 1.45 1.16 

8 221 0.83 1.14 1.52 0.69 0.49 0.97 1.43 0.94 

9 221 0.87 1.15 1.42 0.55 0.58 1.00 1.47 0.89 

10 221 0.89 1.12 1.38 0.49 0.61 1.00 1.50 0.89 

11 221 0.86 1.09 1.38 0.52 0.64 1.00 1.43 0.79 

12 221 0.85 1.05 1.35 0.50 0.61 1.00 1.33 0.72 

13 221 0.87 1.07 1.35 0.48 0.53 1.00 1.24 0.71 

14 221 0.91 1.07 1.36 0.45 0.51 1.00 1.28 0.77 

15 221 0.94 1.12 1.47 0.53 0.65 1.00 1.35 0.70 

16 221 0.96 1.10 1.54 0.58 0.67 1.00 1.33 0.66 

17 221 0.95 1.10 1.45 0.50 0.71 1.00 1.35 0.64 

18 221 0.97 1.11 1.44 0.47 0.68 1.00 1.34 0.66 

19 221 0.98 1.09 1.44 0.46 0.74 1.00 1.36 0.62 

20 221 0.93 1.10 1.37 0.44 0.75 1.00 1.36 0.61 

21 221 0.92 1.10 1.42 0.50 0.69 1.00 1.30 0.61 

22 221 0.91 1.08 1.46 0.55 0.72 1.00 1.36 0.64 

23 221 0.89 1.07 1.45 0.56 0.75 1.00 1.41 0.66 

24 221 0.91 1.06 1.34 0.43 0.71 1.00 1.47 0.76 

25 221 0.92 1.06 1.34 0.42 0.70 1.00 1.41 0.71 

26 221 0.94 1.05 1.29 0.35 0.72 1.00 1.36 0.64 

27 221 0.94 1.05 1.33 0.39 0.77 1.00 1.33 0.56 

28 221 0.93 1.05 1.33 0.40 0.77 1.00 1.34 0.57 

29 221 0.91 1.06 1.33 0.42 0.72 1.00 1.38 0.66 

30 221 0.93 1.06 1.33 0.40 0.69 1.00 1.36 0.67 

31 221 0.93 1.09 1.33 0.40 0.65 1.00 1.35 0.70 

32 221 0.96 1.10 1.40 0.44 0.69 1.00 1.38 0.69 

33 220 0.94 1.11 1.45 0.51 0.72 1.00 1.37 0.65 

34 220 0.96 1.10 1.41 0.45 0.68 1.00 1.33 0.65 

35 219 0.98 1.11 1.42 0.44 0.66 1.03 1.33 0.67 

36 219 0.97 1.12 1.41 0.44 0.66 1.05 1.32 0.66 

37 219 0.96 1.13 1.36 0.40 0.78 1.06 1.35 0.57 

38 219 0.94 1.11 1.34 0.40 0.83 1.07 1.35 0.52 

39 218 0.94 1.06 1.33 0.39 0.79 1.06 1.36 0.57 

 

 



80                                             Djogbenou et al.   

Table 13 (cont.): SP estimates Second Order local Polynomial Case and 

Instantaneous Reproduction Number Distribution  

 

 

 

 

  Case Instantaneous 

Week N Q1 Median Q3 Q3-Q1 Q1 Median Q3 Q3-Q1 

40 218 0.93 1.06 1.36 0.43 0.70 1.00 1.30 0.60 

41 218 0.94 1.06 1.34 0.40 0.66 1.01 1.28 0.62 

42 218 0.95 1.06 1.32 0.37 0.65 1.02 1.39 0.74 

43 218 0.93 1.05 1.31 0.38 0.55 0.97 1.27 0.72 

44 218 0.88 1.04 1.28 0.40 0.55 0.97 1.27 0.72 

45 218 0.86 1.04 1.29 0.43 0.56 0.95 1.21 0.65 

46 218 0.87 1.01 1.26 0.39 0.53 0.95 1.17 0.64 

47 218 0.87 1.00 1.33 0.46 0.52 0.95 1.19 0.67 

48 218 0.86 1.00 1.23 0.37 0.58 0.98 1.17 0.59 

49 218 0.88 1.00 1.27 0.39 0.65 0.98 1.16 0.51 

50 218 0.89 1.03 1.29 0.40 0.68 1.00 1.25 0.57 

51 218 0.90 1.04 1.27 0.37 0.75 1.00 1.28 0.53 

52 218 0.91 1.06 1.28 0.37 0.66 1.00 1.24 0.58 

53 218 0.90 1.06 1.33 0.43 0.69 1.00 1.32 0.63 

54 218 0.90 1.06 1.30 0.40 0.61 1.01 1.33 0.72 

55 218 0.94 1.09 1.32 0.38 0.57 1.01 1.37 0.80 

56 218 0.92 1.08 1.31 0.39 0.62 1.00 1.34 0.72 

57 218 0.90 1.03 1.29 0.39 0.64 1.00 1.35 0.71 

58 218 0.87 1.02 1.25 0.38 0.67 1.00 1.32 0.65 

59 218 0.84 1.01 1.19 0.35 0.63 1.00 1.30 0.67 

60 217 0.83 1.00 1.24 0.41 0.60 1.00 1.24 0.64 

61 217 0.85 1.00 1.26 0.41 0.61 0.98 1.20 0.59 

62 215 0.86 1.00 1.24 0.38 0.62 0.95 1.22 0.60 

63 215 0.83 1.00 1.25 0.42 0.64 0.97 1.21 0.57 

64 215 0.83 1.00 1.28 0.45 0.59 0.98 1.20 0.61 

65 214 0.83 1.00 1.29 0.46 0.64 0.99 1.20 0.56 

66 208 0.86 1.00 1.30 0.44 0.63 1.00 1.20 0.57 

67 196 0.82 1.00 1.29 0.47 0.63 0.96 1.16 0.53 

68 170 0.80 1.00 1.23 0.43 0.60 0.92 1.13 0.53 

69 121 0.81 1.00 1.15 0.34 0.59 0.89 1.14 0.55 

70 88 0.85 1.00 1.22 0.37 0.60 0.91 1.14 0.54 

71 59 0.79 0.98 1.08 0.29 0.45 0.98 1.15 0.70 

72 46 0.77 0.99 1.11 0.34 0.38 1.00 1.15 0.77 

73 45 0.87 1.00 1.17 0.30 0.80 1.00 1.29 0.49 

74 45 0.94 1.00 1.36 0.42 0.83 1.00 1.39 0.56 

75 36 0.98 1.00 1.58 0.60 1.00 1.00 1.47 0.47 

𝑅2 0.9380         
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After the tables are graphical examples of the fits of the estimators and the ℛ𝑗(𝑡)’s 

for five countries: US, Taiwan, Brazil, New Zealand and Sweden. Note that these 

all begin on the first day of the outbreak in each jurisdiction, which is January 22 

for the US and Taiwan and January 31 for Sweden, February 26 for Brazil, February 

28 for New Zealand. For each country we plot: 1, recorded infections, 2, fitted 

values from local regression (first-order polynomial) and 3, semi-parametric 

estimator using the same local regression in the first stage. From the plots we see 

that the semi-parametric estimator is much better at tracking some of the short-term 

fluctuations in the infections which are smoothed out by the pure time-trend. 

Accompanying graphs plot the case and instantaneous ℛ𝑗(𝑡)  daily estimates. 

These largely confirm what has been reflected in the news media regarding 

infections. Taiwan and New Zealand have had lower ℛ𝑗(𝑡)’s than most countries, 

although with some increase at the beginning. Sweden, which was more permissive 

in its approach to social distancing had a fairly large initial ℛ𝑗(𝑡) , but then 

diminishing with a second wave. The United States and Brazil have had a great deal 

of difficulty in getting the spread of COVID-19 under control, although at time of 

writing this seemed to be changing. Note that the case and instantaneous ℛ𝑗(𝑡) 

estimates are quite similar, the case number seems to lead the instantaneous number 

in most cases which may be important for prediction and policy reasons. The 

instantaneous reproduction number, which does not require forecasts of future 

infections, is simpler to estimate. 

In regard to the Poisson models, there seems to be a pattern in the autoregression 

pattern that is quite robust across each of the specifications. In all cases there is a 

hump in the parameters corresponding to the sixth and seventh lags. Note that 𝑟𝑠 

can be interpreted as the product of a measure of infectiousness and the survival 

function at period 𝑠. Since the latter is decreasing in 𝑠 this pattern in the 𝑟𝑠’s 

indicates an increase in infectiousness a week after the initial reporting of the 

infection. After that increase there is a largely common decrease with 𝑠 in the 

parameter estimates until very small numerically. There are also bumps in the AR 

process at the end of the second week which may be reflecting some accounting. 

We note some limitations of the methods and/or the data. The fitted values and 

reproduction number estimates may be somewhat unreliable at the beginning of the 

processes. This may reflect a number of issues. Recording of cases may be 

particularly inaccurate at the beginning of each outbreak and it may be the case that 

infections may have already occurred prior to the first observed case. We note that 

the estimates of the two different reproduction numbers track each other quite 

closely. The case ℛ𝑗(𝑡) seems to lead the instantaneous ℛ𝑗(𝑡) in most cases so 

would appear to be a better lead indicator of the direction of the pandemic. 
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Figure 1: Fitted Values and Reproduction Numbers for the USA 
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Figure 2: Fitted Values and Reproduction Numbers for Taiwan 
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Figure 3: Fitted Values and Reproduction Numbers for Brazil 
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Figure 4: Fitted Values and Reproduction Numbers for New Zealand 
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Figure 5: Fitted Values and Reproduction Numbers for Sweden 
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6. Conclusion  

This paper has developed new panel count data estimators for the analysis of the 

progress of the COVID-19 pandemic using an array of parametric and semi-

parametric estimators which exploit the fact that the biological component of the 

virus’ spread should be fairly homogenous across jurisdictions. The approach 

allows for two new direct methods of estimating of estimating the reproduction 

numbers associated with the disease. The estimators are applied to international 

panel data and produce compelling estimates of the COVID-19 process. 

The autoregressive count methodology is consistent with an epidemiological model. 

The semi-parametric estimators in particular are capable of tracking the spread of 

the COVID-19 pandemic and provide simple, direct estimates of jurisdiction and 

time specific reproduction numbers. 

Extensions we are considering at present are allowing for dependence between 

observations using, say, a gravity model and joint modelling of infections with 

deaths and recoveries. 

At the time of writing new strains of the COVID-19 had manifested themselves. 

New strains of any virus are standard and since the beginning of the pandemic 

various reports had appeared of new strains, but none sufficiently different to have 

much impact on statistical studies. These new strains, the first appearing in the UK 

in mid-December, 2020, while apparently no more lethal, do appear to spread more 

easily. In principle, this could be modelled in a similar way with the new strain 

having a different set of 𝑟’s. 
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