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Upper Bounds for Ruin Probability in a
Controlled Risk Process under Rates of Interest

with Homogenous Markov Chains
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Abstract
This paper explores recursive and integral equations for ruin probability of a
controlled risk process under rates of interest with homogenous Markov chains.
We assume that claim and rates of interest are homogenous Markov chains, take a
countable number of non — negative values. Generalized Lundberg inequalities for
ruin probability of this process are derived via a recursive technique. Recursive
equations for finite time ruin probability and an integral equation for ultimate ruin
probability are presented, from which corresponding probability inequalities and

upper bounds are obtained. An illustrative numerical example is discussed.
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The ruin problem in stochastic environments has been studied by many
researchers [9], [10]. In classical risk model, the claim number process was
assumed to be a Poisson process and the individual claim amounts were described
as independent and identically distributed random variables. In recent years, the
classical risk process has been extended to more practical and real situations. For
most of the investigations treated in risk theory, it is very significant to deal with
the risks that rise from monetary inflation in the insurance and finance market, and
also to consider the operation uncertainties in administration of financial capital.
Teugels and Sundt [16], [17] studied ruin probability under the compound Poisson
risk model with the effects of constant rate. Yang [19] given both exponential and
non — exponential upper bounds for ruin probabilities in a risk model with
constant interest force and independent premiums and claims. Xu and Wang [18]
given upper bounds for ruin probabilities in a risk model with interest force and
independent premiums and claims with Markov chain interest rate. Cai [1], [2]
considered the ruin probabilities in two risk models, with independent premiums
and claims and used a first — order autoregressive process to model the rates of in
interest. Cai and Dickson [3] built Lundberg inequalities for ruin probabilities in
two discrete- time risk process with a Markov chain interest model and
independent premiums and claims. P. D. Quang [11] established Lundberg
inequalities using the recursive technique for ruin probabilities in two risk model
with homogenous Markov chain  premiums when claims and interest rates
sequences are independent. P. D. Quang [12] used martingale approach to build
upper bounds for ruin probabilities in a risk model with interest force and
independent interest rates and premiums when claims is a Markov chain. P. D.
Quang [13] used martingale approach to build upper bounds for ruin probabilities
in a risk model with interest force and independent interest rates and Markov
chain claims and Markov chain premiums. P. D. Quang [14] used martingale

approach to build upper bounds for ruin probabilities in a risk model with interest
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force and independent claims, Markov chain premiums and Markov chain
interests. P. D. Quang [15] also used recursive approach to build upper bounds for
ruin probabilities in a risk model with interest force and Markov chain premiums,
Markov chain claims, while the independent interest rates.

In addition, many papers studied an insurance model where the risk process can be
controlled by proportional reinsurance. The performance criterion is to choose
reinsurance control strategies to bound the ruin probability of a discrete-time
process with a Markov chain interest. Controlling a risk process is a very active
area of research, particularly in the last decade; see [4, 5, 6, 7], for instance.
Nevertheless obtaining explicit optimal solutions is a difficult task in a general
setting. Maikol A. Diasparra and Rosaria Romera [8] obtained generalized
Lundberg inequalities for the ruin probabilities in a controlled discrete-time risk
process with a Markov chain interest.

In this article, we extend the model considered by Maikol A. Diasparra and
Rosaria Romera [8] to introduce homogenous Markov chain claims and
homogenous Markov chain rates of interest.

2 Preliminary Notes
Let Y, be the n — th claim payment. The random variable Z, stands for the length

of the n — th period, that is, the time between the ocurrence of the claims Y, ,
and Y, . Let {1,} ,be the interest rate process. We assume that Yy, Z,, I, are
defined on the probability space (Q, A,P). We consider a discrete — time

insurance risk process in with the surplus process {Un} with initial surplus u

n>1
can be written as

U =U_ (1+1)+C( ,).Z —h(b _Y,), forn>1. 2.1)
We make several assumptions.

Assumption 2.1. U, =u=>0.
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Assumption 2.2. {Y,}  is an homogeneous Markov chain, such that for any n

n>0

the values of Y, are taken from a set of non - negative numbers

G, ={Y,, Vo1 Yyrerof With Yo =yiand

Py = P[“’EQ:Yn+1(a)): y;[Ys (@) = yi](ne N,y, €G,,y, €G)),

where 0< p, <1, p, =1
i1

Assumption 2.3. {I } is an homogeneous Markov chain, such that for any n
the values of I, are taken from a set of non - negative numbers
G, ={i,,iy,.i .. With 1, =i, and

g, =PloeQ:1 (@) =il (@) =i [(meN,i €G,.i, €G,),
where 0<q, Sl,iqrS =1
s=1

Assumption 2.4. {Z_}  isasequence of independent and identically distributed

n=0

non-negative continuous random variables with the same distributive function
F(2)=P(weQ;Z,(0) < z)

Assumption 2.4. We denote by C(b)the premium left for the insurer if the

retention level b is chosen, where 0<C(b)<c,beB.

The process can be controlled by reinsurance, that is, by choosing the retention

level (or proportionality factor or risk exposure) b e B of a reinsurance contract

for one period, where B:=[b 1], b

min ?

» €(0,1] will be introduced below. The

premium rate C is fixed.

Assumption 2.5. We denote the function h(b,y) with values in [0,y]
specifies the fraction of the claim y paid by the insurer, and it also depends on the
retention level b at the beginning of the period. Hence y—h(Db,y )is the part paid

by the reinsurer. The retention level b =1 stands for control action no reinsurance.
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In this article, we consider the case of proportional reinsurance, which means that
h(b,y)=Db.y, with beB. (2.2)
Usually, the constant b, in Assumption 2.4 is chosen by
b,;, == min{b € (0,1}, C(b) > 0}.
Assumption 2.6. We suppose that {Y,} _,{Z,} and {I }_, areindependent.

Assumption 2.7. We consider Markovian control policies 7z = {an} which at

n>1"'
each time n depend only on the current state, that is, a,(U,):=b, for n>0.
Abusing notation, we will indentify functions a:.X — B, where
X =0 u/,Bis the decision space.

Consider an arbitrary initial state U, =u >0 and a control policy 7 = {an}

n>1"
Then, by iteration of (2.1) and assuming (2.2), it follows that for n>1,U,
satisfies

U, =u[ Ja+1, )+i(<:(bn_1 )2, b, [ (1, )j 23)

m=I+1
The ruin probability when using the policy 7, given the initial surplus u,and the

initial claim Y, =y,, the initial interest rate |, =i with Assumption 2.1 to 2.7 is

defined as

w (U, )= P”(O(Uk <0)

UO:u,YO:yi,IO:irj (2.4)
which we can also express as
w"(U,Y i, )=P7(U, <0 forsome k>1U, =u,Y, =y, I, =i ) (25)

Similarly, the ruin probabilities in the finite horizon case with Assumption 2.1 to

2.7, are given by

wo (U, )= PH[LHJ(Uk <0)

k=1

UO:u,YO:yi,Iozirj (2.6)

Firstly, we have
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pr (U Y ) SpE (U YT ) < Spr (Ui ) < 2.7)
and withany ne N,
v, (u,y,,i)<1. (2.8)

Thus, from (2.7) and (2.8), we obtain
limy(u,Y,od, ) =y (U Y, ),
We denote by IT the policy space. A control policy m is said to be optimal if

for any initial (Yo, lo) = (vi, ir), we have

vo(u,y,,i) <y (u,y.,i) forall mell,

3 Main Results
3.1. Integral Equation for Ruin Probability

We now construct recursive equation for finite time ruin probabilities and an
integral equation

Theorem 3.1. Given model (2.1) and Assumptions 2.1 to 2.7, for n =1,2, ..., we

have
boyj-u(l+i)
+00 +0 C(by) +90
iy i)=Y pet [ OF@+ [ wiEi) by, +Clb,)2.y,i)dF(@) . (3D
j=1 s=1 boyj-u(l+i)
J 0 yc(bo)
and
boyj—u(l+is)
+0 0 c(bo) +00
VUYL =Y Ypb [ dF@+ [ yrul+i)-byy;+Clb,)z.y,i)dF(2) 1.(3.2)
j=1 s=1 0 boyj—u(L+is)
C(b,)

Where throughout this paper:
i) If v<Othen F(v)=0,
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ii) If v<Othen [dF(z)= [dF(2),
v 0

i) If v <Othen Iw(h(z), y.,i,)dF (z) =0.

Proof.
We consider Y (o) =Yj, l1(®) =I5, (0 € Q) and
B={0eQ:Uy(0)=u,Y,(0) =yj,lo(w) =i},

Ajs ={0eQ:Yi(0) =y hi(0) =i},

A - {we 0 7,(@) < Yo(@+h(®) —bovl(co)},

C(b,)

Al = {(o €eQ:Z(w) 2 C(by)

Let Vi = u(Yx, Zx) = boYk — C(bo)Zk. From (2.1), we have
U]_ = Uo(l + |1) — V]_ = U(l + |1) — boYl +C(b0)zl

Therefore
P™ (0 Q1 Uy(0) <0[A;nAj NB)=1

n+1
= P“(meQ: U Uk(oa)<o\A1mAjS mBle.
k=1

In addition,

P™ (e Uy(@) <0/ALnAj N B) =0,

Ug (@)(L+ (@) - bovl(u»}

3.3)

(3.4)

Let {?”}nzo’{zn}nzo’{in}nzo be independent copies of {Yy} .,

{Znthso Untpse With Yo(0) = Yi(@) = yj,Zy(0) = Zy(w), Io(0) = Iy (0) =i

and \7k = bo\?k — C(bo)zk ,

85
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0H(1+I|)+Z(C(b| )21 -b 1Y H (1+|m)J

m=I+1

Thus (2.3) and (3.4) imply

n+1 . n+1 _
P“{weQi U Uk(®)<O‘A1mAjsmB] P’{meQ: U Uy (o) <0‘A10AjsmBJ
k=1 k=2

[a)eQ nUl[U )L+ 1, (@) -b,Y, (@) +C(b,)Z,( )]ﬁ(1+|m(a)))

+Zk: C(b,.)Z,(0)-b,.Y, (») ﬁ 1+1,(0) <0

m=2 p=m+1

AlmA mB}

k

=Pﬂ[a)eQ:0[Uo(a))ﬁ(l+ fm(a)))+Zk:(C(bm_l)Zm(a))—bm_l\fm(a)) [T @+ ))<oj

.Now, from (2.1) implies

n+1
vna(u,yi i) =P" [(DEQ: U (Ug () <0| BJ

ANAN B], (35)

k=1
+00 +00 n+1
:Zzpijqrspn (DEQU(UK((D)<O‘A”(-\B
j=1s—1 k=1
400 400

n+1
= ZzpijQrs {PTC ((D eQ): U (Uk((’)) < O‘A]_ mAU M BJP(A]"AU M B)+

j=1s=1 k=1

k=1

n+1
From (3.3), we have
n+1
P™ (weQ: U (Uk(@) <0jA; nA;; mBJ.P(Al‘Aij mB)

k=1
yj—u@+is)
C(bo)

:P“(cer:Zl(oa) °
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boyj—u(l+is)
C(bo)
= j dF(z), (3.7)
0

and from (3.5), we have

P™ (co eQ: nLj(uk(@) < O‘Z‘l DA N B)'P(Kl‘Aij a B)
k=1

KmAjsmB .

n k k k
—p" weQ:U[UO(m)H(1+Tm(m))+ " (Clom-1)Zn(©) by 1Ym(@) ] (1+Tp(m))<O]
k=1

m=2 m=2 p=m+1

P™(Ad|Aj B)
+o0

= j wi (u@+is) —boy; + C(by)z, yj.is )dF(2).(3.8) .(3.8)
boyj—u(l+is)
C(bo)

Combining (3.7) and (3.8), therefore (3.6) may be written

boyj—u(L+is)
+0 0 C(b,) +0
ViaUYi) =YY e [ dF@+ [ wiu+i)-byy;+Clb,)z.y,i)dR(@) (.(3.9)
j=1 s=1 0 boy;—u(L+is)

C(b,)
When n =0, we have

(3.10)

w1 (U, i,iy) =iipijQrSF[bong(;(l)JrIS)}
j=1s=1 0

From the dominated convergence theorem, the integral equation for

v (u,y;,i,)in Theorem 3.1 then follows immediately by letting n— oo in

(3.9).

3.2. Inequalities for Ruin Probability

We now establish  inequalities for the ruin probability corresponding to (2.4) and

(2.6), respectively. We first prove the following Lemma.
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Lemma 3.1. Given model (2.1) and Assumptions 2.1 to 2.7, and

E*[(b,Y, -C(b,)Z,)IY, = v, ]<0,
and

P~[o,Y, -C(b,)Z, >0, = y,]> 0, (3.11)
For any y; € G,, then there exists a unique positive constant R. satisfying

Proof.

Let the function

f. (t) =E~ I:e—t[c(bo)zl—boyl]
We have

fi'(t) =k~ [[bOYl — C(bo)Zl]e"t[C(bo)zrboYll

Y, = yi]—l, te (O;+oo).

Yl =Y ]!

f(©=E"|[BY,-C(®,)Z e “™* ™y, =y, |>0

Which implies that

f,(t)is a convex function with f (0) =0, (3.13)
and

f,(0) = E"|b,Y, ~C(b,)Z Y, = ;| < 0. (3.14)
As P”[boY1 —C(b,)Z, >0, =y, ] >0, we can find some constant ¢ >0 such
that

P*[b,Y,-C(b,)Z,>5 >0, =y,|>0.

We therefore have
f.(t) = E;r[e—t[C(bo)Zl—boYl]Yl _ yi]—l

Y=Y ]1{bovl—c<bo)zl>a}}_12 e” ~1,

>E” {[e—t[C(bo)Zl—boYl]

implying that
tIim f, (t) = +oo, (3.15)



Phung Duy Quang

From (3.13), (3.14) and (3.15) there exists a unique positive constant R

satisfying (3.12).
Now consider
R, =inf{R > 0:E~(e ™lc®zly —y)<1y eG,}.

Y=y, ]<1.

Remark 3.1. E”[e‘R"[C(b“Zl'b"Yl]

Using Lemma 3.1 and Theorem 3.1, we have a probability inequality for

w”(u,y;,i.) byaninductive approach as follows.

Theorem 3.2. Given model (2.1) and Assumptions 2.1 to 2.7, under the conditions

of Lemma3.1and R, >0, we have that

89

Wﬂ(u’yi’ir) SBEn |:e7ROU(l+I1)||O = Ir:| (316)
Foranyu>0, y,€G, and i, €G,, where
eROC(bU)tj.eROC(bU)ZdF(Z)
~ =inf 0 ,0<B <1,
B t>0 F(t) B
Proof.
t
eRoC(bo)tje_RoC(bo)ZdF(z)
a) if inf 0 < +o0,
t>0 F(t)
Firstly, we have
t t t
eRoC(bo)tJ'e—RoC(bo)ZdF(Z) IeROC(bO)(t_Z)dF(Z) J.dF(Z)
Bl =inf 0 =inf 2 > inf 2
t>0 F(t) t>0 F(t) t>0 F(t)
Implying that0 < 3 <1.

For any v > 0, we also have
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- y Y
eRoC(bo)VJe_RoC(bo)zdF(z)
F(v) = C gRCBY [ RO (z)
F(v) ]
< B.eROC(bO)v.J'e—ROC(bO)zdF(Z) < B.eRUC(bO)vlJ' e—ROC(bU)zdF( 7) = BeR oC(b En( -Ry C(bo)Zl).(3.17)
0 0

Let

by —ul@l+i
={(LS):j6{1,2,...},56{1,2,...,}: °y’C(l;()+IS)go},

: : - UG 1)
=<(],8)ey] 1 2¢4.. ,s ¢,,_,. }
Lol gael o) RS
From (3.10), we have
400 +00
i _ yj—u@+is)
v U,y i) =YD pidisF { °
4o C(b,)
by, —u@+i,) by —u@+i,)
_ ) F oJj s ) F 0Jj S .
; SZ pqurs ( C(bo) j_i_z Sz pqurs ( C(bo) j
(is)eK, (is)eK,
Using (3.17), we have
by, —u(l+i,) RiC(o,) M)
g _F| =22 < q.e Cby)  En (@ RCl0)Z
> ¥ na Uiy 3 b, (o)
(iss)eK, (i8)eK,
I S (] .18

(. S)EKz

y;—u@+i;)
C(b,)

In addition, we also have F( j_ if (J,s) € K,. Therefore
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oyj_u(1+is) .
z Z pqurs ( C(bo) j_

(jS eK;

<Bz Z p,d,.€ Ro| boyj—u(L+i )]En( 7ROC(bO)Zl) (3.19)

(U, S)EKl

Combining (3.18) and (3.19), we imply

—+00 +00

VUYL S Y Y pge s (e Rz

=1 s=1

_BER[ o[boYi-u(+1,)] Y, =yl :ir:|.En|:eR0C(bo)Zl:|

_BEn[ o[Cb,)Zi-b, Y] Y, = y} En[ “Rou(t+ly) | i :|<BEn |:e—Rou(l+I1)

.Under an inductive hypothesis, we assume
\V;E(U,yi,ir)SBEn |:e—ROU(1+I1)||0 :ir:|' (321)
So inequality (3.30) implies (3.21) holds with n =1. We have

|, = ir},(s.zo)

Vo (U+i5) =boy; +C(by)z,y ;i) < BE”[e‘RD[““”s)-boyﬁC(b 2]+t

i

For y,€G, and i, €G,, ull+ig)—b,y;+C(b,)z>0,1, >0 then
\IJ::(U(].-F is)_boyj +C(b0)Z,yJ—,is) < BET:|:e—Ro[U(l+i5)—b0Yj+C(bo)Z]||O — Ir:|

u(l+|s) b,y;+C(b, )Z]

<Be (3.22)
So from Lemma 3.1, (3.9), (3.17) and (3.22), we obtain
boy;—u(L+is)
+o0 40 C(h,) +0
Wn+l(u y|’| ) Zzpuqrs J dF(Z)+ I Wﬁ(u(l—l—is)_boyj +C(bo)z’yj’is)dF(Z)
1 sl 0 boY;—u(L+is)

C(b,)
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boy;j—u(L+is)

C(by) i
_Z > pdey | dF@+ [ wiu@ri)-bgy,+C(b,)z,y,i)dF(2)
(J S)EKl 0 boyi;(l;il)ﬂs)
boy;—u(L+is)
C(bO) +00
Y Y nde | @+ | i) by, +C0)2,Y, )RR 13.29)
o | 2

<0 then

Because (J,s)eK;:
C(bo)

F( bYj — U(l'Hs)J 0
C(by)

\l];:(U(l'F Is) - boyj + C(bo)zi yj1 Is)dF(Z) = T\V::(U(lﬁ- Is) - boyj + C(bo)21 yj' Is)dF(Z)

+00

boy;—u(L+ig)
C(by)

Combining with (3.22), we have

boy;j—u(L+is)

C(by,) +o0

—Z > oAy | dF@+ [ wiu@+i)-by, +C(b,)2,Y,i)dF(@)

(is)ek, ’ )
—Z 2 p.,qrsjwn(u(lﬂ) by;+C(b,),Y;i,)AF(2).

(JS)eK1
<BZ Z puqrsj'e u(l+|) boy;+C(b, )z dF(Z) (324)

]

(JS)€K1

Using (3.17) and (3.24), we have
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b o l . +0o0
oyl U( +I3)j+ \V::(u(l‘l-is)_boyj +C(bo)z’yi’i5)dF(Z)

Z Z pijqrs F[ C(bo)

j p bo j—u( -s
(1)K, %{);')
byyj—u(L+i)
b 00
3 C(b,) =Ry u(l+is)-boy;+C(by)z ] * —Ro[ u(t+i;)-boy;+C(b,)z |
<. 2. Pyle I € dF(z) + J. e dF(z)
i s 0 boy;j—u(l+is)
(=t C(b,)
+00
—R,| u(l+ig)—byy;+C(b,)z
= BZ Z pijqrs J. € [ : ]dF(Z) ' (325)
" sk, ‘
From (3.24) and (3.35), we obtain
. — T R [U+is)-by;+C(b,)z]
\V;—l(u’yi’ls) S BZ Z pijqrs '[ € ° ° o ° dF(Z)
j=1 s=1 0

— BE* [eRo[boYl—u(lﬂl)]

Y, =Y, = ir}.En [emetn ]

— BEn |:e—Ro[C(bo)Zl—boY1] Io — Ir] < BEn [e_Rou(l"'ll)

1, =i, |

Y =y }En [e—Rou(ml)

Consequently
\V1I:|[+l(u’yi , Ir) < BEn [e—Rou(hll) |0 — ir}v

Such that inequality (3.21) holds for any n = 1, 2, 3, ... and inequality (3.16)

follows by letting N — oo in inequality (3.21).

t
eRoC(bo)t .[ e_RoC(bo)ZdF(Z)

b) If inf 0 =400 < B =0.
t>0 F(t)

t
eROC(bO)tJ'e—ROC(bo)zdF(Z)

With anye >0: >¢ and

0 F()

\"
F(v) < LeRoC0)V [eReCo2gr(z),
e
0
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We also prove similar such that a), we obtain

WU, Y., le“[e-Ro”ﬂ”ﬂ |, = |] (3.26)
e

Let n—-+oo ininequality (4.16), we imply

Yo (u,y,,i,) < le- [e‘Rfl“(“'l) = ir]. (3.27)
€
Let e=n(ne N*) then (3.27) becomes

\VTE (u’ yi y Ir) < 1 E™ |:e_RoU(1+I1)
n

1, =i | (3.28)
letting N — oo in inequality (3.28), we have
YU,y i) <0=BE"[e ™ E W1, =i, |

Thus, inequality (3.16) holds when B =0. O

Remark 3.2. Let A(u,ir)ngn[e—Rou(ml)

Q:L].me ,>20,<1, we
have

A(U, Ir) — BETE |:e—RUu(l+|1)

H -Ryu -R,u
|0=IrJSBe <e .

So an upper bound for the ruin probability from inequality (3.16) is better than

e—ROu

4 Numerical Example
In this section we give a numerical example to illustrate the bounds of
w”(u,y,,i )derived in Section 3.

Let {Zn} be a sequence of independent and identically distributed non-negative

n=0

continuous random variables with the same distributive function

F(z)=1-e%*(z>0)
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Let {Y,} , be a homogeneous Markov chain such that for any n, Y, take values

n=0

G, ={1,3} with Y; having a distribution:

Y1 1 3
P 0,4 0,6

and matrix P = [pijj ,1s given by

2 X
03 07
P=
02 08
Let {Y.}  beahomogeneous Markov chain such that for any n, I, take value in

G, = {0,1; 0,15} with I, having a distribution:

1 0,1 0,15
P 0,35 0,65

and matrix Q = [qij Jmis given by

[025 0,75
106 04
Then, we have
E(Y,)Y, =1)=1.03+3.0,7 =24, E(Y,)Y, =3)=1.02+3.08=2,6; E(X,) = 0—125 —4,

We chose 7 =1{a,} , V&iay=1nénb,=1, C(bo)= 1, therefore

n=0

E(Y1|Yo =Yy,) <(E(Z),y, €G, (4.1)
In the other hand,
P(Y, - X, >0, =1)>0,P(Y, - X, >0, =3)>0. (4.2)

Combining (4.1), (4.2) imply that Lemma 2.1 holds.
Next, we solve equation (3.12).
Firstly, we have

Ele* )y, =y, |= E[e™, = y,JE[e = i =1,2).
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where

0,25
R +0,25

Ele ™= 0,25Te<Ri*°v25>de - (i=12).
0

and

E|e™|Y, =1| =" P[Y, =1, =1]+e** P[Y, =3Y, =1]
=0,3e™ +0,7e>®
E| e™|Y, =3|=e™ P[Y,=1Y, =3]+¢** P[Y, =3, = 3]

=0,2e™ +0,8e°®

Respective equation (3.12) for Ry, R, by
0,3e™ +0,7e% = 4R, +1 4.3)
0,2e% +0,8e* =4R, +1 (4.4)

Using Maple, we find respective root of (3.12) for Ry, R,, by
R, =0,33878;R, = 0,28124

Hence, R, =min{R,,R,}=0,28124
We can apply the result of Theorem 3.2 for " (u, y;,i,)

v (U, Y,i,) SE7[e ™01 =i ]=g(u.i).i, €G,. (4.5)

where
g(u;0,1) = E[e’%“(“'” l, = 0,1]
=e ™ P, =011,=0,1]+e*** P[1,=015/l,=0,1]

=0, 25%+ 0g75"

g(u:;0,15) = E[e-Rv“ ) = 0,15}
=e ™ P[1,=011,=015]+e" *P[1,=015|l,=0,15]
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=0,6" 4 O 4R

Table 4.1 shows values upper bounds g(u,i,) of w”(u,y,,i)for a range of

value of u

Table 4.1. Upper bounds  g(U,i,) of w”(u,y,,i,) with z=1{a,}  :a.,=1
u 9(u;0,1) g(u;0,15)
1 | 0.726228 0.729814
2 | 0527426 0.532654
3 0.38306 0.388775
4 0.27822 0.283774
5 | 0.202082 0.207141
6 | 0.146785 0.15121
7 | 0.106624 0.110387
8 | 0077454 0.080588
9 | 0.056266 0.058836
10 | 0.040876 0.042958
15 | 0.008276 0.008919
20 | 0.001677 0.001854

5 Conclusion
Theorem 3.2 provide recursive equations for /" (u,y,,i.) and an integral
equation for " (u, Y,,i.), by using a recursive technique. Using Lemma 3.1 and

Theorem 3.2, we obtain a probability inequality for w”*(u,y;,i.) by an inductive

approach. An illustrative numerical example is discussed.



98 Upper Bounds for Ruin Probability in a Controlled Risk Process under...

References

[1] J. Cai, Discrete time risk models under rates of interest. Probability in the
Engineering and Informational Sciences, 16 (2002), 309-324.

[2] J. Cai, Ruin probabilities with dependent rates of interest, Journal of Applied
Probability, 39 (2002), 312-323.

[3] J. Cai and D. C. M. Dickson, Ruin Probabilities with a Markov chain interest
model. Insurance: Mathematics and Economics, 35 (2004), 513-525.

[4] J. Grandell, Aspects of Risk Theory, Springer, Berlin, 1991.

[5] O. Hernandez-Lerma, J.B. Lasserre, Discrete- Time Markov Control
Processes: Basic Optimality Crieria, Springer- Verlag, New York, 1996.

[6] O. Hernandez-Lerma, J.B. Lasserre, Further Topics on Discrete- Time
Markov Control Processes, Springer- Verlag, New York, 1999.

[7] O. Hernandez-Lerma, J.B. Lasserre, Markov Chains and Invariant
Probabilities. Birkhauser, Basel, 2003.

[8] Maikol A. Diasparra and Rosaria Romera, Inequalities for the ruin
probability in a controlled discrete-time risk process, Woking paper,
Statistics and Econometrics Series, 2009.

[9] H. U. Gerber, An Introduction to Mathematical Risk Theory, Monograph
Series, Vol.8.S.S. Heubner Foundation, Philadelphia, 1979.

[10] S.D. Promislow, The probability of ruin in a process with dependent
increments. Insurance: Mathematics and Economics, 10 (1991), 99-107.

[11] P. D Quang, Ruin Probability in a Generalized Risk Process under Rates of
Interest with Homogenous Marrkov Chain premiums, International Journal of
Statistics and Probability,Vol. 2, No.4 (2013), 85-92.

[12] P.D. Quang, Upper bounds for Ruin Probability in a Generalized Risk
Process under Rates of Interest with Homogenous Markov Chain claims,
Asian Journal of Mathematics & Statistics, Vol.7, No.1 (2014), 1-11 (2014).



Phung Duy Quang 99

[13] P.D. Quang, Upper bounds for Ruin Probability in a Generalized Risk
Process under Rates of Interest with Homogenous Markov Chain claims and
Homogenous Markov Chain premiums, Applied Mathematical Sciences,
Vol.8, N0.29 (2014), 1445-1454.

[14] P.D. Quang, Martingale Method for Ruin Probability in a Generalized Risk
Process under Rates of Interest with Homogenous Markov Chain Premiums
and Homogenous Markov Chain Interests, Journal of Statistics Applications
& Probability Letters, VVol.2, No.1 (2015), 15-22.

[15] P. D. Quang, Ruin Probability in a Generalised Risk Process under Rates of
Interest with Homogenous Markov Chains, East Asian Journal on Applied
Mathematics, Vol.4, No.3 (2014), 283-300.

[16] B. Sundt and J. L. Teugels, Ruin estimates under interest force, Insurance:
Mathematics and Economics, 16 (1995), 7-22.

[17] B. Sundt and J. L. Teugels, The adjustment function in ruin estimates under
interest force. Insurance: Mathematics and Economics, 19 (1997), 85-94.

[18] L. Xu and R. Wang, Upper bounds for ruin probabilities in an autoregressive
risk model with Markov chain interest rate, Journal of Industrial and
Management optimization, VVol.2 No.2 (2006),165- 175.

[19] H. Yang, Non — exponetial bounds for ruin probability with interest effect
included, Scandinavian Actuarial Journal, 2 (1999), 66-79.



