Mega Publishing Limited
Journal of Risk & Control, 3(1), 17-65 | December 1, 2016

Statistical Industry Classification

Zura Kakushadze' and Willie Yu?

Abstract

We give complete algorithms and source code for constructing (multi-
level) statistical industry classifications, including methods for fixing the
number of clusters at each level (and the number of levels). Under the hood
there are clustering algorithms (e.g., k-means). However, what should we
cluster? Correlations? Returns? The answer turns out to be neither and
our backtests suggest that these details make a sizable difference. We also
give an algorithm and source code for building “hybrid” industry classi-
fications by improving off-the-shelf “fundamental” industry classifications
by applying our statistical industry classification methods to them. The
presentation is intended to be pedagogical and geared toward practical
applications in quantitative trading.

JEL Classification numbers: G00

Keywords: industry classification; clustering; cluster numbers; machine learn-
ing; statistical risk models; industry risk factors; optimization; regression; mean-
reversion; correlation matrix; factor loadings; principal components; hierarchical
agglomerative clustering; k-means; statistical methods; multilevel

1 Ph.D., is the President of Quantigic® Solutions LLC, 1127 High Ridge Road #135,
Stamford, CT 06905
Full Professor at Free University of Thilisi, Business School & School of Physics,
David Agmashenebeli Alley, Thilisi, 0159, Georgia. E-mail: zura@quantigic.com

2 Ph.D., is a Research Fellow at Centre for Computational Biology, Duke-NUS Medical
School, College Road, Singapore 169857. E-mail: willie.yu@duke-nus.edu.sg

Article Info: Received : July 11, 2016. Published online : December 1, 2016.
Invited Editorial.

18 Statistical Industry Classification

1 Introduction and Summary

Industry classifications such as GICS, BICS, ICB, NAICS, SIC, etc.® are
widely used in quantitative trading. They group stocks into baskets, e.g., in-
dustries, i.e., based on some kind of a similarity criterion. On general grounds
one then expects (or hopes) that stocks within such baskets on average should
be relatively highly correlated. This is valuable information and can be used in
various ways. E.g., one can build a simple mean-reversion statistical arbitrage
strategy whereby one assumes that stocks in a given industry move together,
cross-sectionally demeans stock returns within said industry, shorts stocks with
positive residual returns and goes long stocks with negative residual returns, with
some generally nonuniform weights.* Industries can also be used as risk factors
in multifactor risk models..

The aforementioned “fundamental” industry classifications are based on group-
ing companies together based on fundamental/economic data (see Section 2),
which is expected to add value on longer holding horizons. What about shorter
holding horizons relevant to quantitative trading strategies? Other than a large
number of market players using such industry classifications to arbitrage mispric-
ings,% how do we know that they are competitive with purely statistical methods
at short horizons?

It is no secret that modern quantitative trading heavily relies on statistical
methods such as data mining, machine learning, clustering algorithms, etc. How-
ever, after all, quantitative trading is a secretive field and resources on how things
are done in practice are at best scarce.” The purpose of these notes is to discuss
a systematic quantitative framework — in what is intended to be a “pedagogical”
fashion — for building what we refer to as statistical industry classifications, solely
based on stock returns and no additional extraneous data. Under the hood we
have clustering algorithms. However, picking a clustering algorithm — and we
will see that some work better than others — is insufficient. E.g., what should we
cluster? Correlations? Returns? The answer turns out to be neither and stems
from quantitative trading intuition, which is not something one expects to find
in machine learning books. We discuss various nuances in constructing statistical

3 Hereinafter we will refer to these as “fundamental” industry classifications (see below).

4 More generally, one employs a weighted regression instead of demeaning, and there
are various ways of fixing the aforesaid weights. For a pedagogical discussion, see, e.g.,
[Kakushadze, 2015a].

> For a discussion and literature on multifactor risk models, see, e.g., [Grinold and Kahn,
2000]

6 This very relevant reason should not to be underestimated, despite its “behavioral” nature.

" Thus, we are unaware of another paper discussing the material herein at short horizons.

Zura Kakushadze and Willie Yu 19

industry classifications, and it is those nuances that make a sizable difference.
Quant trading is all about detail.

One motivation for considering statistical industry classifications — apart from
the evident, to wit, the fact that they differ from “fundamental” industry classifi-
cations and are widely used in quant trading — is scenarios where “fundamental”
industry classifications are unavailable (or are of subpar quality). This could be
in emerging or smaller markets, or even in the U.S. if the underlying trading port-
folios are relatively small and a “fundamental” industry classification produces
too fragmented a grouping. However, perhaps an equally — if not more — im-
portant motivation is application of these methods to returns for “instruments”
other than stocks, e.g., quantitative trading alphas, for which there is no analog
of a “fundamental” industry classification [Kakushadze and Yu, 2016¢]. We will
keep this in mind below.®

In Section 2 we briefly review some generalities of (binary) “fundamental”
industry classifications to set up the framework for further discussion. Next, in
Section 3 we address the issue of what to cluster. We discuss why clustering
correlations is suboptimal, and why so is directly clustering returns. We argue
that returns should be normalized before clustering and give an explicit prescrip-
tion for such normalization. We then discuss how to construct single-level and
multilevel (hierarchical — e.g., BICS has 3 levels: sectors, industries and sub-
industries) statistical industry classifications together with some tweaks (e.g.,
cross-sectionally demeaning returns at less granular levels). Many clustering al-
gorithms such as k-means are not deterministic. This can be a nuisance. We give
an explicit prescription for aggregating classifications from multiple samplings,
which in fact improves stability and performance. We discuss algorithms for
“bottom-up” (most granular to least granular level), “top-down” (least granular
to most granular level) and “relaxation” (hierarchical agglomerative) clustering,
together with their “pros” and “cons”.

In Section 4 we discuss detailed backtests of the various algorithms in Section
3 and subsequent sections utilizing the intraday alphas and backtesting proce-
dure described in [Kakushadze, 2015b] by using the resultant multilevel statis-
tical industry classifications for building heterotic risk models. The backtests
unequivocally suggest that there is structure in the return time series beyond
what is captured by simple principal component analysis and clustering adds

8 Optimizing weights in alpha portfolios has its own nuances [Kakushadze and Yu, 2016¢];
however, the methods we discuss here are readily portable to alpha returns as they are purely
statistical. Here we backtests them (see below) on stock returns as the historical data is readily
available. Alpha return time series are highly proprietary, so publishing backtests is not feasible.

20 Statistical Industry Classification

value. However, clustering still cannot compete with “fundamental” industry
classifications in terms of performance due to inherent out-of-sample instabilities
in any purely statistical algorithm.

In Section 5 we take it a step further and give a prescription for fixing the
number of clusters at each level using the methods discussed in [Kakushadze and
Yu, 2016b], including eRank (effective rank) defined in [Roy and Vetterli, 2007].
We also discuss a heuristic for fixing the number of levels, albeit we empirically
observe that the number of levels is not as influential as the number of clusters,
at least in our backtests. We take this even further in Section 6, where we give
an algorithm for improving a “fundamental” industry classification via further
clustering large sub-industries (using BICS nomenclature) at the most granular
level via statistical industry classification algorithms we discuss here thereby in-
creasing granularity and improving performance. We briefly conclude in Section
7 and outline some ideas.

We give the R source code for our algorithms in Appendix A (multilevel
“bottom-up” clustering, dynamical cluster numbers), Appendix B (multilevel
“top-down” clustering) and Appendix C (“relaxation” clustering). Appendix D
contains legalese.

2 Industry Classification

An industry classification is based on a similarity criterion: stocks’ membership
in “groups” or “clusters” such as sectors, industries, sub-industries, etc. — the
nomenclature varies from one industry classification scheme to another. Com-
monly used industry classifications such as GICS, BICS, ICB, NAICS, SIC, etc.,
are based on fundamental/economic data (such as companies’ products and ser-
vices and more generally their revenue sources, suppliers, competitors, partners,
etc.). Such industry classifications are essentially independent of the pricing data
and, if well-built, tend to be rather stable out-of-sample as companies seldom
jump industries.”

An industry classification can consist of a single level: N tickers labeled by
t =1,...,N are grouped into K “groups” — let us generically call them “clus-
ters” —labeled by A =1,..., K. So, we haveamap G : {1,..., N} — {1,..., K}
between stocks and “clusters”.'® More generally, we can have a hierarchy with

9 However, there is variability in the performance of different industry classifications.

10" Here we are assuming that each stock belongs to one and only one “cluster”. Generally,
this assumption can be relaxed thereby allowing for “conglomerates” that belong to multiple
sub-industries, industries, sectors, etc. However, this is not required for our purposes here.

Zura Kakushadze and Willie Yu 21

multiple levels. We can schematically represent this via: Stocks — Level-1 “Clus-
ters” — Level-2 “Clusters” — --- — Level-P “Clusters”. Let us label these P
levels by p=1,..., P. Level-1 is the most granular level with NV stocks grouped
into K “clusters”. The Level-1 “clusters” are in turn grouped into K, Level-2
“clusters”, where K, < K, and so on, Level-P being least granular.!’ Thus,
consider BICS'? as an illustrative example, which has a 3-level hierarchy: Stocks
— Sub-industries — Industries — Sectors. (Here “Sub-industries” is the most
granular level, while “Sectors” is the least granular level.) So, we have: N stocks
labeled by ¢ = 1,..., N; K sub-industries labeled by A =1,..., K; F industries
labeled by @« = 1,..., F; and L sectors labeled by a« = 1,..., L. Let G be the
map between stocks and sub-industries, S be the map between sub-industries and
industries, and W be the map between industries and sectors:

G:{l,.... N} {1,...,K} (1)
S:{l,...,K}—{1,...,F} 2)
We{l,... F}—{1,...,L} (3)

The beauty of such “binary” industry classifications (generally, with P levels) is
that the “clusters” (in the case of BICS, sub-industries, industries and sectors)
can be used to identify blocks (sub-matrices) in the sample correlation matrix
W;; of stock returns.'® E.g., for sub-industries the binary matrix dg(;) 4 defines
such blocks.

3 Statistical Clustering

What if we do not have access to industry classifications based on fundamental
data'* or one is unavailable for the stock universe we wish to trade? Can we
build an industry classification from pricing data, i.e., directly from stock returns?
After all, intuitively, the time series of returns contains information about how

11 The branches in this hierarchy tree are assumed to have equal lengths. More generally, we
can have branches of nonuniform lengths. However, shorter branches can always be extended
to the length of the longest branch(es) by allowing single-element (including single-stock) “clus-
ters”.

12 Bloomberg Industry Classification System.

13 And this is useful in constructing risk models for portfolio optimization [Kakushadze,
2015b].

14 Commercially available industry classifications such as GICS and ICB come at nontrivial
cost. The underlying SIC data is available from SEC for free, albeit only by company names,
not by ticker symbols. It takes considerable effort to download this data and transform it into
an actual industry classification. Alternatively, it can be purchased from commercial providers.

22 Statistical Industry Classification

correlated the stocks are. Can we extract it and transform it into an industry
classification?

The answer is yes, but it is tricky. The key issue is that correlations be-
tween stocks typically are highly unstable out-of-sample. A naive attempt at
constructing an industry classification based on stock returns may produce an
industry classification with subpar performance. Our goal here is to discuss how
to mitigate the out-of-sample instability by building statistical industry classifi-
cations based on clustering quantities other than returns. But first let us discuss
clustering itself.

3.1 K-means

A popular clustering algorithm is k-means [Steinhaus, 1957], [Lloyd, 1957], [Forgy,
1965], MacQueen, 1967], [Hartigan, 1975], [Hartigan and Wong, 1979], [LLoyd,
1982]. The basic idea behind k-means is to partition N observations into K
clusters such that each observation belongs to the cluster with the nearest mean.
Each of the N observations is actually a d-vector, so we have an N X d matrix
Xis, it =1,...,N, s =1,...,d. Let C, be the K clusters, C, = {ili € C,},
a=1,...,K. Then k-means attempts to minimize

K d

9= 3 (Xis = Yu)? (4)

a=11€C, s=1

where

1
}/as — n_ Z Xis (5)

a 1€Cq

are the cluster centers (i.e., cross-sectional means),'® and n, = |C,| is the number
of elements in the cluster C,. In (4) the measure of “closeness” is chosen to be
the Euclidean distance between points in R?, albeit other measures are possible.

One “drawback” of k-means is that it is not a deterministic algorithm. Generi-
cally, there are copious local minima of g in (4) and the algorithm only guarantees
that it will converge to a local minimum, not the global one. Being an iterative
algorithm, k-means starts with a random or user-defined set of the centers Y,
at the initial iteration. However, as we will see, this “drawback” actually adds
value.

15 Throughout this paper “cross-sectional” refers to “over the index i”.

Zura Kakushadze and Willie Yu 23

3.2 What to Cluster?

So, what should we cluster to construct statistical industry classifications? I.e.,
what should we pick as our matrix X;s in (4)? It is tempting to somehow use
pair-wise stock correlations. However, the sample correlation matrix ¥;; com-
puted based on the time series of stock returns is highly unstable out-of-sample.'6
So, what if we identify X, with the time series of the underlying stock returns?
Let R;s be these stock returns, where s = 1,...,d now is interpreted as labeling
the observations in the time series (e.g., trading days). Further, for definiteness,
let s = 1 correspond to the most recent observation. Now we can build a sta-
tistical industry classification by applying k-means to X;; = R;,. Intuitively this
makes sense: we are clustering stocks based on how close the returns are to the
centers (i.e., within-cluster cross-sectional means) of the clusters they belong to.
However, this is a suboptimal choice.

Indeed, this can be understood by observing that, in the context of stock
returns, a priori there is no reason why the centers Y, in (5) should be computed
with equal weights. We can think of the clusters C, as portfolios of stocks, and Y,
as the returns for these portfolios. Therefore, based on financial intuition, we may
wish to construct these portfolios with nonuniform weights. Furthermore, upon
further reflection, it become evident that clustering returns make less sense than
it might have appeared at first. Indeed, stock volatility is highly variable, and its
cross-sectional distribution is not even quasi-normal but highly skewed, with a
long tail at the higher end — it is roughly log-normal. Clustering returns does not
take this skewness into account and inadvertently we might be clustering together
returns that are not at all highly correlated solely due to the skewed volatility
factor.

A simple solution is to cluster the normalized returns Eis = R;s/o0;, where
0?2 = Var(R;,) is the serial variance. This way we factor out the skewed volatility
factor. Indeed, Cov(R;, E]) = Cor(R;, ﬁj) = W;; (we suppress the index s in the
serial covariance Cov and correlation Cor) is the sample correlation matrix with
|W,;| < 1. However, as we will see below, clustering R;s, while producing better
results than clustering R;,, is also suboptimal. Here are two simple arguments
why this is so.

Clusters C, define K portfolios whose weights are determined by what we
cluster. When we cluster X;; = Ry, the centers are Y,;, = Mean(R|i € C,),
i.e., we have equal weights w; = 1 for the aforesaid K portfolios, and we group

16 The sample correlation matrix contains less information than the underlying time series
of returns. Thus, it knows nothing about serial means of returns, only deviations from these
means.

24 Statistical Industry Classification

R;s (at each iterative step in the k-means algorithm) by how close these returns
are to these equally-weighted portfolios. However, equally-weighted portfolios
themselves are suboptimal. So are portfolios weighted by w; = 1/0;, which is what
we get if we cluster X;, = ﬁis, where the centers are Y, = Mean(R;s/0;]i € C,).
Thus, portfolios that maximize the Sharpe ratio [Sharpe, 1994] are weighted by
inverse variances:'” w; = 1/0?. We get such portfolios if we cluster X;; = Ry,
where R, = R;s/0?, so the centers are Yy, = Mean(R;s/0?|i € C,). Clustering
]/i;is, as we will see, indeed outperforms clustering ﬁis. Can we understand this in
a simple, intuitive fashion?

By clustering st = R, / 0;, we already factor out the Volatlhty dependence.
So, why would clustering Rw = R;s/o? work better? Clustering Rw essentially
groups together stocks that are (to varying degrees) highly correlated in-sample.
However, there is no guarantee that they will remain as highly correlated out-of-
sample. Intuitively, it is evident that higher volatility stocks are more likely to get
uncorrelated with their respectlve clusters. This is essentially why suppressing by
another factor or o; in st (as compared with Rw) leads to better performance:
inter alia, it suppresses contributions of those volatile stocks into the cluster
centers Y.

3.2.1 A Minor Tweak

So, we wish to cluster]/i;is = Ris/af. There is a potential hiccup with this in
practice. If some stocks have very low volatilities, we could have large ﬁis for
such stocks. To avoid any potential issues with computations, we can “smooth”
this out via (MAD = mean absolute deviation):!®

Ry =1 (6)
u=t (7)
v; = exp(Median(In(o;)) — 3 MAD(In(03;))) (8)

and for all v; < 1 we set v; = 1. This is the definition of ﬁis we use below (unless
stated otherwise). Furthermore, Median(-) and MAD(-) above are cross-sectional.

17 More precisely, this is the case in the approximation where the sample covariance matrix
is taken to be diagonal. In the context of clustering it makes sense to take the diagonal part of
the sample covariance matrix as the full sample covariance matrix is singular for clusters with
ng > d — 1. Even for n, < d — 1 the sample covariance matrix, while invertible, has highly
out-of-sample unstable off-diagonal elements. In contrast, the diagonal elements, i.e., sample
variances o7, are much more stable, even for short lookbacks. So it makes sense to use them in
defining w;.

18 This is one possible tweak. Others produce similar results.

Zura Kakushadze and Willie Yu 25

3.3 Multilevel Clustering

If we wish to construct a single-level statistical industry classification, we can
simply cluster R;, defined in (6) into K clusters via k-means. What if we wish
to construct a multilevel statistical industry classification (see Section 2)? We
discuss two approaches here, which we can refer to as “bottom-up” and “top-

dOWIl” 19

3.3.1 Bottom-Up Clustering

Say we wish to construct a P-level classification. We can construct it as a se-
quence: K1 - Ky — --- — Kp (K; > Ky > --- > Kp), where we first construct
the most granular level with K clusters, then we cluster these K clusters into
fewer K5 clusters and so on, until we reach the last and least granular level with
Kp clusters. Given?® the integers K1, ..., Kp, the question is what to use as the
returns at each step. Let these returns be [R(u)]i(u),s (i-e., we cluster [R(s)]i(u),s
into K, clusters via k-means), where p=1,..., P, i(p) = 1,..., K, 1, and we
have conveniently defined Ky = N, so i(1) is the same index as i. As above,
we can take [R(1)];; = Ri. What about [R(1)]i(u),s at higher levels p > 17 We
have some choices here. Let Cyy = {i(1)]i(1t) € Cuquy }, a(p) = 1,..., K, be the
clusters at each level p. Le., the index a(u) is the same as the index i(u + 1) for
0 < < P. Then we can take (in the second line below 2 < py < P)

[R(2)]i(2),s = Mean(Rj,|i € {1,...,N}) (9)
[R(/L)]Z(u),s - Mean([R'(/L - 1)]2’(;171),5 Z(/L - 1) € Ca(ufl)) (10)

where we can take (i) Rj, = Ris and [R'(p)]iu),s = [R(10)]i(u),s» or (ii) Rj, = R,
and [R'(14)]igu),s = [R()]i(n),s» where (Var(-) below is the serial variance)

B = % (11)
02 = Var([R(n) i) (12

These two definitions produce very similar results in our backtests (see below).

3.3.2 Another Minor Tweak

In the bottom-up clustering approach we just discussed above, the higher level
clusters tend to be highly correlated with each other. L.e., the corresponding clus-

19 W.r.t. classification levels; “bottom-up” should not be confused with agglomerative clus-
tering.
20 We will discuss what these cluster number “should” be below.

26 Statistical Industry Classification

ter returns have a prominent “market” (or “overall”) mode?! component in them.
That is, averages of pair-wise (i(u) # j(u)) serial correlations [W (i)l) =
Cor([R()]itu),s» [R(12)]j(u),s) at higher levels p > 1 are substantial.*® To circum-
vent this, we can simply cross-sectionally demean the returns at higher levels,
Le., for p > 1 we substitute [R(x)]iu),s by [R(10)]i(n),s — Mean([R(1)]icu),si(1e) €
Co(p)). However, cross-sectional demeaning at level-1 (u = 1) leads to worse
performance. Intuitively, we can understand this as follows. Demeaning at the
most granular level removes the “market” mode.?> Unlike higher-level returns
[R(1)}i(u),s> 1+ > 1, the level-1 returns are not all that highly correlated with each

“market” mode intact as, e.g., high-beta stocks sta-

other, so it pays to keep the
tistically are expected to cluster together, while low-beta stocks are expected to
cluster differently. So, the upshot is that we demean the returns at higher levels,
but not level-1 returns.

3.3.3 Aggregating Multiple Samplings

As mentioned above, k-means is not a deterministic algorithm. Unless the initial
centers are preset, the algorithm starts with random initial centers and converges
to a different local minimum in each run. There is no magic bullet here: trying
to “guess” the initial centers is not any easier than “guessing” where, e.g., the
global minimum is. So, what is one to do? One possibility is to simply live with
the fact that every run produces a different answer. The question then one must
address in a given context is whether the performance in an actual application
is stable from one such random run to another, or if it is all over the place. As
we will see below, in our backtests, happily, the performance is extremely stable
notwithstanding the fact that each time k-means produces a different looking
industry classification.

So, this could be the end of the story here. However, one can do better.
The idea is simple. What if we aggregate different industry classifications from
multiple runs (or samplings) into one? The question is how. Suppose we have
M runs (M > 1). Each run produces an industry classification with K clusters.
Let O, = dar(iyar 1 =1,...,Nya=1,...,K (here G" : {1,..., N} = {1,...,K}
is the map between the stocks and the clusters),?* be the binary loadings matrix

2L See, e.g., [Bouchaud and Potters, 2011], [Kakushadze and Yu, 2016¢].
22 Consequently, there is a large gap between the first [A()](") and higher [A(u)]®), p > 1,
eigenvalues of [¥()]i(u).j(u); the eigenvalues are ordered decreasingly: [A(u)]M) > [A(u)]® >

23 This essentially drops the 1st principal component from the spectral decomposition of ¥;;.
24 For terminological definiteness here we focus on the level-1 clusters; it all straightforwardly
applies to all levels. Also, the superscript r in QF, and G" (i) is an index, not a power.

Zura Kakushadze and Willie Yu 27

from each run labeled by » = 1,..., M. Here we are assuming that somehow
we know how to properly order (i.e., align) the K clusters from each run. This
is a nontrivial assumption, which we will come back to momentarily. However,
assuming, for a second, that we know how to do this, we can aggregate the
loadings matrices €2}, into a single matrix Qi = Zfil Q7.. Now, this matrix
does not look like a binary loadings matrix. Instead, it is a matrix of occurrence
counts, i.e., it counts how many times a given stock was assigned to a given cluster
in the process of M samplings. What we need to construct is a map G such that
one and only one stock belongs to each of the K clusters. The simplest criterion
is to map a given stock to the cluster in which flw is maximal, i.e., where said
stock occurs most frequently. A caveat is that there may be more than one such
clusters. A simple criterion to resolve such an ambiguity is to assign said stock
to the cluster with most cumulative occurrences (i.e., we take ¢, = Zfil ﬁia and
assign this stock to the cluster with the largest gq,, if the aforesaid ambiguity
occurs). In the unlikely event that there is still an ambiguity, we can try to do
more complicated things, or we can simply assign such a stock to the cluster with
the lowest value of the index a — typically, there is so much noise in the system
that dwelling on such minutiae simply does not pay off.

However, we still need to tie up a loose end, to wit, our assumption that
the clusters from different runs were somehow all aligned. In practice each run
produces K clusters, but i) they are not the same clusters and there is no foolproof
way of mapping them, especially when we have a large number of runs; and ii)
even if the clusters were the same or similar, they would not be ordered, i.e., the
clusters from one run generally would be in a different order than clusters from
another run.

So, we need a way to “match” clusters from different samplings. Again, there
is no magic bullet here either. We can do a lot of complicated and contrived things
with not much to show for it at the end. A simple pragmatic solution is to use k-
means to align the clusters from different runs. Each run labeled by r =1,..., M,
among other things, produces a set of cluster centers Y,.. We can “bootstrap”
them by row into a (KM) x d matrix Yz, = Y/, where @ = a + (r — 1)K takes
values @ = 1,..., (KM). We can now cluster Yz, into K clusters via k-means.
This will map each value of @ to {1, ..., K} thereby mapping the K clusters from
each of the M runs to {1,..., K}. So, this way we can align all clusters. The
“catch” is that there is no guarantee that each of the K clusters from each of the
M runs will be uniquely mapped to one value in {1,..., K}, i.e., we may have
some empty clusters at the end of the day. However, this is fine, we can simply
drop such empty clusters and aggregate (via the above procedure) the smaller

28 Statistical Industry Classification

number of K’ < K clusters. lLe., at the end we will end up with an industry
classification with K’ clusters, which might be fewer than the target number of
clusters K. This is not necessarily a bad thing. The dropped clusters might
have been redundant in the first place. Another evident “catch” is that even the
number of resulting clusters K’ is not deterministic. If we run this algorithm
multiple times, we will get varying values of K'. However, as we will see below,
the aggregation procedure improves performance in our backtests and despite the
variability in K' is also very stable from run to run. In Appendix A we give the
R source code for bottom-up clustering with various features we discuss above,
including multilevel industry classification, the tweaks, and aggregation.?®

3.3.4 Top-Down Clustering

Above we discussed bottom-up clustering. We can go the other way around and
do top-down clustering. l.e., we can construct a P-level classification as a se-
quence Kp — Kp 1 — .-+ — Ky — K; (as before, K} > Ky > --- > Kp).
More conveniently, we start with the entire universe of stocks and cluster ﬁis,
i=1,...,N, into Lp = Kp clusters. At level-(P — 1), we cluster each level-P
cluster Cy(py = {i]i € Cypy}, a(P) =1,...,Kp, into Lp_; clusters. We do this
by clustering the returns R, i € Cypy via k-means into Lp_; clusters.?® At
level-(P — 2), we cluster each level-(P — 1) cluster Cyp_1) = {ili € Cop_1)},
a(P—-1) =1,...,Kp 1, into Lp o clusters. We do this by clustering the re-
turns ﬁis, i € Cyp_1y via k-means into Lp_, clusters. And so on.*” In the
zeroth approximation, Kp_1 = Lp_1Kp, Kp_9s = Lp_sKp_;, and so on, so
K =K, = Hizl L,. However, if at some level-u we have some cluster Cy,)
with n,(p¢) < L,, then we leave this cluster intact and do not cluster it, i.e.,
we “roll it” forward unchanged. Therefore, we can have K; < K, at the most
granular level-1. Also, instead of simply clustering via a single-sampling k-means,
as above we can aggregate multiple samplings. Then at any level-pu we can end
up clustering a given cluster Cy,) into L, or fewer clusters. Note, since here we
work directly with the returns ﬁis, in contrast to the bottom-up approach, no

25 The source code in Appendix A, Appendix B and Appendix C hereof is not written to

be “fancy” or optimized for speed or in any other way. Its sole purpose is to illustrate the
algorithms described in the main text in a simple-to-understand fashion. See Appendix D for
some legalese.

26 More generally, we can nonuniformly cluster each level-P cluster with its own
[L(a(P)]p--

2T Note that, in contrast to bottom-up clustering, because here we are going “backwards”, it
is convenient to label the elements of each cluster at each level using the index ¢, which labels
stocks.

Zura Kakushadze and Willie Yu 29

cross-sectional demeaning is warranted at any level. In Appendix B we give the
R source code for top-down clustering, including with aggregation over multiple
samplings.

3.3.5 Relaxation Clustering

Instead of k-means, which is nondeterministic, we can use other types of cluster-
ing, e.g., hierarchical agglomerative clustering. Let us focus on a 1-level classi-
fication here as we can always generalize it to multilevel cases as above. So, we
have NN stocks, and we wish to cluster them into K clusters. If K is not preset, we
can use SLINK [Sibson, 1973, etc. (see, e.g., [Murtagh and Contreras, 2011]). If
we wish to preset K, then we can use a similar approach, except that it must be
tweaked such that all observations are somehow squeezed into K clusters. We
give the R code for one such algorithm in Appendix C. Basically, it is a relaxation
algorithm which, as above, clusters B;, (not R;,). The distance D(i,) between
two d-vectors]/i;is and]/i;js is simply the Euclidean distance in R%. The initial
cluster contains ¢; and j; with the smallest distance. If some 75 and j, (such that
iy # 11, i9 # J1, jo # 11 and jy # jy) are such that D(ig, jo) is smaller than the
lesser of D(iy,?) and D(ji,¢) for all £ (¢ # iy and ¢ # j;), then iy and jo form
the second cluster. Otherwise ¢ that minimizes D(iy,¢) or D(j;,¢) is added to
the first cluster. This is continued until there are K clusters. Once we have K

clusters, we can only add to these clusters.?®

4 Backtests

Let us backtest the above algorithms for constructing statistical industry classi-
fication by utilizing the same backtesting procedure as in [Kakushadze, 2015b].
The remainder of this subsection very closely follows most parts of Section 6
thereof.?

4.1 Notations

Let P, be the time series of stock prices, where ¢ = 1,..., N labels the stocks,
and s = 1,2,... labels the trading dates, with s = 1 corresponding to the most

28 A brute force algorithm where at each step rows and columns are deleted from the matrix
D(i,j) is too slow. The R source code we give in Appendix C is substantially more efficient
than that. However, it is still substantially slower than the k-means based algorithms we discuss
above.

29 We “rehash” it here not to be repetitive but so that our presentation here is self-contained.

30 Statistical Industry Classification

recent date in the time series. The superscripts O and C' (unadjusted open and
close prices) and AO and AC' (open and close prices fully adjusted for splits and
dividends) will distinguish the corresponding prices, so, e.g., PS is the unadjusted
close price. Vi, is the unadjusted daily volume (in shares). Also, for each date s
we define the overnight return as the previous-close-to-open return:

Eis =In (P°/P/,) (13)

This return will be used in the definition of the expected return in our mean-
reversion alpha. We will also need the close-to-close return

Ris = In (P°/P{{) (14)

An out-of-sample (see below) time series of these returns will be used in con-
structing the risk models. All prices in the definitions of E;, and R;s are fully
adjusted.

We assume that: i) the portfolio is established at the open® with fills at the
open prices PY; ii) it is liquidated at the close on the same day — so this is a purely

18)

intraday alpha — with fills at the close prices P<; and iii) there are no transaction
costs or slippage — our aim here is not to build a realistic trading strategy, but to
test relative performance of various statistical industry classifications. The P&L
for each stock
PC

I;, = Hj, [P—’g — 1] (15)
where H;, are the dollar holdings. The shares bought plus sold (establishing plus
liquidating trades) for each stock on each day are computed via Q;s = 2|H;|/PY

4.2 Universe Selection

For the sake of simplicity,>® we select our universe based on the average daily
dollar volume (ADDV) defined via (note that A;, is out-of-sample for each date

s):
Z‘/;S+T i,5+r (16)

30 This is a so-called “delay-0” alpha: the same price, PS (or adjusted PAC), is used in
computing the expected return (via E;,) and as the establishing fill price.
31 In practical applications, the trading universe of liquid stocks typically is selected based

on market cap, liquidity (ADDYV), price and other (proprietary) criteria.

Zura Kakushadze and Willie Yu 31

We take m = 21 (i.e., one month), and then take our universe to be the top
2000 tickers by ADDV. To ensure that we do not inadvertently introduce a uni-
verse selection bias, we rebalance monthly (every 21 trading days, to be pre-
cise). Le., we break our 5-year backtest period (see below) into 21-day intervals,
we compute the universe using ADDV (which, in turn, is computed based on
the 21-day period immediately preceding such interval), and use this universe
during the entire such interval. We do have the survivorship bias as we take
the data for the universe of tickers as of 9/6/2014 that have historical pricing
data on http://finance.yahoo.com (accessed on 9/6/2014) for the period 8/1/2008
through 9/5/2014. We restrict this universe to include only U.S. listed common
stocks and class shares (no OTCs, preferred shares, etc.) with BICS (Bloomberg
Industry Classification System) sector assignments as of 9/6/2014.>% However,
as discussed in detail in Section 7 of [Kakushadze, 2015al, the survivorship bias
is not a leading effect in such backtests.?

4.3 Backtesting

We run our simulations over a period of 5 years (more precisely, 1260 trading days
going back from 9/5/2014, inclusive). The annualized return-on-capital (ROC)
is computed as the average daily P&L divided by the intraday investment level I
(with no leverage) and multiplied by 252. The annualized Sharpe Ratio (SR) is
computed as the daily Sharpe ratio multiplied by v/252. Cents-per-share (CPS)
is computed as the total P&L in cents (not dollars) divided by the total shares
traded.

4.4 Optimized Alphas

The optimized alphas are based on the expected returns E;, optimized via Sharpe
ratio maximization using heterotic risk models [Kakushadze, 2015b] based on
statistical industry classifications we are testing.>* We compute the heterotic risk

32 The choice of the backtesting window is intentionally taken to be exactly the same as in
[Kakushadze, 2015b] to simplify various comparisons, which include the results therefrom.

33 Here we are after the relative outperformance, and it is reasonable to assume that, to
the leading order, individual performances are affected by the survivorship bias approximately
equally as the construction of all alphas and risk models is “statistical” and oblivious to the
universe.

34 In [Kakushadze, 2015b] BICS is used for the industry classification. Here we simply plug
in the statistical industry classification instead of BICS. In the case of a single-level industry
classification, we can either add the second level consisting of the “market” with the N x 1
unit matrix as the loadings matrix; or, equivalently, we can use the option mkt.fac = T in

32 Statistical Industry Classification

model covariance matrix I';; every 21 trading days (same as for the universe).
For each date (we omit the index s) we maximize the Sharpe ratio subject to the
dollar neutrality constraint:

N
N
\/Zz’,j:l Uiy Hi Hj

zN:Hi =0 (18)

In the absence of bounds, the solution is given by

Zkl i By
_ E : -1 } : - 1 kl
j=1 k,l:l kl

where I'~! is the inverse of ', and > 0 (mean-reversion alpha) is fixed via (we
set the investment level I to $20M in our backtests)

— max (17)

Dl =1 (20)

Note that (19) satisfies the dollar neutrality constraint (18).
In our backtests we impose position bounds (which in this case are the same
as trading bounds as the strategy is purely intraday) in the Sharpe ratio maxi-

mization:
|His| < 0.01 A;, (21)

where A;; is ADDV defined in (16). In the presence of bounds computing
H; requires an iterative procedure and we use the R code in Appendix C of
[Kakushadze, 2015b)].

4.5 Simulation Results

Table 1 summarizes simulation results for 11 independent runs for the “bottom-
up” 3-level statistical industry classification with K; = 100, K, = 30 and K3 = 10
(see Subsection 3.3.1). Despite the nondeterministic nature of the underlying k-
means algorithm, pleasantly, the backtest results are very stable. Table 2 summa-
rizes simulation results for 11 independent runs for the “bottom-up” single-level
statistical industry classification with the target number of clusters K = 100

the R function grm.het () in Appendix B of [Kakushadze, 2015b], which accomplishes this
internally.

Zura Kakushadze and Willie Yu 33

based on aggregating 100 samplings (so the actual number of resultant clusters
K’ can be smaller than K — see Subsection 3.3.3). Again, the backtest results are
very stable. Table 3 summarizes simulation results for 23 independent runs for
the “bottom-up” 3-level statistical industry classification with the target number
of clusters K; = 100, Ky = 30 and K3 = 10 based on aggregating 100 samplings
(so the actual number of resultant clusters KL can be smaller than K,, p=1,2,3
— see Subsection 3.3.3). The first 15 (out of 23) runs correspond to norm.cl.ret
= F (this corresponds to choice (i) after Equation (10) in Subsection 3.3.1), while
the other 8 runs correspond to norm.cl.ret = T (this corresponds to choice (ii)
after said Equation); see the function grm.stat.ind.class.all() in Appendix
A. The aforesaid stability persists to these cases as well. Table 4 summarizes
the number of actual clusters in a statistical industry classification obtained via
aggregating 100 samplings. The target numbers of clusters in a 3-level hierarchy
are K; =100, Ky = 30 and K3 = 10, as in Table 3.

Table 5 summarizes simulation results for “top-down” 3-level statistical in-
dustry classifications obtained via a single sampling in each run, with 3 runs for
each L,. The 3-vector L,, p = 1,2,3, is defined in Subsection 3.3.4. Recall that
in the zeroth approximation the number of clusters at the most granular level-1
is Ky = LyLyL3; however, the actual value can be lower due to the reasons ex-
plained in Subsection 3.3.4. Here too we observe substantial stability. Table 6
summarizes simulation results for “top-down” 3-level statistical industry classifi-
cations obtained via aggregating 100 samplings in each run, with 3 runs for each
L,. Stability persists.

From the above results it is evident that aggregating multiple samplings on
average improves both performance and stability. Furthermore, not surprisingly,
decreasing granularity worsens the Sharpe ratio. 3-level classifications outperform
single-level classifications.?® Above we mentioned that clustering ;s = Rjs /o?
outperforms clustering Eis = R;s/0;, which in turn outperforms clustering R;;.
Thus, a random run for the “bottom-up” 3-level classification with K; = 100,
K, = 30 and K35 = 10 based on clustering R;, using a single sampling produced
a typical performance with ROC = 41.885%, SR = 15.265 and CPS = 1.889 (cf.
Table 1). A random run for the “bottom-up” 3-level classification with K; = 100,
Ky = 30 and K3 = 10 based on clustering Eis using a single sampling produced
a typical performance with ROC = 42.072%, SR = 15.840 and CPS = 1.973 (cf.
Table 1).%

35 Also, “bottom-up” by construction uses more information than and outperforms “top-
down”.
36 Table 1 is based on clustering R;s defined via (6). However, clustering R}, = R;s/o?

34 Statistical Industry Classification

In contrast to nondeterministic k-means based algorithms, the relaxation al-
gorithm (Subsection 3.3.5) is completely deterministic. We run it using the code
in Appendix C to obtain a 3-level classification with the target numbers of clus-
ters K; = 100, Ky = 30 and K3 = 10 (as in the “bottom-up” cases, we cross-
sectionally demean the level-2 and level-3 returns, but not the level-1 returns).
The simulation results are sizably worse than for k-means based algorithms: ROC
=41.279%, SR = 15.487 and CPS = 1.936. How come? Intuitively, this is not sur-
prising. All such relaxation mechanisms (hierarchical agglomerative algorithms)
start with a “seed”, i.e., the initial cluster picked based on some criterion. In
Subsection 3.3.5 this is the first cluster containing the pair (iy,7;) that mini-
mized the Euclidean distance. However, generally this choice is highly unstable
out-of-sample, hence underperformance. In contrast, k-means is much more “sta-
tistical”, especially with aggregation.

5 How to Fix Cluster Numbers?

Thus far we have picked the number of clusters K, as well as the number of
levels P “ad hoc”.3" Can we fix them “dynamically”? If we so choose, here
we can do a lot of complicated things. Instead, our approach will be based
on pragmatism (rooted in financial considerations) and simplicity.*® As can be
surmised from Tables 2 and 3, the number of levels does not make it or break it
in our context. What is more important is the number of clusters. So, suppose
we have a given number of levels P > 1. Let us start by asking, what should K
(most granular level) and Kp (least granular level) be? In practice, the number
of stocks N > d — 1, so the sample correlation matrix ¥,; is singular. (In fact,
in most practical applications N > d — 1.) We can model it via statistical
risk models [Kakushadze and Yu, 2016b]. These are factor models obtained by
truncating the spectral decomposition of ¥;;

d—1
U = Z A(@ V;(a) V}(a) (22)
a=1

produces essentially the same results. Thus, a random run for the “bottom-up” 3-level clas-
sification with K; = 100, K» = 30 and K3 = 10 based on clustering]/i\’:s via aggregating 100
samplings produced a typical performance with ROC = 41.707%, SR = 16.220 and CPS =
2.091 (cf. Table 3).

37 Here we focus on the k-means based “bottom-up” and “top-down” algorithms. As dis-
cussed above, the relaxation algorithm underperforms the k-means based algorithms.

38 A variety of methods for fixing the number of clusters have been discussed in other contexts.
See, e.g., [Rousseeuw, 1987], [Goutte et al, 2001], [Sugar and James, 2003], [Lleiti et al, 2004],
[De Amorim and Hennig, 2015].

Zura Kakushadze and Willie Yu 35

via the first d — 1 principal components V;(a) (only d — 1 eigenvalues @) are
positive, A\ > X@ > A@=D 5 0 while the rest of the eigenvalues A\(¥ = 0,
a > d) to the first F' principal components (F' < d — 1) and compensating the
deficit on the diagonal (as ¥; = 1) by adding diagonal specific (idiosyncratic)

variance £2:

F
Dy =& 6+ > A Vi v (23)
a=1

Le., we approximate W;; (which is singular) via I';; (which is positive-definite as
all & > 0 and are fixed from the requirement that I';; = 1). The question then
is, what should F' be? One simple (“minimization” based) algorithm for fixing F’
is given in [Kakushadze, 2015b]. Another, even simpler algorithmn recently pro-
posed in [Kakushadze and Yu, 2016b], is based on eRank (effective rank) defined
below.3?

5.1 Effective Rank

Thus, we simply set (here Round(-) can be replaced by floor(:) = |-])
F = Round(eRank(V)) (24)

Here eRank(Z) is the effective rank [Roy and Vetterli, 2007] of a symmetric semi-
positive-definite (which suffices for our purposes here) matrix Z. It is defined as

eRank(Z) = exp(H) (25)

H=- Zpa ln(pa) (26)
(@

Pa = m (27)

where A@ are the L positive eigenvalues of Z, and H has the meaning of the
(Shannon a.k.a. spectral) entropy [Campbell, 1960], [Yang et al, 2005].

The meaning of eRank(Z) is that it is a measure of the effective dimensionality
of the matrix Z, which is not necessarily the same as the number L of its positive
eigenvalues, but often is lower. This is due to the fact that many returns can
be highly correlated (which manifests itself by a large gap in the eigenvalues)
thereby further reducing the effective dimensionality of the correlation matrix.

39 For prior works on fixing F, see, e.g., [Connor and Korajczyk, 1993] and
[Bai and Ng, 2002].

36 Statistical Industry Classification

5.2 Fixing K,

There is no magic bullet here. It just has to make sense. Intuitively, it is natural
to identify the number of clusters Kp at the least granular level with the number
of factors F' in the context of statistical risk models.*’ In the following, we will
therefore simply take

Kp = Round(eRank(¥)) (28)

Adding more granular levels explores deeper substructures in the time series of
returns based on the closeness criterion. In this regard, we can fix the number
of clusters K; at the most granular level as follows. The average number of
stocks per cluster at level-1is N; = N/K; (we are being cavalier with rounding).
Assume for a second that the number of stocks in each cluster is the same and
equal Ni. If Ny > d — 1, then the sub-matrices ¥;;, i, j € Cyq) (recall that Cy,
a(l) = 1,..., K, are the level-1 clusters) are singular. For Ny < d — 1 they
are nonsingular. Therefore, intuitively, it is natural to fix K; by requiring that
N; = d — 1. Restoring rounding, in the following we will set

K, = Round(N/(d — 1)) (29)

What about K, 1 < p < P? Doing anything overly complicated here would be
overkill. Here is a simple prescription (assuming K; > Kp):*!

1
K, = [Kf*“ K,‘;*l] T ou=1,...,P (30)

We give the R source code for building “bottom-up” statistical industry classi-
fications using this prescription in Appendix A. Table 7 summarized simulation
results for P = 2,3,4,5. It is evident that the number of levels is not a driver
here. The results are essentially the same as for K; = 100 (recall that N = 2000
and d = 21 in our case) in Tables 2 and 3. Table 8 isolates the K dependence
and suggests that the performance peaks around K = 100. Again, there is no
magic bullet here.*?

40" The number of factors F essentially measures the effective number of degrees of freedom
in the underlying time series of returns R;s. Hence identification of Kp with this number.

4L TLe., K, are (up to rounding) equidistant on the log scale. For P = 3 the “midpoint”
K, = VK, Kp is simply the geometric mean. With this prescription, we can further fix P via
some heuristic, e.g., take maximal P such that the difference Kp_; — Kp > A, where A is
preset, say, A = Kp. For K; = 100 and Kp = 10, this would give us P = 4 with K» = 46 and
K3 = 22.

42 Note from Table 8 that too little granularity lowers the Sharpe ratio due to insufficient
coverage of the risk space, while too much granularity lowers cents-per-share due to overtrading.

Zura Kakushadze and Willie Yu 37

5.3 Comparisons

Let us compare the (very stable) results we obtained for statistical industry clas-
sifications with two “benchmarks”: statistical risk models [Kakushadze and Yu,
2016b] and heterotic risk models with BICS used as the industry classification
[Kakushadze, 2015b]. More precisely, statistical risk models in [Kakushadze and
Yu, 2016b] were built based on the sample correlation matrix W;;, which is equiv-
alent to basing them on normalized returns

R, = Ris/ai-

If we use the eRank based algorithm for fixing the number of statistical risk fac-
tors F', then the performance is ROC = 40.777%, SR = 14.015 and CPS = 1.957
[Kakushadze and Yu, 2016b].#* However, as we argued above, it makes more
sense to build models using }A%is = R;s/0?. So, we should compare our results
here with the statistical risk models based on]/i;is. To achieve this, we can simply
replace the line tr <- apply(ret, 1, sd) in the R function grm.erank.pc(ret,
use.cor = T) in Appendix A of [Kakushadze and Yu, 2016b] by tr <- apply(ret,
1, sd) / apply(grm.calc.norm.ret(ret), 1, sd), where the R function
grm.calc.norm.ret () is given in Appendix A hereof. The performance is indeed
better: ROC = 40.878%, SR = 14.437 and CPS = 2.018. So, the k-means based
clustering algorithms still outperform statistical risk models, which implies that
going beyond the F' statistical factors adds value, i.e., there is more structure
in the data than is captured by the principal components alone. However, sta-
tistical industry classifications still sizably underperform heterotic risk models
based on BICS [Kakushadze, 2015b]:** ROC = 49.005%, SR = 19.230 and CPS
= 2.365. Clearly, statistical industry classifications are not quite on par with
industry classifications such as BICS, which are based on fundamental/economic
data (such as companies’ products and services and more generally their revenue
sources, suppliers, competitors, partners, etc.). Such industry classifications are
essentially independent of the pricing data and, if well-built, tend to be rather
stable out-of-sample as companies seldom jump industries. In contrast, statis-
tical industry classifications by nature are less stable out-of-sample. However,
they can add substantial value when “fundamental” industry classifications are
unavailable, including for returns other than for stocks, e.g., quantitative trading
alphas [Kakushadze and Yu, 2016c].

43 In [Kakushadze and Yu, 2016b] rounding is to 2 decimals, while here we round to 3 deci-
mals.

44 Here we use the results from [Kakushadze and Yu, 2016a], which slightly differ from those
in [Kakushadze, 2015b], where rounding down (as opposed to simply rounding) was employed.

38 Statistical Industry Classification

Finally, before we close this section, let us discuss the “top-down” classifica-
tions with dynamically determined numbers of clusters K,,. More precisely, recall
that in this case we work with the vector L, (see Subsection 3.3.4). The code
we used in the “bottom-up” case (Appendix A) can be used in this case as well
(via a parameter choice). A random (and typical) run with P = 3 gives ROC
= 41.657%, SR = 15.897 and CPS = 2.079, while another such run with P = 4
gives ROC = 41.683%, SR = 15.697 and 2.073. These results are in line with our
results in Table 6.

6 Hybrid Industry Classification

One application of a statistical industry classification is to use it as a means for
improving a “fundamental” industry classification such as BICS, GICS, etc. Thus,
a “fundamental” classification at the most granular level can have overly large
sub-industries, using the BICS nomenclature for definiteness. One way to deal
with such large sub-industries is to further cluster them using statistical industry
classification methods discussed above. Let us illustrate this using BICS as an
example.

Table 9 summarizes top 10 most populous (by stock counts) sub-industries
in one of our 2000 stock backtesting portfolios. For comparison, the stock count
summary across all 165 sub-industries in this sample is Min = 1, 1st Qu. = 3,
Median = 8, Mean = 12.12, 3rd Qu. = 15, Max = 94, StDev = 14.755, MAD =
8.896 (see Table 4 for notations). So, we have some “large” sub-industries, which
are outliers.

We can further split these large sub-industries into smaller clusters using our
“bottom-up” clustering algorithm. In fact, it suffices to split them using a single-
level algorithm. We give the R code for improving an existing “fundamental”
industry classification using our statistical industry classification algorithm in
Appendix A. The idea is simple. Let us label the sub-industries (the most
granular level) in the “fundamental” industry classification via A = 1,..., K,.
Let N4 be the corresponding stock counts. Let

ka = Round(N4/(d —1)) (31)

We then split each sub-industry with k4 > 1 into k4 clusters. Table 10 sum-
marizes the simulation results for 14 runs. This evidently improves performance.
Table 11 gives summaries of top 10 most populous sub-industries before and after
statistical clustering based on 60 datapoints at the end of each 21-trading-day
interval in our backtests (recall that we have 1260 = 60 x 21 trading days — see

Zura Kakushadze and Willie Yu 39

Section 4). The average numbers of sub-industries are 165.45 before and 184.1
after clustering.

7 Concluding Remarks

In this paper we discuss all sorts of nuances in constructing statistical industry
classifications. Under the hood we have clustering algorithms. However, it is
precisely those nuances that make a sizable difference. E.g., if we naively cluster
R;s, we get a highly suboptimal result compared with clustering Eis = Rys/0,
which in turn underperforms clustering }A%is = R;;/c?. In this regard, let us
tie up a “loose end” here: what if we cluster R;; = R, /03?7 Tt underperforms
clustering ﬁis. Thus, a typical run for a 3-level “bottom-up” classification with
target cluster numbers K; = 100, Ky = 30 and K3 = 10 based on clustering
R;, and aggregating 100 samplings produces the following: ROC = 40.686, SR =
15.789 and CPS = 2.075.

So, suppressing returns R;, by o7 indeed appears to be optimal — for the
intuitive reasons we discussed above. We saw the same in the context of statistical
risk models. In this regard, it would be interesting to explore this avenue in
the context of heterotic risk models [Kakushadze, 2015b] and the more general
(heterotic CAPM) construction of [Kakushadze and Yu, 2016a]. In the latter
framework, it would be interesting to utilize an aggregated (non-binary) matrix
Qia (see Subsection 3.3.3). These ideas are outside of the scope hereof and we
hope to return to them elsewhere.

40 Statistical Industry Classification
Appendices

A R Code for Bottom-Up Clustering

A.1 Code for Single-Level Clustering

In this subsection we give the R source code (R Package for Statistical Computing,
http://www.r-project.org) for single-level “bottom-up” clustering (see Subsection
3.3.1). The code is straightforward and self-explanatory as it simply follows the
formulas and logic in Section 3. The main function is qrm.stat.ind.class(ret,
k, iter.max = 10, num.try = 100, demean.ret = F), which internally calls two
auxiliary functions. The function qrm.calc.norm.ret (ret) normalizes the N x d
matrix ret (the return time series R, i = 1,...,N, s = 1,...,d) following
Subsection 3.2.1 and outputs Ry, (see Eq. (6)). The inputs of the function
grm.calc.kmeans.ind(x, centers, iter.max) are the same as in the built-in R
function kmeans(), and it outputs a list: res$ind is the N x K binary indus-
try classification matrix €, = 0¢(i)e, Where G : {1,..., N} — {1,..., K} maps
stocks to K clusters labeled by a = 1,..., K; res$centers is the A X d matrix
Y,s of the cluster centers; res$cluster is an N-vector G(i); and the number of
clusters K is passed into this function via the argument centers as in kmeans ().
The inputs of the function grm.stat.ind.class() are: ret defined above; the tar-
get number of clusters k; the maximum number of k-means iterations iter.max
(same as in kmeans()) with the default iter.max = 10, however, in all our back-
tests we set iter.max = 100 (with 100% convergence rate); num.try = 100 (de-
fault), which is the number of independent k-means samplings to be aggregated
(see Subsection 3.3.3), with num.try = 1 corresponding to no aggregation (i.e., a
single k-means sampling); demean.ret = F (default) corresponds to taking vanilla
R;s, while demean.ret = T corresponds to demeaning it cross-sectionally before
running the rest of the code (see Subsection 3.3.2). The main function outputs
the N x K' binary industry classification matrix (K’ < K).%

grm.calc.norm.ret <- function (ret)
{
s <- apply(ret, 1, sd)
u <- log(s)
u <~ u - (median(u) - 3 * mad(u))
u

<- exp(u)

45 Recall from Subsection 3.3.3 that K' can be less than K unless num.try = 1.

Zura Kakushadze and Willie Yu

take <~ u > 1
ul[!take] <- 1
x<-ret /s /u

return(x)

grm.calc.kmeans.ind <- function (x, centers, iter.max)
{

res <- new.env()

y <- kmeans(x, centers, iter.max = iter.max)

x <- y$cluster

k <- nrow(y$centers)

z <- matrix(NA, length(x), k)

for(j in 1:k)

z[, j] <- as.numeric(x == j)

z <- z[, colSums(z) > 0]

res$ind <- z

res$centers <- y$centers

res$cluster <- y$cluster

return(res)
grm.stat.ind.class <- function (ret, k,
iter.max = 10, num.try = 100, demean.ret = F)

if (demean.ret)
ret <- t(t(ret) - colSums(ret))

norm.ret <- grm.calc.norm.ret(ret)
for(i in 1:num.try)

res <- grm.calc.kmeans.ind(norm.ret, k, iter.max)

if (num.try == 1)

return(res$ind)

if(i == 1)

41

42 Statistical Industry Classification

comb.cent <- res$centers

comb.ind <- res$ind
else

comb.cent <- rbind(comb.cent, res$centers)

comb.ind <- cbind(comb.ind, res$ind)

res <- grm.calc.kmeans.ind(comb.cent, k, iter.max)
cl <- res$cluster

z <- matrix(0, nrow(ret), k)

for(i in 1:length(cl))
z[, c1[i]] <- z[, c1[i]l] + comb.ind[, i]

q <- colSums(z)

for(i in 1:nrow(z))

{
take <- z[i,] == max(z[i, 1)
take <- take & q == max(qltake])
ix <- 1l:ncol(z)
ix <- min(ix[take])
z[i, 1 <- 0
z[i, ix] <- 1

¥

z <- z[, colSums(z) > 0]

return(z)

A.2 Code for Multilevel Clustering

In this subsection we give the R source code for building multilevel “bottom-up”
statistical industry classifications (see Subsection 3.3.1).

There is only one function qrm.stat.ind.class.all(ret, k, iter.max = 10,
num.try = 100, do.demean = rep(F, length(k)), norm.cl.ret = F), which in-
ternally calls the main function qrm.stat.ind.class() from Subsection A.1 with

Zura Kakushadze and Willie Yu 43

the same inputs ret, iter.max and num.try, and the following new inputs: k is
a P-vector K, p = 1,...,P, where P is the number of levels (see Subsection
3.3.1); do.demean = rep(F, length(k)) is a Boolean P-vector, which sets the in-
put demean.ret in grm.stat. ind.class() (in our backtests we set all elements
of do.demean to TRUE except for the first one); norm.cl.ret = F corresponds to
choice (i) right after Eq. (10), and norm.cl.ret = T corresponds to choice (ii)
(we mostly use choice (i) in our backtest — see Section 4). The output is a list:
ind.1list[[i]]1 is the N x K, (not K, 1 x K,) binary industry classification ma-
trix at level i = p, i.e., it maps stocks to the level-y clusters Cy,).

grm.stat.ind.class.all <- function (ret, k,
iter.max = 10, num.try = 100,
do.demean = rep(F, length(k)), norm.cl.ret = F)

ind.list <- list()

for(i in 1:length(k))

{
ind.1ist[[i]] <- grm.stat.ind.class(ret, k[i],
iter.max = iter.max, num.try = num.try,
demean.ret = do.demean([i])
if (norm.cl.ret)
ret <- t(ind.list[[i]l]) %*% qgrm.calc.norm.ret(ret)
else
ret <- t(ind.list[[i]]) %*% ret
if(i > 1)
{
ind.list[[i]] <- ind.list[[i - 1]] %*% ind.list[[i]]
take <- ind.list[[i]] > O
ind.list[[il] [take] <- 1
¥
¥

return(ind.list)

44 Statistical Industry Classification

A.3 Code for Dynamically Fixing Cluster Numbers

In this subsection we give the R source code for building multilevel “bottom-up”
statistical industry classifications with the numbers of clusters fixed dynamically
(see Section 5 and Subsection 5.2). The main function grm.stat.ind.class.dyn
(ret, p, iter.max = 10, num.try = 100, top.down = F) has the same inputs
as above except: p is the number of levels, and when top.down = F it internally
calls the function qrm.stat.ind.class.all() from Subsection A.2, while when
top.down = T it internally calls the function qrm.stat.class() from Appendix B.
The main function internally also calls the function qrm.eigen(ret, calc.cor = T),
which provides a more efficient way of computing eigenpairs of the sample covariance
(when calc.cor = F) or correlation (when calc.cor = T) matrix based on ret than
the built-in R function eigen() by internally calling the R function grm.calc.eigen.
eff (ret, calc.cor = F) from Appendix C of [Kakushadze and Yu, 2016b] (when
d < N +1). It also internally calls the within R function qrm.calc.cov.mat(x,
calc.cor = F) (when d > N + 1). The output is a list ind.1list, same as in Subsec-
tion A.2.

grm.stat.ind.class.dyn <- function (ret, p,
iter.max = 10, num.try = 100, top.down = F)

k1l <- round(nrow(ret) / (ncol(ret) - 1))
if(p > 1)
{
y <- qrm.eigen(ret, calc.cor = T)$values
kp <- round(grm.calc.erank(y, F))

if (k1 < kp)

p<1

if(p == 1)
k <- ki

g<-((p-1D:00/ (-1
k <- round(k1~q * kp~(1 - q@))

Zura Kakushadze and Willie Yu 45

do.demean <- rep(T, length(k))
do.demean[1] <- F

if (top.down)

{
k1 <- c(k[-11, 1)
k <- round(k / k1) [length(k):1]
ind.list <- grm.stat.class(ret, k,

iter.max = iter.max, num.try = num.try)

}

else
ind.list <- grm.stat.ind.class.all(ret, k,

iter.max = iter.max, num.try = num.try, do.demean = do.demean)

return(ind.list)

grm.eigen <- function (ret, calc.cor = F)

{

if (ncol(ret) - 1 <= nrow(ret))
return(qrm.calc.eigen.eff (ret, calc.cor = calc.cor))

return(eigen(grm.calc.cov.mat(ret, calc.cor = calc.cor)))

grm.calc.cov.mat <- function(x, calc.cor = F)
{

tr <- apply(x, 1, sd)

x <-x/ tr

x <- x - rowMeans(x)

y <= x %*% t(x) / (ncol(x) - 1)

return(y)

A.4 Code for Hybrid Industry Classification

In this subsection we give the R source code for hybrid industry classifications dis-
cussed in Section 6. There is only one function qrm.improve.ind.class(ret, ind,
iter.max = 10, num.try = 100), which internally calls the main function from Sub-
section A.1 grm.stat.ind.class() with the same inputs ret, iter.max and num.try,

46 Statistical Industry Classification

and the following new input: ind is an N X K, binary industry classification matrix
corresponding to the most granular level of a “fundamental” industry classification
(e.g., sub-industries in BICS). The output is an N x K/ binary industry classification
matrix indl. Here K > K,. Typically K. > K,, so we get a more granular industry
classification after clustering. If K. = K, then ind1 is the same as ind.

grm.improve.ind.class <- function (ret, ind,iter.max = 10, num.try = 100)
{
indl <- rep(NA, nrow(ret))
for(i in 1:ncol(ind))
{
k <- round(sum(ind[, i]) / (ncol(ret)-1))
if(k < 2)
{
indl <- cbind(ind1l, ind[, il)
next
}
take <- ind[, i] > O
x <- ret[take,]
y <- grm.stat.ind.class(x, k,
iter.max = iter.max, num.try = num.try)
if (length(y) > sum(take))
tmp <- matrix(0, nrow(ret), ncol(y))
else
tmp <- matrix(0, nrow(ret), 1)

tmp[take,] <~y

indl <- cbind(indl, tmp)
}
indl <- indi[, -1]
return(indl)

B R Code for Top-Down Clustering

In this Appendix we give the R source code for building multilevel “top-down” statisti-
cal industry classifications (see Subsection 3.3.4): qrm.stat.class(ret, k, iter.max
= 10, num.try = 100) internally calls grm.stat.ind.class() defined in Subsection
A.1 with the same inputs ret, iter.max and num.try, and the following new input: k
= (Lp,Lp_1,...,Lo,L1) is a reversed P-vector L, p =1,..., P, defined in Subsection

Zura Kakushadze and Willie Yu

47

3.3.4, and P is the number of levels. The output is a list ind.1list with P members,

same as in Subsection A.2.

grm.stat.class <- function (ret, k, iter.max = 10, num.try = 100)

{

k <- c(1, k)
n <- nrow(ret)
p <- length(k)
ind <- 1list()
ind.list <- list()
for(lvl in 1:p)
ind[[1v1]] <- matrix(l, n, 1)

for(lvl in 2:p)

{

for(a in 1:ncol(ind[[1vl - 1]]1))
{
take <- ind[[1vl - 1]][, al] > O
tmp.k <- sum(take)
if (tmp.k <= k[1vl1])
{
ind[[1v1l]] <- cbind(ind[[1v1l]], as.numeric(take))
next
}
x <- matrix(ret[take,], tmp.k, ncol(ret))
norm.x <- grm.calc.norm.ret(x)
tmp.ind <- grm.stat.ind.class(x, k[1lvl],
iter.max, num.try = num.try)
if (length(tmp.ind) > tmp.k)
tmp <- matrix(0, n, ncol(tmp.ind))
else
tmp <- matrix(0, n, 1)

tmp[take,] <- tmp.ind
ind[[1v1]] <- cbind(ind[[1v1]], tmp)

}

ind[[1v1]] <- ind[[1v111[, -1]

for(lvl in p:2)
ind.list[[p - 1vl + 1]] <- ind[[1v1]]

48 Statistical Industry Classification

return(ind.list)

C R Code for Relaxation Clustering

In this Appendix we give the R source code for building relaxation algorithm based
multilevel statistical industry classifications (see Subsection 3.3.5). The first function
grm.stat.clust.all(ret, k, iter.max = 10, num.try = 100,

do.demean = rep(F, length(k)), norm.cl.ret = F) is essentially the same as the
function grm.stat.ind.class.all() in Subsection A.2, except internally it calls the
within function qrm.stat.clust(ret, k, demean.ret = F, return.clust = F).
The latter builds a relaxation based single-level classification with k clusters. The ad-
ditional input is return.clust: when set to TRUE, this function outputs the N-vector
G(7) as opposed to the N x K binary industry classification matrix (as for the default
value). Recall that G : {1,..., N} — {1,..., K} maps stocks to clusters.

grm.stat.clust.all <- function (ret, Kk,
do.demean = rep(F, length(k)), norm.cl.ret = F)

ind.list <- list(Q)

for(i in 1:length(k))
{
ind.1list[[i]] <- grm.stat.clust(ret, k[i],
demean.ret = do.demean[i])
if(norm.cl.ret)
ret <- t(ind.list[[i]]) %*% grm.calc.norm.ret(ret)
else
ret <- t(ind.list[[i]]) %*% ret

if(i > 1)

{
ind.list[[i]] <- ind.list[[i - 111 %*% ind.list[[i]]
take <- ind.list[[i]] > O
ind.list[[i]] [take] <- 1

return(ind.list)

Zura Kakushadze and Willie Yu

grm.stat.clust <- function (ret, k,
demean.ret = F, return.clust = F)

calc.take <- function(n, ix, q)
{
ql <- qlix > ql
g2 <- qlix < ql
takel <- ix + (g1 - 1) *n
take2 <- g2 + (ix - 1) * n
take <- c(takel, take?2)
return(take)

calc.dist.mat <- function(x)
{
if(is.matrix(x))
n <- nrow(x)
else
n <- length(x)

y <= x ©¥h t(x)

z <- matrix(diag(y), n, n)
y<-z+t(z) -2=*y
take <- upper.tri(y, T)
yl[take] <- NA

return(y)

extract.ix <- function(y)
{
k <- as.numeric(y[1])
j <= trunc(k / n)
if(j == k / n)
i<-n

i<-k-3j*n
j<-3+1

50

Statistical Industry Classification

return(c(i, j))

if (demean.ret)
ret <- t(t(ret) - colSums(ret))

n <- nrow(ret)
v <- 1:n

ret <- grm.calc.norm.ret(ret)

X <- calc.dist.mat(ret)

X <- as.vector(x)

names(x) <- as.character(l:length(x))
x <- sort(x)

y <- as.numeric(names(x))

m<-0

count <- 0

w <- rep(0, n)
set.y <- F

while(count < n)
{
if(m < k)
yl <=y
else if(!set.y)
{
set.y <- T
q <- vlw == 0]
nl <- length(q)
u <- q + matrix((q - 1) * n, nl, nl, byrow = T)
take <- upper.tri(u, T)
u <- as.vector(ul!take])
take <- !(y %in% u)
yl <- yl[take]

}

else

{
q <- v[lw == 0]
take <- calc.take(n, p, q)
take <- !(u %in% take)

Zura Kakushadze and Willie Yu

u <- ultakel]
take <- !(y %in}% u)
yl <-y [takel

ix <- extract.ix(yl)
q <- v[lw > 0]

if (wlix[11] > 0)

{
count <- count + 1
wlp <- ix[2]] <- wlix[1]]
take <- calc.take(n, p, q)
}
else if(wl[ix[2]] > 0)
{
count <- count + 1
wlp <- ix[11] <- wl[ix[2]]
take <- calc.take(n, p, q)
}
else
{
m<-m+1
count <- count + 2
wlix] <- m
take <- c(calc.take(n, ix[1], q), calc.take(n, ix[2], q))
}

take <- c(take, ix[1] + (ix[2] - 1) * n)
take <- !(y %in% take)
y <- yltake]

if(return.clust)
return(w)

k <- min(k, m)
z <- matrix(NA, n, k)
for(j in 1:k)
z[, jl <- as.numeric(w == j)

02 Statistical Industry Classification

return(z)

D DISCLAIMERS

Wherever the context so requires, the masculine gender includes the feminine and/or
neuter, and the singular form includes the plural and wvice versa. The author of this
paper (“Author”) and his affiliates including without limitation Quantigic® Solutions
LLC (“Author’s Affiliates” or “his Affiliates”) make no implied or express warranties or
any other representations whatsoever, including without limitation implied warranties
of merchantability and fitness for a particular purpose, in connection with or with
regard to the content of this paper including without limitation any code or algorithms
contained herein (“Content”).

The reader may use the Content solely at his/her/its own risk and the reader shall
have no claims whatsoever against the Author or his Affiliates and the Author and his
Affiliates shall have no liability whatsoever to the reader or any third party whatsoever
for any loss, expense, opportunity cost, damages or any other adverse effects whatsoever
relating to or arising from the use of the Content by the reader including without
any limitation whatsoever: any direct, indirect, incidental, special, consequential or
any other damages incurred by the reader, however caused and under any theory of
liability; any loss of profit (whether incurred directly or indirectly), any loss of goodwill
or reputation, any loss of data suffered, cost of procurement of substitute goods or
services, or any other tangible or intangible loss; any reliance placed by the reader on
the completeness, accuracy or existence of the Content or any other effect of using
the Content; and any and all other adversities or negative effects the reader might
encounter in using the Content irrespective of whether the Author or his Affiliates is
or are or should have been aware of such adversities or negative effects.

The R code included in Appendix A, Appendix B and Appendix C hereof is part
of the copyrighted R code of Quantigic® Solutions LLC and is provided herein with
the express permission of Quantigic® Solutions LLC. The copyright owner retains all
rights, title and interest in and to its copyrighted source code included in Appendix A,
Appendix B and Appendix C hereof and any and all copyrights therefor.

References

Bai, J. and Ng, S. (2002) Determining the number of factors in approximate factor
models. Econometrica 70(1): 191-221.

Bouchaud, J.-P. and Potters, M. (2011) Financial applications of random matrix
theory: a short review. In: Akemann, G., Baik, J. and Di Francesco, P. (eds.) The

Zura Kakushadze and Willie Yu 53

Ozford Handbook of Random Matriz Theory. Oxford, United Kingdom: Oxford
University Press.

Campbell, L.L. (1960) Minimum coefficient rate for stationary random processes.
Information and Control 3(4): 360-371.

Connor, G. and Korajczyk, R.A. (1993) A Test for the Number of Factors in an
Approximate Factor Model. The Journal of Finance 48(4): 1263-1291.

De Amorim, R.C. and Hennig, C. (2015) Recovering the number of clusters in
data sets with noise features using feature rescaling factors. Information Sciences

324: 126-145.

Forgy, E.W. (1965) Cluster analysis of multivariate data: efficiency versus inter-
pretability of classifications. Biometrics 21(3): 768-769.

Goutte, C., Hansen, L.K., Liptrot, M.G. and Rostrup, E. (2001) Feature-Space
Clustering for fMRI Meta-Analysis. Human Brain Mapping 13(3): 165-183.

Grinold, R.C. and Kahn, R.N. (2000) Active Portfolio Management. New York,
NY: McGraw-Hill.

Hartigan, J.A. (1975) Clustering algorithms. New York, NY: John Wiley & Sons,
Inc.

Hartigan, J.A. and Wong, M.A. (1979) Algorithm AS 136: A K-Means Clustering
Algorithm. Journal of the Royal Statistical Society, Series C (Applied Statistics)
28(1): 100-108.

Kakushadze, Z. (2015a) Mean-Reversion and Optimization. Journal of Asset Man-
agement 16(1): 14-40.
Available online: http://ssrn.com/abstract=2478345.

Kakushadze, Z. (2015b) Heterotic Risk Models. Wilmott Magazine 2015(80): 40-
55. Available online: http://ssrn.com/abstract=2600798.

Kakushadze, Z. and Yu, W. (2016a) Multifactor Risk Models and Heterotic
CAPM. The Journal of Investment Strategies 5(4) (forthcoming). Available on-
line: http://ssrn.com/abstract=2722093.

Kakushadze, Z. and Yu, W. (2016b) Statistical Risk Models. The Journal of In-
vestment Strategies (forthcoming).
Available online: http://ssrn.com/abstract=2732453.

Kakushadze, Z. and Yu, W. (2016¢) How to Combine a Billion Alphas. Journal of
Asset Management (forthcoming).
Available online: http://ssrn.com/abstract=2739219.

54

Statistical Industry Classification

Lleiti, R, Ortiz, M.C., Sarabia, L.A. and Sdnchez, M.S. (2004) Selecting Variables
for k-Means Cluster Analysis by Using a Genetic Algorithm that Optimises the
Silhouettes. Analytica Chimica Acta 515(1): 87-100.

Lloyd, S.P. (1957) Least square quantization in PCM. Working Paper. Bell Tele-
phone Laboratories, Murray Hill, NJ.

Lloyd, S.P. (1982) Least square quantization in PCM. IEEE Transactions on In-
formation Theory 28(2): 129-137.

MacQueen, J.B. (1967) Some Methods for classification and Analysis of Multi-
variate Observations. In: LeCam, L. and Neyman, J. (eds.) Proceedings of the 5th
Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, CA:
University of California Press, pp. 281-297.

Murtagh, F. and Contreras, P. (2011) Algorithms for hierarchical clustering: An
overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
2(1): 86-97.

Rousseeuw, P.J. (1987) Silhouettes: a Graphical Aid to the Interpretation and

Validation of Cluster Analysis. Journal of Computational and Applied Mathematics
20(1): 53-65.

Roy, O. and Vetterli, M. (2007) The effective rank: A measure of effective dimen-
sionality. In: European Signal Processing Conference (EUSIPCQO). Poznan, Poland
(September 3-7, 2007), pp. 606-610.

Sharpe, W.F. (1994) The Sharpe Ratio. The Journal of Portfolio Management
21(1): 49-58.

Sibson, R. (1973) SLINK: an optimally efficient algorithm for the single-link cluster
method. The Computer Journal (British Computer Society) 16(1): 30-34.

Steinhaus, H. (1957) Sur la division des corps matériels en parties. Bull. Acad.
Polon. Sci. 4(12): 801-804.

Sugar, C.A. and James, G.M. (2003) Finding the number of clusters in a data set:

An information theoretic approach. Journal of the American Statistical Association
98(463): 750-763.

Yang, W., Gibson, J.D. and He, T. (2005) Coefficient rate and lossy source coding.
IEEE Transactions on Information Theory 51(1): 381-386.

Zura Kakushadze and Willie Yu 55

Table 1: Simulation results (11 runs) for the optimized alphas with bounds using
heterotic risk models based on “bottom-up” statistical industry classifications
obtained via a single sampling in each run. The numbers of clusters in a 3-level
hierarchy are 100, 30 and 10. See Subsection 3.3.1 and Section 4 for details.

Run ROC SR CPS

41.396% 16.195 2.060
41.572% 16.091 2.065
41.666% 16.318 2.070
41.544% 16.300 2.065
41.455% 16.238 2.058
41.731% 16.251 2.074
41.391% 16.238 2.057
41.567% 16.293 2.065
41.755% 16.135 2.075
41.627% 16.122 2.068
41.569% 16.260 2.065

© 00 1 O Ot = W N =

—_ =
)

Table 2: Simulation results (11 runs) for the optimized alphas with bounds using
heterotic risk models based on “bottom-up” statistical industry classifications
obtained via aggregating 100 samplings in each run. The target number of clusters
for a single level is 100. See Subsection 3.3.3 and Section 4 for details.

Run ROC SR CPS

41.907% 16.427 2.103
41.912% 16.210 2.100
41.774% 16.227 2.091
41.811% 16.295 2.094
41.832% 16.263 2.092
42.047% 16.102 2.109
41.839% 16.242 2.098
41.966% 16.027 2.104
41.841% 15.941 2.096
41.755% 16.131 2.093
41.775% 16.284 2.093

© 00~ O O = W N+

—_ =
— O

56 Statistical Industry Classification

Table 3: Simulation results (23 runs) for the optimized alphas with bounds using
heterotic risk models based on statistical industry classifications obtained via
aggregating 100 samplings in each run. The target numbers of clusters in a 3-
level hierarchy are 100, 30 and 10. See Subsection 3.3.3 and Section 4 for details.
The first 15 runs correspond to norm.cl.ret = F, the other 8 runs correspond to
norm.cl.ret = T; see the function qrm.stat.ind.class.all() in Appendix A.

Run ROC SR CPS

1 42.181% 16.565 2.113
2 41.728% 16.314 2.092
3 41.895% 16.419 2.097
4 41.958% 16.350 2.103
5 42.034% 16.373 2.106
6 41.700% 16.149 2.093
7 42.134% 16.055 2.112
8 42.113% 16.150 2.109
9 41.586% 16.288 2.083
10 41.808% 16.267 2.094
11 41.925% 16.168 2.099
12 41.861% 16.228 2.096
13 41.766% 16.223 2.093
14 41.877% 16.331 2.095
15 42.148% 16.217 2.112
16 41.895% 16.240 2.099
17 41.857% 16.252 2.099
18 41.777% 16.169 2.092
19 41.886% 16.341 2.101
20 41.851% 16.207 2.094
21 42.266% 16.144 2.119
22 41.769% 16.205 2.093
23 42.083% 16.095 2.110

Zura Kakushadze and Willie Yu 57

Table 4: Summaries of the actual numbers of clusters in a statistical industry
classification obtained via aggregating 100 samplings. The target numbers of
clusters in a 3-level hierarchy are 100, 30 and 10. The summaries are based on 60
data points corresponding to sixty 21-trading-day intervals in the 1,260 trading-
day backtesting period. See Subsection 3.3.3 and Section 4 for details. 1st Qu.
= 1st Quartile, 3rd Qu. = 3rd Quartile, StDev = standard deviation, MAD =
mean absolute deviation. The 100 samplings correspond to the run reported in
the last row of Table 3.

Level Min 1st Qu. Median Mean 3rd Qu. Max StDev MAD

1 87 93 94 93.95 96 99 2.33 1.48
2 20 24 25 24.93 26 28 1.91 1.48
3 6 8 9 858 9 10 0.93 1.48
o
S -
S
g o,
§ ¥7
|
L
g -
I I I I I
50 100 150 200 250

Cluster Number

Figure 1. Graph of the values of the return-on-capital (ROC) in percent from Table 8
vs. the target number of clusters K (as defined in said table).

28

Statistical Industry Classification

Table 5: Simulation results for the optimized alphas with bounds using het-

erotic risk models based on “top-down” 3-level statistical industry classifications

obtained via a single sampling in each run, with 3 runs for each choice of the
which is the reverse of the 3-vector L,, p = 1,2, 3,

3-vector L, = (Ls, Ly, L),

Also see Section 4 for details.

defined in Subsection 3.3.4.

Run L, ROC SR CPS
1 (10,5,5) 40.637% 16.502 2.055
2 (10,5,5) 40.880% 16.511 2.070
3 (10,5,5) 40.902% 16.684 2.075
1 (10,5,3) 41.278% 16.274 2.077
2 (10,5,3) 41.274% 16.342 2.076
3 (10,5,3) 41.044% 16.248 2.063
1 (10,3,4) 41.334% 16.046 2.071
2 (10,3,4) 41.442% 16.236 2.077
3 (10,3,4) 41.343% 16.130 2.071
1 (10,3,3) 41.590% 16.102 2.074
2 (10,3,3) 41.620% 16.029 2.072
3 (10,3,3) 41.654% 16.048 2.076
1 (10,2,3) 41.553% 15.724 2.054
2 (10,2,3) 42.046% 16.027 2.081
3 (10,2,3) 41.765% 15.665 2.066
1 (102,2) 42.144% 15598 2.076
2 (10,2,2) 41.925% 15516 2.063
3 (10,2,2) 42.007% 15.553 2.066

Zura Kakushadze and Willie Yu

29

Table 6: Simulation results for the optimized alphas with bounds using het-

erotic risk models based on “top-down” 3-level statistical industry classifica-

tions obtained via aggregating 100 samplings in each run, with 3 runs for each
L, = (L3, Ly, Ly), which is the reverse of the 3-vector L,, = 1,2,3, defined in

Subsection 3.3.4. Also see Section 4 for details.

Run L, ROC SR CPS
1 (10,5,5) 41.412% 16.550 2.098
2 (10,5,5) 41.478% 16.413 2.097
3 (10,5,5) 41.251% 16.401 2.092
1 (10,5,3) 41.696% 16.057 2.095
2 (10,5,3) 41.597% 16.157 2.093
3 (10,5,3) 41.730% 15.975 2.100
1 (10,3,4) 41.680% 15.979 2.085
2 (10,3,4) 41.643% 15.903 2.078
3 (10,34) 41.794% 16.023 2.092
1 (10,3,3) 42.078% 15.975 2.090
2 (10,3,3) 41.897% 15.962 2.083
3 (10,3,3) 41.785% 15.904 2.078
1 (10,2,3) 41.817% 15.618 2.063
2 (10,2,3) 41.964% 15.693 2.071
3 (10,2,3) 41.705% 15.598 2.062
1 (1022) 42.080% 15.489 2.065
2 (10,2,2) 41.865% 15.433 2.059
3 (10,2,2) 41.987% 15.468 2.063

60 Statistical Industry Classification

Table 7: Simulation results for the optimized alphas with bounds using heterotic
risk models based on “bottom-up” P-level statistical industry classifications ob-
tained via aggregating 100 samplings in each run, with multiple (3 or 4) runs for
each P. The cluster numbers K,, = 1,..., P, are determined dynamically via
the algorithm of Subsection 5.2. Also see Section 4 for backtesting details.

Run P ROC SR CPS

41.746% 16.152 2.093
41.745% 16.004 2.091
42.029% 16.007 2.104
41.921% 16.309 2.103
41.911% 16.090 2.098
41.813% 16.455 2.094
41.887% 16.317 2.096
42.273% 16.168 2.117
41.850% 16.115 2.099
42.095% 16.359 2.112
41.891% 16.178 2.102
41.961% 16.278 2.101
42.152% 16.237 2.111

(]

= W DN Wi Wi - W =
QU Ot O O = = = W W W N N

Table 8: Simulation results for the optimized alphas with bounds using heterotic
risk models based on “bottom-up” statistical industry classifications obtained via
aggregating 100 samplings in each run. K is the target number of clusters for
a single level. The K = 100 entry is the same as the last row in Table 2. See
Subsection 3.3.3 and Section 4 for details. Also see Figures 1, 2 and 3.

K ROC SR CPS

10 41.726% 14.853 2.027
25 42.024% 15.395 2.065
50 42.180% 15.941 2.094
75 41.771% 16.115 2.085
100 41.775% 16.284 2.093
125 41.427% 16.205 2.080
150 41.306% 16.337 2.073
175 41.286% 16.456 2.076
200 40.774% 16.276 2.047
250 40.611% 16.248 2.032

Zura Kakushadze and Willie Yu

61

Table 9: Summary of stock counts (first column) for the 10 (out of 165 in this
sample) most populous BICS sub-industries (most granular level, second column)
for 2000 stocks in our backtests for a randomly chose date. We also show the cor-

responding BICS industries (less granular level, third column) and BICS sectors

(least granular level, fourth column). The nomenclature is shown as it appears

in BICS.
#(stocks) BICS Sub-industry BICS Industry BICS Sector
94 Banks Banking Financials
94 REIT Real Estate Financials
74 Exploration & Production Oil, Gas & Coal Energy
52 Semiconductor Devices Semiconductors Technology
50 Application Software Software Technology
47 Utility Networks Utilities Utilities
46 Telecom Carriers Telecom Communications
45 Oil & Gas Services & Equip Oil, Gas & Coal Energy
44 Biotech Biotech & Pharma Health Care
38 Specialty Pharma Biotech & Pharma Health Care

62

Statistical Industry Classification

Table 10: Simulation results (14 runs) for the optimized alphas with bounds

using heterotic risk models based on hybrid industry classifications (see Section
6) using statistical industry classifications based on aggregating 100 samplings in

each run.

Run ROC

SR

CPS

© 00~ O Ot = W N

—_ = = =
= W NN = O

49.214%
49.260%
49.224%
49.126%
49.217%
49.163%
49.204%
49.138%
49.247%
49.195%
49.191%
49.216%
49.212%
49.307%

19.447
19.571
19.528
19.522
19.506
19.547
19.517
19.482
19.529
19.504
19.550
19.578
19.519
19.537

2.380
2.387
2.386
2.379
2.384
2.382
2.384
2.381
2.385
2.384
2.383
2.383
2.385
2.389

Zura Kakushadze and Willie Yu

63

Table 11: Summaries of the numbers of top 10 most populous: (i) BICS sub-
industries before clustering (first 10 rows); and (ii) resultant clusters at the same

level in a hybrid industry classification after clustering (last 10 rows).

summary is over 60 datapoints (see Section 6).

Order Min 1st Qu. Median Mean 3rd Qu. Max StDev MAD
1 89 93 94 93.8 95 98 1.964 1.483
2 81 89 91 90.37 92 96 3.103 2.965
3 63 69 73 72.28 75 81 4.388 4.448
4 50 54 56 56.5 59 65 3.327 3.706
5 49 50 51 51.65 53 56 1.745 1.483
6 46 49 49 49.18 50 51 1.255 1.483
7 44 45.75 47 47.22 49 50 1.869 2.965
8 41 44 45.5 45.58 47 50 1.977 2.224
9 36 38.75 40 40.18 41 46 2.318 1.483
10 34 37 37 37.77 39 45 1.925 1.483
1 44 51.75 57 58.82 64 85 8.981 8.896
2 33 45 49 49 53.25 69 6.857 5.93

3 32 39.75 44 43.28 46.25 56 4.854 4.448
4 31 37 40 40.22 44 47 4.030 4.448
5 31 36 37 37.85 40.25 46 3.473 2.965
6 29 33.75 35 35.42 37 45 3.285 2.965
7 29 31.75 34 33.78 36 41 2.964 2.965
8 28 30 32 31.85 34 38 2.543 2.965
9 26 29 30.5 30.67 32.25 35 2.252 2.224
10 25 28 29 29.2 31 35 2,122 2.965

Each

64 Statistical Industry Classification

0
< 7 m
[|
u [} -
[]
[]
o
(.o' —
— n
RS
I
o
(]
o
g ©
n 97
[|
o
Ld —
—
[]
T T T T T
50 100 150 200 250

Cluster Number

Figure 2. Graph of the values of the Sharpe ratio (SR) from Table 8 vs. the target

number of clusters K (as defined in said table).

Zura Kakushadze and Willie Yu 65

2.06 2.07 2.08 2.09

Cents—per—Share

2.03 2.04 205
|

I I I I I
50 100 150 200 250

Cluster Number

Figure 3. Graph of the values of cents-per-share from Table 8 vs. the target number
of clusters K (as defined in said table).

