
Journal of Finance and Investment Analysis, vol.1, no.3, 2012, 21-31 
ISSN: 2241-0988 (print version), 2241-0996 (online) 
Scienpress Ltd, 2012 

 

Estimation risk modeling in portfolio selection: 

Implicit approach implementation 

Asma Graja Elabed1 and Amel Baccar2 

 

 

Abstract 

This paper contributes to portfolio selection methodology using bayesian theory. 
A new estimation approach is applied to forecast the mean vector and covariance 
matrix of returns. The proposed method accounts for estimation errors. We 
compare the performance of traditional Mean Variance optimization of Markowitz 
with Michaud’s Resampled Efficiency approach in a comprehensive simulation 
study for bayesian estimator and Implicit estimator. We carried out a numerical 
optimization procedure to maximize the expected utility using the MCMC samples 
from the posterior and the predictive distribution. 
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1  Introduction  
Portfolio selection is one of the most important problem in practical 

investment management. The first paper in this field goes back at least to the mean 
variance paradigm of Markowitz (1952), which analytically formalizes the 
risk-return tradeoff in selecting optimal portfolios. Even when the mean variance 
is a static one period model, it has widely been accepted by both academics and 
practitioners. Optimal portfolio choice in a continuous-time setting has been 
studied by Samuelson (1969) and Merton (1969, 1971). With constant coefficient 
diffusion process characterizing risky asset prices, the optimal portfolio choice can 
be solved analytically by solving the relevant Hamilton-Jacobi-Bellman (HJB) 
equation. Merton (1973) analyses optimal portfolio decision in a setting in which 
the mean returns depends on a set of time-varying state variables. Recent literature 
has considered the state variables dynamics from which either the explicit solution 
can be derived (Liu 2006, Watcher 2002) or the numerical computation is 
implemental (Campbell et Viceira 1999).  

This literature assumes that the investment opportunity set is observable and 
the parameters of the stochastic process governing its dynamics are known to the 
investor. However, in reality the investor does not in fact know the parameters of 
the probability distribution from which the returns are drawn. Rather,  the 
investor would estimate the parameters by observing the past market data. Thus 
estimates may be treated as time varying state variables. The estimates may 
deviate from their true values and give rise to the estimation error, which 
subsequently causes the ”estimation risk” that investors must take into account in 
making portfolio decisions. The fact that mean variance “optimal” portfolios are 
sensitive to small changes in input data is well documented in the literature. 
(Chopra and Ziemba 1993) shows that even slight changes to the estimates of 
expected returns or risk can produce vastly different mean-variance optimized 
portfolios. Instead of focusing on the weights of the assets in optimal portfolio, 
others have focused on the financial impact of mean variance efficient portfolios 
computed from estimates. Jobson and Korkie (1980) show that even an 
equal-weighted portfolio can have a greater Sharpe ratio than an optimal 
mean-variance portfolio computed using estimated inputs. Broadies (1999) shows 
how the estimated efficient frontier overestimates the expected returns of 
portfolios for varying levels of estimations errors. Since mean-variance efficient 
portfolio weights are very sensitive to the level of the expected returns, it is widely 
believed that most of the estimation risk in optimal portfolios is due to errors in 
estimates of expected returns, and not in the estimates of risk (Chopra and Ziemba 
1993). In order to cope with the effect of estimation errors in the estimates of 
expected returns, attempts have been made to create better and more stable 
mean-variance optimal portfolio by utilizing expected return estimators that have a 
better behaviour when used in the context of the mean-variance framework.  

The Bayesian approach is potentially attractive. First, it can employ useful 
prior information about quantities of interest. Second, it accounts for estimation 
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risk and model uncertainty. Third, it facilitates the use of fast intuitive and easily 
implementable numerical algorithms for the simulation of otherwise complex 
economic quantities. In addition, three building blocks underlie Bayesian portfolio 
analysis: Firstly, the formation of prior beliefs which are typically represented by 
a probability density function on the stochastic parameters underlying the 
stock-return evolution. Secondly, the prior density can reflect information about 
events, macro economy news, asset pricing factors, and forecasting variables. 
Thirdly the recovery of the predictive distribution of future asset returns, 
analytically or numerically, incorporating prior information, law of motion, as 
well as estimation risk and model uncertainty. The predictive distribution, which 
integrates out the parameter space, characterizes the entire uncertainty about 
future asset returns. The bayesian optimal portfolio rule is obtained by maximizing 
the expected utility with respect to the predictive distribution. Zellner and Chetty 
(1965) pioneer the use of predictive distribution in decision making in general. 
Appearing during the 1970, the first applications in finance are entirely based on 
uninformative or data-based priors. Jorion (1986) introduces the hyper parameter 
prior approach in the spirit of the Bayes-stein shrinkage prior, whereas Black and 
Litterman (1992) advocate an informal Bayesian analysis with economic views 
and equilibrium relations. Recent studies by Pastor (2000) and Pastor and 
Stambaugh (2000) centre prior beliefs on values implied by asset pricing theories. 
Tu and Zhou (2010) argue that the investment objective provides a useful prior for 
portfolio selection.   

 
 

2  Portfolio optimisation strategies: Markowitz MV / 
Michaud resample efficiency 

2.1  Markowitz MV optimisation 

The standard mean variance method of portfolio selection, pioneered by 
Markowitz (1952) has long attracted the attention of financial economics and 
researchers. In the framework of Markowitz, under the hypothesis of multivariate 
normal distributed returns, the investor maximizes the following preference 
function:    

λ
'μ '

2
w w w       

where   1,......, 'mw w w  represents the vector of portfolio shares of m risky 

assets, μ  is the vector of expected excess returns,   is the variance covariance 

matrix and  λ  is the risk aversion coefficient. The difference 11 ...... mw w    

is invested in the riskless asset. Since the investor does not know the true 
parameters andμ   of the return distribution, he has to estimate them. Classical 
portfolio selection uses least squares estimates of (μ , ) . 
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2.2  Michaud’s resampling efficiency 

The Michaud resampling efficiency comprises three points: 
(i) Generation of a sequence of returns, which are statistically equivalent to the 
actual time series of returns, through a Monte Carlo simulation; 
(ii) Determination of portfolio weights for every sample; 
(iii)Averaging over the obtained portfolio weights to obtain the optimal portfolio 
weights according to Michaud.  
The procedure of resample efficiency aims at minimizing the impact of estimation 
risk on the portfolio composition. This approach can be summarized in the 
following steps: 

1. Estimate the input parameters μ̂  and ̂ . 
2. Resample from the inputs of (1) by taking T  draws from a multivariate 

normal distribution ˆˆ(μ , )N   and estimate new input parameters 

n
ˆˆ andμ n . 

3. Identify the optimal portfolio composition ˆ nw  with the estimators nμ̂  and 

ˆ
n . 

4. Repeat steps (2) and (3) 500 times. 
5. Calculate the average portfolio weight vector ŵ  from the 500 different 

optimal weight vectors and chose ŵ  as the optimum.  

In order to analyse the performance of the approach of Michaud, some 
studies have dealt with the comparison between traditional mean variance 
optimization by Markowitz and the resample efficiency by Michaud. The results 
are ambiguous. In a simulation study of Michaud and Michaud (2008b), the 
resample efficiency leads to the best outcomes. Markowitz and Usmen (2003) also 
find strong evidence for a better performance of the resample efficiency compared 
to a bayesian estimator using a diffused prior. However, Harvey et al. (2008) and 
Scherer (2006) found a completely different result when they use different prior 
distribution. In this work, we compare the two strategies of optimization in a 
bayesian framework without specifying any prior density for the parameters by 
applying an implicit estimator of the mean vector and covariance matrix of the 
returns. Our optimization will account for estimation risk through the estimations 
of the parameters and the optimization of the portfolio.  

 
 

3  Competing estimation approach: Bayesian / Implicit 
In order to account for estimation risk in parameters of asset returns, a 

Bayesian framework can be considered. In this theory, the unknown parameter is 
assumed to be a random variable with a known prior distribution. The prior 
distribution shrinks value of parameter estimates in order to have an equilibrium 
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value or significant mean. Prior information allows enriching the data distribution. 
Considered together, they allow generating a posterior distribution for the 
parameters of the model. The use of Bayesian theory to estimate mean vector and 
covariance matrix of the returns have been advocated by several researchers 
(Brown 1976, Bawa et al. 1979, Frost and Savarino 1986). Greyseman et al. 2006 
consider hierarchical priors for the parameters. Ando 2009 compares the 
performance of a portfolio when using Bayesian theory and the standard mean 
variance method. This research shows that M-V-P using Bayesian estimates 
dominate Mean Variance portfolio using classical least squares estimates. 
Formally, we have a parameter θ , with a prior density π , such that θ π , the 
likelihood density is such that  X / θ P x,θ . So the posterior distribution of θ  
is  

 xX/θPxX/θ  . 
The estimator is :  

 θ̂ E θ / X x   

However, the choice of prior information in Bayesian approaches has already 
been problematic. Alternative to the posterior distribution, the concept of the 
implicit distribution has been recently introduced. The latter is considered like a 
posterior density in the Bayesian method without a need to specify any prior 
distribution. (Hassairi et al., 2005).  

Let  

θP ( ) p( ,θ) ( )dx x dx , θ  

a statistical model parameterized by θ . 

The density ),x(p θ  is the conditional distribution of x  given θ .  

The implicit method consists in determining the implicit distribution: 
   θθx ,xp)x(c)d(Q 1 ,  

where ).θd(σ)θ,x(p)x(c θ  

In the implicit approach, )d(Q θx  plays the role of a posterior distribution of θ  

given x  in the Bayesian method. This fact implies the uniqueness of the implicit 

distribution. The implicit estimator θ̂  of θ  is the mean of the implicit 
distribution associated with the quadratic risk. 

Mukhopadhyay (2006) claimed that the implicit inference is nothing new and 
that it is non informative Bayesian method. Ben Hassen et al. (2008) showed that 
the implicit inference is a new paradigm in statistical inferences. In many cases, 
implicit distribution does not coincide with the Bayesian distribution. The concept 
of implicit distribution differs from usual Bayesian analysis. In fact, an implicit   
distribution resembles a posterior distribution of θ  but without the presence of a 
specific prior distribution of θ . In the implicit method, Hassairi et al. (2005) 
didn’t consider a prior law of θ  like in a Bayesian method, but they simply 
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considered a measure which is neither a probability nor a prior law, and this 
scenario is new in statistical reasoning.  

The inference problem of the implicit approach is solved by determining a 
norming constant function c(x)  in x  such that  

p(x/θ) ( )

c(x)

d 
 

becomes a probability distribution of θ , that is 
p(x/θ)

σ( θ) 1
c(x)

d   . 

It comes that the implicit distribution of θ  given x  is:   

   1

x ( θ) c(x) p x,θ ( θ)Q d d  

 
 

4  Simulation study 
After explaining the two optimization approaches, we will compare the two 

competing estimation techniques we will explore. In this section we will develop 
our simulation study and present our results. 

 
 

4.1 Settings 

In order to test the performance of the portfolio optimization techniques of 
Markowitz and Michaud with Bayesian and implicit estimation techniques, we 
perform a two step simulation study. In the first step, “True” parameters  and  
are generated. In the second step, we draw realizations of excesses returns from a 
multivariate normal distribution with parameters  and . On the basic of these 
drawn excess returns, we estimate the parameters  and  using the Bayesian and 
the implicit estimation and apply the optimization technique under consideration 
(MV of Markowitz, Michaud’s Resampling Efficiency). So, we can see that the 
second step corresponds to an application, where the input parameters  and  
have to be estimated.  

The true parameters corresponding to a simulate step 1) allow the evaluation 
of the performance of different approaches with respect to the true resulting 
performance values. 

i. The choice of the true parameters  and  is based on 266 monthly returns of 
8 stocks (6 risky assets and 2 bonds assets). 

ii. In order to achieve results that do not rely on one specific parameter setting, 
for each of these true parameter, we generate 100 ”observable” time series 
each consisting of 266 monthly returns. These returns are drowning from a 
multivariate normal distribution: 

                  ti,r  N8  ii ,μ  , t = 1,…266  and  i = 1, …,100 
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The mean vector s and the covariance matrix i  of the simulated database 
are considered true parameters. 

iii. As a next step, we estimate the expected return vector iμ̂  and the covariance 

matrix iσ̂ . For this purpose, we implement the Bayesian and the implicit 
estimation method. The estimation is based on the Monte Carlo technique. In 
order to measure the estimation error caused by these two approaches, we 
compute the mean squared error of the estimated return vector and the 
estimated covariance matrix. More accurate estimator will have the minimum 
mean squared error. 

iv. The Markowitz portfolio optimization and the Michaud’s resampling 
efficiency are applied at each estimated parameters. As a result, we get 
optimal portfolio weights iŴ  for each approach and estimated parameters. 

We also compute the true optimal portfolio weights *

sŴ  which would be 

resulted if the true parameters were applied. These weights are considered 
like a benchmark portfolio. 

v. In order to assess and compare the performance of the Michaud’s resampling 
efficiency relatively with mean variance Markowitz, we calculate the 
portfolio weights that will maximize the expected utility under three different 
utility functions. These functions are given by: 

                            2
/n 1 n 1 n 1 n 1U w, r w'r ω ' r r )HE        

where  

 /n 1E r H  is the predictive mean given one stimulated data base (H). 

       ω  is the portfolio weight. 
     n 1r   are the predictive returns. 

     λ  reflect risk aversion  λ 2,5; 3; 5 . 

The Michaud weights are equal to the average of the best  weights for each 
resampling history. These weights form a discrete estimate of the efficient 
frontier for each resampling history for a discrete grid of 101 equally spaced 
portfolios. For each value of , the Michaud optimal weight is as follows: 

                         ,arg max ' 'it i t itw w w w       

     where ω 0  and pω 1  . 

The Bayesian weights will maximize the expected utility with respect to the 
predictive moments for each history. The approximation of the expected 
utility is calculated as follows:  

   2

λ n+1 1 1

1
ˆE μ , r / ' r '(r μ)m m

n nw H w w
M

        

where                     
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      m

1nrˆ
M

1
μ . 

      
m m m

1r (r /μ , )n f   is the predictive return simulated from the predictive  

    density. 
    m m 2μ , (μ, / H,μ, , , )f r n SS   represents the posterior distribution. 

 
 
4.2 Simulation results 

The mean squared error calculated for the Bayesian estimator, the implicit 
one and the estimator from the resampling efficiency approach are summarized in 
Table 1. 

Table 1 

 

 
We present in the following table a comparison results between the utility 

obtained when we apply the true parameters (reference utility) and the utility 
obtained with the estimated parameters with the three estimation approach. 

The results using Bayesian, implicit and efficient resampling for inference 
and using original performance criteria (i.e. evaluating each weight using the 
proposed true parameter values as the predictive mean and covariance) differ from 
the results reported by existing experiment. 
 Markowitz and Usmen (2003) found that an investor who uses the Monte 
Carlo based resampling approach advocated in Michaud, always gain a utility 
larger than an investor who uses Bayesian methods for determining portfolio 
weights. Harvey et al. (2008) found that this result depends on the risk aversion 
parameter, and that sometimes resampling approach gives a maximum utility, 
sometimes Bayesian methods provide the maximum utility for the investor. 
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Table 2 

 
 

Table 3 

 

   
 
 In addition to the Michaud’s approach and the Bayesian one, we implement 
the implicit inference method. Our results prove the accuracy of the   implicit 
method when estimating the mean vector of the returns.   
 The comparison of the optimal weight found with the efficient resampling 
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approach with that found with the Bayesian approach prove that when we applied 
the implicit estimators on the Bayesian optimization, we found a better utility 
compared with the Bayesian estimators. The efficient resampling approach gives a 
better utility than the Bayesian approach for the three risk aversion parameter.  
 The Bayesian allocation applied with the implicit estimator give better utility 
than the efficient resampling approach.  
 Our results confirm the view that risk estimation of the mean return affects the 
portfolio optimization more than the risk associated with the estimation of the 
covariance matrix. 
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