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Abstract

The Law of Large Numbers provides one basis for the capital growth
criterion, which maximizes the expected value of log return per period.
In this paper, an alternative derivation of this criterion is presented
based on the first-order asymptotic expansion of the return per period.
A second-order expansion gives rise to a more general growth criterion
that approximates optimal compound growth for a finite number of

periods.
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1 Introduction

”For him [Keynes| the short run was much more significant than
the long run—that long run in which, as he used to say, 'we are all
dead’.” A. C. Pigou, Proc. Br. Acad., vol. 32, p. 13, 1946.

The capital growth criterion (CGC) of portfolio selection has been devel-
oped as the optimal long-term strategy for maximizing the cumulative return
of a large number of sequential investments, as discussed in [1]-{14]. Briefly
stated, the overall portfolio investment return (1 + yield) for any given invest-

ment period is written as

S=b"X (1)
where X % [ X1 X, --- X, ]"isa vector of individual returns comprising
the portfolio, and the vector b o [by by --- by |7 is the is the allocation
of resources with the constraint

m

> bhi=1. (2)

i=1

The CGC then states that for repeated investments of the type (1), the
resources are optimally allocated so as to maximize the expected value of log S.
In [3], [6], [7], [8], [9], [12], and [13], it has been argued that this criterion has
both long term and short term optimality from many different perspectives. In
this paper, the optimal asymptotic exponential growth property that results
from this criterion will be examined. A recent approach with intuitive appeal
uses the Law of Large Numbers to arrive at this result, e.g., [11] and [14]. Here,
an alternative derivation of the CGC will be derived by appealing to a simple
asymptotic expansion of the return per period, thus developing this result from
still another viewpoint. Taking this expansion to second-order then develops
a new more general growth criterion that optimizes compound growth for a

finite number of periods.

2 Law of Large Numbers

If the proceeds from each investment period are reinvested, then the com-
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pounded return after n periods is
Sp=1]p"X (3)
i=1

where X, is the return vector of the ith period. It is assumed here that the
X;'s are all independent and identically distributed. (The more general case

is considered in [13].) The equivalent return per period is given by
R, = SMm =T b"X,)". (4)
i=1
One motivation for the CGC is gleaned by writing the return per period
as in [11] and [14]:

Ry = exp [% > ln(bTXi)] (5)

where In denotes natural log. Then, as noted in [3], [13], the Law of Large

Numbers implies that

' E{In(b"X)} (6)

1
- D In(b'X;) — T,
i=1
where convergence is interpreted in the sense of probability. Thus, the asymp-
totic CGC maximizes Wo, < E{ln(b"X)} in order to maximize R, for large
n.

If n is not large, the more difficult problem of maximizing the mean return
per period

R, = E{R,} = [E{(b"X)"/"}" (7)

must be considered. This is the more realistic problem that one often faces

when investing over a finite lifetime.

3 Asymptotic Expansion of Return Per Pe-

riod

3.1 First Order

For any real number a,

al/”:1+ln—a+0<i> (8)
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and combining with (4) gives

n

Rn:H{lJr@jLO(%)}. (9)

=1

Now, if the X,;’s are independent stationary vectors, then the asymptotic ex-

pected return per period is given by

Ry =[1+¥y/n+0(1/n*)]" ——r exp(Vy) (10)
where ¥, & E{ln(b”X)} is the CGC objective function. Thus, the ex-
ponential growth property of the CGC follows directly from the first-order
asymptotic expansion of the return per period. In the following, we explore
the logical extension of this approach in order to generalize the CGC for a

finite number of investment periods.

3.2 Second Order

The second-order version of the expansion (8) is given by

2
g =14 me (ne) +O<1). (11)

n 2n? n3

It is natural to formulate a more general capital growth criterion by once again

combining with (4) and taking the expected value, resulting in the expression
Ry, =1+ ¥y /n+ E{In(b"X)]*}/(2n%) + O(1/n*)]". (12)

Thus, the generalized CGC for a given number of periods n is to maximize the

objective function

U, = Vs + E{[In(b"X)]?}/(2n)
—  E{ln(b"X)} + B{In(bIX)]2}/(2n). (13)

In the limit, ¥;, —— Wo, and so the generalized CGC is consistent with the

asymptotic CGC.
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4 An Example

In order to illustrate the above results, the simple two-stock example of [10],
[11] will be considered, whereby X; = 1 represents a constant stock (cash) and
X, is a random variable that can take on the value 2 or 1/2 (double or half)
with equal probability of 1/2. In this case, the portfolio allocation vector is
written as b = (1 —b,b)", where the variable b is the fraction of capital risked

on the volatile stock X5. Applying the CGC shows that for this example,
Uy = E{ln(b"X)} = [In(1 +b) + In(1 — b/2)]/2 (14)

is maximized for b = 0.5, i.e., risk one half of your capital at each investment
period, and this will be the optimal policy for a large number of periods n —
oo. For this example, it is easy to calculate from (7) the average equivalent

return per period for an arbitrary number of investment periods, giving

Ry =[1+0)"" /24 (1—b/2)"" /2] —/9/8 = (b—1/2)2/2.  (15)

A plot of the average yield per period (R, —1) as a function of the fraction
of capital risked b is shown in Figure 1 for several values of n. For any value
of n, R, is maximized for b = b* which is easy to calculate for this simple
example. As can be seen, for large n, the maximum average yield is attained
for b = b5 = 0.5, in accordance with the CGC. However, for moderate values
of n, the peak shifts to the right; in the extreme case for n = 1, one should
risk everything on Xj.

Now, the generalized CGC (13) will be applied, which for this example

U, = Uoo + {[In(1 + )] + [In(1 — b/2)]) }/(4n) (16)

where W, is given by (14). Maximizing (16) over b then results in an estimate
of the optimal value b}, which will be denoted as lA);; Table 1 lists the estimated
values b* in the third column for various values of n in the first column.

For comparison, the exact values b determined by maximization of (15)
are included in the second column. As can be seen, the agreement is quite close
for this example, with a maximum deviation of less than 0.3% over all values
of n. This example shows that the generalized CGC can well approximate
optimal return per period, whereas the conventional CGC does not capture

the dependency on the number of periods n.



82 An Alternative Mathematical Interpretation ...

25
20 F .
;\c‘ n=1
ot
&
|&
ERER -
o
o
3
o
g
[J] L -
s 10 3
g 5
o
e
<
5F @ .
0 Il L Il Il
0 20 40 60 80 100

Capital Risked, b (%)

Figure 1: Average percent yield per investment period (R, — 1) as a function

of percentage capital risked b for example in text.

Table 1: Optimal Fraction of Capital Risked b7, and Approximation b7 Deter-
mined From Generalized Capital Growth Criterion for Example in Text, as a
Function of Number of Investment Periods n.
n| b b:
1] 1.0000 | 1.0000
2 | 1.0000 | 1.0000
3 10.7574 | 0.7555
51 0.6296 | 0.6283
10 | 0.5577 | 0.5574
20 | 0.5274 | 0.5273
50 | 0.5106 | 0.5106
100 | 0.5053 | 0.5052
oo | 0.5000 | 0.5000
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5 Conclusions

The capital growth criterion can be developed from a number of viewpoints.
In this paper, still another perspective on the problem is developed by using
an asymptotic expansion of the return per period. This approach also results
in a natural extension of the CGC for a finite number of investment periods
n. A simple example showed that applying this generalized CGC results in a

very close approximation to the optimal portfolio allocation for all n.
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