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Abstract 
 

Markov Chain Monte Carlo (MCMC) techniques, in the context of Bayesian 

inference, constitute a practical and effective tool to produce samples from an 

arbitrary distribution. These algorithms are applied to calculate parameter values of 

predictive models of the phenomenon of varying volatility in data time series. For 

this purpose, 3 such research models of time-varying volatility are simulated in 

STAN a probabilistic programming language for statistical inference. The accuracy 

of these models’ predictive function is confirmed by applying in data time series 

with known prior values. Moreover, Stan models’ performance is illustrated by the 

real stock prices of two shares in the stock market of New York. Finally, an 

Information Criterion of the results is applied to each model as well, to evaluate 

their predictive ability, comparing and selecting the most effective one. 
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1. Introduction  

Time-varying volatility models have become one of the important areas of study in 

economics in recent years due to their ability to describe the clustering effect of the 

volatility exhibited by economic time-series (Hanzon, 2003). The description of 

volatility clustering is particularly important for financial institutions to manage 

portfolios or investments with as little risk as possible. These models can be 

univariate or multivariate (Wei, 2006). 

For the prediction of the parameters of the above models, an effective tool is the 

Markov Chain Monte Carlo (MCMC) method. These algorithms, although 

proposed many decades ago, were not widely applied due to the computational 

complexity required in their calculations. In recent years, however, with the help of 

computers and statistical programming tools, these algorithms have been revived 

and are now being used to quickly and successfully predict the parameters of the 

study models of volatility. 

In this study, an attempt is made to present and apply the MCMC algorithms for 

parameter prediction in the GARCH, Stochastic Volatility, and Unobserved ARCH 

volatility models. For their application the statistical package STAN is used, a 

programming tool where the parameters of the models are predicted by the 

Hamiltonian Monte Carlo method. 

 

2. MCMC methods  

Algorithms in this class, are derived from Monte Carlo methods but are sampled 

not from a random sample but from a Markovian chain. The sampling of the 

probability distribution in them is based on the construction of such a chain that has 

the same distribution as that of their equilibrium distribution. (Zhang, 2013). 

MCMC methods generate a chain of values θ1, θ2, …. whose distribution 

approximates the a priori distribution. If we were to represent these values on a 

histogram, we would say that this is done by generating candidate values - points 

which if they approach the target distribution are accepted otherwise, they are 

rejected. A correct distribution is created by selecting those points which are close 

enough to the prior probability. The generation of the chain parameters θn , n=1, 

2,… are generated by random number generators. Each new point θn+1 must, 

according to the Markovian property, depend only on the previous point θn. 

(Atzberger, 2013). 

The first algorithm of this class of algorithms is introduced in 1953 for Statistical 

Physics by Metropolis, Rosenbluth, A. Teller, and E. Teller (Metropolis et al, 1953). 

This algorithm is not considered efficient in the case where the target distribution 

we want to simulate does not resemble any known distribution or in the case where 

it is not easy to use. For this reason, Hastings (1970) proposed an improvement of 

the above known as the Metropolis-Hastings. The steps of this method steps are 

presented below.  
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Algorithm 1: Metropolis-Hastings 

(i). Initialize by selecting a starting point θ0 

(ii). Select a new candidate point θnew from a suitable proposed distribution 

q(θnew|θold) which is based on the previous point in the chain and is not 

necessarily symmetric.  

(iii). Calculate the acceptance rate r  

𝑟 =
𝜋(𝜃𝑛𝑒𝑤) ∗  𝑞(𝜃𝑜𝑙𝑑| 𝜃𝑛𝑒𝑤) 

𝜋(𝜃𝑜𝑙𝑑) ∗  𝑞(𝜃𝑛𝑒𝑤| 𝜃𝑜𝑙𝑑)
  

(iv). Accept the point θnew as θ with probability 𝛼(𝜃𝑜𝑙𝑑, 𝜃𝑛𝑒𝑤) = min (1, r). If 

θnew is not accepted then return to the previous point in the chain   

Generally, his step can be done here by generating a random number u ε 

[0,1]. The new value of the chain θold+1 is chosen from the relation: 

𝜃𝑜𝑙𝑑+1 =  {
𝜃𝑛𝑒𝑤, 𝛼𝜈 𝑢 ≤  𝛼(𝜃𝑜𝑙𝑑, 𝜃𝑛𝑒𝑤)

𝜃𝑜𝑙𝑑 , 𝛼𝜈 𝑢 >  𝛼(𝜃𝑜𝑙𝑑, 𝜃𝑛𝑒𝑤) 
 

(v). Repeat step (ii) for a predetermined number of steps. 

 

One of the best-known algorithms in this category is the Gibbs sampler, originally 

formulated by Besag (1974) and Geman and Geman (1984). For the operation of 

the algorithm the table of parameters is divided into elements. So we could say that: 

θ = (θ1, θ2, …..θd) where none of these elements θj need to be linear. We assume that 

the full conditional distributions of each of the points are known and we know how 

to simulate them. The basic idea behind Gibbs' method is to sequentially simulate 

each element θj from the conditional distributions (Chen & Edward, 2015) as shown 

below: 
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Algorithm 2: Gibbs sampler 

𝜃cur ← 𝜃(0) 

F𝑜𝑟 ι = 0, 1, …. Ν  

For j = 0, 1, …. d repeat 

Select new value j of element 𝜃𝑗
𝑐𝑢𝑟  from the conditional 

probability fΘj|Θ-j, Y (θj | 𝜃−𝑗
𝑐𝑢𝑟  , y). 

End 

𝜃(ι+1) ← 𝜃(cur) 

End 

 

Since many times the above algorithms are inefficient and quite slow in the 

convergence of the target distribution p(x), in recent years new methods have been 

proposed that aim at greater efficiency. One such algorithm is the Hybrid MC aka 

Hamiltonian MC since it adopts principles of natural systems dynamics instead of 

a probability distribution to suggest the next positions of a Markovian chain. (Duane, 

Kennedy, Pendleton , & Roweth, 1987). Hamiltonian equations describe the motion 

of an object in a time interval, but it is a continuous variable. If we want to represent 

this motion numerically, we have to digitize it. For this reason, many methods have 

been developed, with the best known of all being the Leap Frog method. In this 

algorithm, we start with an initial state [x0, m0] and simulate the Hamiltonian 

dynamics for a short period using the Leap Frog method. The simulation produces 

two new variables for position and momentum, x* and m* respectively, which 

define a new position. The new position is accepted or rejected using the Metropolis 

acceptance criterion. Summing up the above the HMC method is presented as:  
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Algorithm 3: HMC 

(i). Set t=0  

(ii). Randomly set a starting position x0 ~ π(0) 

(iii). Repeat until t = M 

Set t=t+1 

Choose a new initial momentum variable from the normal 
momentum distribution m0 ~ p(m) 

Run the Leap Frog method with initial values [x0, m0] for L steps with 
step size δ to calculate the new proposed values x* και m* 

Calculate the Metropolis probability of acceptance as: 

α = min ( 1, 𝑒[ 𝑈(𝜒∗)+𝑈(𝑥0) −𝐾(𝑚∗)+𝐾(𝑚0)] 

Choose a random number u from the interval [0,1] 

Accept the point with probability:  

𝑥(𝑡) =  {
𝑥∗, 𝛼𝜈 𝑢 ≤  𝛼

𝑥(𝑡−1), 𝛼𝜈 𝑢 >  𝛼 
 

End 

 

3. Volatility Time Series Models  

The methods of the previous section have proven to be a valuable tool for 

concluding sampling in many scientific fields. One of these scientific fields, where 

these algorithms are applied with great success, is that of econometrics, which are 

successfully used for modeling and forecasting in economic time series. In more 

detail, the phenomenon of heteroskedasticity occurs many times in time series, i.e. 

their values have different variation. In other words, the values may take quite large 

or small values at certain times. However, it has been observed that when indicators 

fluctuate, they remain at this level of change for some time before changing again, 

thus creating clusters of the same distribution (volatility clustering). 

  

3.1 Models 

The first model to study the instability phenomenon in detail is the autoregressive 

model with conditional heteroscedasticity (ARCH) formulated by Engle (1982). 

According to this, a model of order p known as ARCH(p) is given by the following 

formula: 
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𝑦𝑡|𝒂, 𝒚𝑡−1 ~ 𝑁(0, 𝜎𝑡
2) 

𝜎𝑡
2 =  𝑎0 +  ∑ 𝑎𝑖𝑦𝑡−𝑖

2𝑝
𝑖=1                                       (3.1.1) 

where yt is the time series at time t  
 

The problem with the ARCH model is that for drawing safe inferences a large order 

of p is needed. This problem was solved by Bollerslev who proposed the 

Generalized Autoregressive model with Conditional Heteroskedastic GARCH 

(Bollerslev, 1986). Unlike the ARCH model in this model, the conditional 

distributions of the returns  𝑦𝑡 and 𝜎𝑡
2  depend not only on the prior 𝑦𝑡  but also 

on the prior 𝜎𝑡
2. A GARCH(p,q) model is given by the following formula: 

 

𝑦𝑡|𝒂, 𝒃, 𝒚𝑡−1 ~ 𝑁(0, 𝜎𝑡
2) 

𝜎𝑡
2 =  𝑎0 +  ∑ 𝑎𝑖𝑦𝑡−𝑖

2𝑝
𝑖=1 +   ∑ 𝑏𝑗𝜎𝑡−𝑗

2𝑞
𝑗=1                          (3.1.2) 

An alternative class of models to the ARCH - GARCH models is that of the 

Stochastic Volatility (SV) models proposed by Taylor (1994). In this, the volatility 

is a random variable, unlike the previous models where the conditional variance is 

a deterministic function of the model parameters and past values. The SV model 

can be written as: 
 

𝑦𝑡   | ℎ𝑡 ~ 𝑁 (0, ℎ𝑡) 

ℎ𝑡  | 𝑎, 𝑑, 𝜎𝜂
2 ~ 𝐿𝑁 ( 𝑎 + 𝑑𝑙𝑜𝑔(ℎ𝑡−1), 𝜎ℎ

2),                     (3.1.3) 

Finally, The Unobserved Arch model was introduced by Shephard (1996) . In it the 

parameters are observed with errors and can be written as: 
 

𝑦𝑡 |𝑥𝑡, 𝜎2 ~ 𝛮 (𝑥𝑡, 𝜎2) 

𝑥𝑡| 𝑥𝑡−1, 𝑎, 𝛽, 𝑥0 ~ 𝑁(0, ℎ𝑡) 

ℎ𝑡 = 𝑎 + 𝛽𝑥𝑡−1
2                                       (3.1.4) 

3.2 Validating models in STAN  

In order to better understand the operation of the above methods and to validate 

their correct operation, in this chapter, an attempt is made to simulate them in the 

probabilistic programming language STAN (Carpenter, Gelman, Hoffman, & Lee, 

2017). STAN is one of the most recent statistical modeling tools that allows its user 

to calculate the probability p(x, θ) of a model in a programmatic way. For its 

sampling and sample selection, STAN uses the HMC algorithm as its MCMC 

method. 
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GARCH(1,1) example: 

In order to study the operation of a GARCH(1,1) model we set in relation (3.1.2) 

p=1 and q=1 so that our model can be written as 

 

𝜎𝑡
2 =  𝑎𝑜 + 𝑎1𝑦𝑡−1

2 + 𝑏1𝜎𝑡−1
2  

We then create a random time series of 1500 time points in the programming 

language R. For this time series we randomly choose α0=0.02, α1=0.05, and β1=0.9. 

This time series is given as input in our STAN model and a fit object is produced in 

the output providing the samples selected by the HMC method from the posterior 

distribution of the parameters declared in our model. The table below compares the 

initial values of the parameters we had set, with the average of the posterior values 

chosen in each iteration of the HMC algorithm. The posterior values of the 

parameters are quite close to our initial values. 

 
Table 1: Comparison of initial and posterior GARCH values  

Parameter Initial Value Average of posterior values 

αο 0,02 0,02 

α1 0,05 0,06 

β1 0,9 0,89 

 

3.3 Stochastic Volatility Example  

To validate the correctness of the Stan model for this category models, we chose to 

simulate the simple stochastic volatility model of Kim, Shephard, and Chib (1998). 

This model is: 

𝑦𝑡 = 𝛽 ∗ 𝑒
ℎ𝑡
2

 ,       𝑒𝑡~ 𝑁(0,1) 

ℎ𝑡 = 𝜇 + 𝜑 ∗ (ℎ𝑡−1 − 𝜇) +  𝜎𝑛 ∗ 𝑛𝑡   ,           𝑛𝑡 ~ 𝑁(0,1)  

We then chose to create a time series of 1500 moments with random parameters 

φ=0.95, σ=0.25, and μ=-10, and table 2 shows the initial values compared to the 

average of the posterior values of the object created by STAN. 

 
Table 2: Comparison of initial and posterior values of Stochastic Volatility 

Parameter Initial Value Average of posterior values 

μ -10 -9,97 

φ 0,95 0,94 

σ 0,25 0,27 
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Unobserved ARCH example:  

For this example, we chose to simulate the one proposed by Giakoumatos (2004) 

where:  

𝑦𝑡 =  𝑓𝑡 + 𝜎 ∗ 𝑒𝑡 

𝑓𝑡 =  𝑢𝑡 ∗ √ℎ𝑡 

ℎ𝑡 =  𝛼 + 𝛽 ∗ 𝑓𝑡−1
2  

with 𝑢𝑡, 𝑒𝑡  ~ N(0,1). We set randomly, α=0,1, β=0,8 and σ=0,2.and the output 

object of STAN predicted the parameter values as in the following table:  

 
Table 3: Comparison of initial and posterior values of Unobserved ARCH 

Parameter Initial Value Average of posterior values 

α 0,1 0,10 

β 0,8 0,77 

σ 0,2 0,22 

 

Taking into account the results of the 3 tables we can easily understand that the 

simulated models in STAN managed to converge correctly and predict with high 

accuracy the values of the parameters we had initially set. 
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4. Illustration in real stock prices  

After validating the correct functioning of GARCH, Stochastic Volatility and 

Unobserved ARCH, these models were fitted to the stock prices of 2 large 

companies of the New York Stock Exchange (Google and Apple) from January 

2010 to February 2020. In both stocks the volatility clustering effect is evident and 

can be easily seen in figure 1 for google shares and in figure 2 for Apple shares. 

Figure 1: Google share log returns from 4/1/2010 to 2/14/2020 

 

Figure 2: Apple share log returns from 4/1/2010 to 2/14/2020 
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The aim was to calculate the average values and variance of their parameters and to 

apply Information Criterion to assess the quality of these statistical models. 

The statistical package STAN for model comparison uses the LOO library where 

the LOO and WAIC evaluation criteria are used (Vehtari, Gelman, & Gabry, 2017). 

The purpose of these criteria is to calculate for each model the expected log 

predictive density (ELPD) according to the following formula: 

 

𝑒𝑙𝑝𝑑 = ∑ ∫ 𝑝𝑡 (𝑦𝑖) ̃ log(𝑦𝑖|̃𝑦)𝑑𝑦�̃�

𝑁

𝑖=1

 

 

4.1 Comparison of results 

The log returns of the 2 stocks were given as input to Stan's GARCH model for 

10000 iterations and the convergence of the chains and the parameters α0, α1, β1 

values can be seen in graphs 3 and 4. 

 

Figure 3: Density plot of GARCH model parameters for Apple shares 

Figure 4: Density plot of GARCH model parameters for Google shares 
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In the same way we calculated the values of the parameters in the model Stochastic 

volatility. Figures 5 and 6 show the density plots parameters μ, φ, σ of each stock. 

Figure 5: Density plot of SV model parameters for Apple shares 

 

Figure 6: Density plot of SV model parameters for Google shares 

 

 

Finally, Figures 7 and 8 show the density plots of the parameter values α, β, σ of the 

Unobserved ARCH model. 

 

Figure 7: Density plot of uARCH model parameters for Apple shares 
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Figure 8: Density plot of uARCH model parameters for Google shares 

 

The following table summarizes all the results of the 3 methods per share. 

 

Table 4: Predicted parameters per share 

 GARCH Stochastic Volatility Unobserved Arch 

α0 α1 β1 μ φ σ α β σ 

Apple 0,21 0,12 0,81 0,59 0,84 0,47 0,34 0,90 1,02 

Google 0,37 0,09 0,76 0,33 0,68 0,68 0,18 0,96 1,03 

 

The prices of both stocks seem to exhibit high persistence in price volatility 

phenomena, with Google stock being less prone to such phenomena. From the 

GARCH method it was calculated for Apple stock that α1+β1=0.93 while for Google 

stock α1+β1=0.85 which proves the above claim. A similar conclusion can be drawn 

by checking the variable φ of the Stochastic volatility method where it was 

calculated that φ=0.84 for Apple while φ=0.68 for Google. Finally, for the 

Unobserved Arch model, both stocks showed high values in the parameters 

demonstrating the high persistence of prices in volatility phenomena. 

 

 

 

 

 

 

 

 

 

 

 



The Usage of Markov Chain Monte Carlo (MCMC) Methods in Time-varying… 

 

13  

4.2 Information Criteria results  

After the convergence of each model, STAN calculated the log predictive density, 

compared it to the values of the other models, and ranked each one in descending 

order from the one with the highest value to the one with the lowest. The results are 

shown in table 5: 

 
Table 5: Predictive ability of models  

 Apple Google 

 elpd_diff se_diff elpd_diff se_diff 

Stochastic Volatility 0.00 0.00 0.00 0.00 

Unobserved ARCH -5.36 20.96 -78.70 27.99 

GARCH (1,1) -179.17 36.35 -331.96 68.65 
 

In both stock cases the SV model was ranked first with the best ability to predict the 

parameter values. Model 2 with a small difference in the case of Apple but with a 

much larger difference for google was ranked 2nd while as expected GARCH's 

model was ranked last.  

 

5. Conclusion and further research  

In this paper, an attempt was first made to document the basic concept of the 

operation of a valuable statistical inference tool, Markov chains. For this purpose, 

the most important MCMC algorithms, the advantages of each of them and the 

necessary parameterizations required for their proper operation were presented.  

One of the applications of these algorithms is to estimate the parameters of variance 

models that are capable of explaining the phenomenon of volatility clustering in 

economic time series data. Thus, 3 models that describe the later phenomenon were 

chosen to study and simulate in STAN. After establishing the correctness of the 

predictions of all three methods, they were tested on real data for 2 stock market 

shares. 

In conclusion, we could say that in all cases the MCMC algorithms proved to be a 

powerful tool that was able to predict the values of the parameters of interest quickly 

and very accurately. At the same time, the STAN programming package was a very 

sophisticated high-level environment that provided the required libraries for 

modeling, validation, and visualization of the results. Furthermore, this work could 

be generalized to the use of MCMC algorithms for parameter value prediction in 

multivariate models. 
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