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Abstract 

This contribution studies the application of heteroskedasticity robust estimation of 

Vector-Autoregressive (VAR) models. VAR models have become one of the most 

applied models for the analysis of multivariate time series. Econometric standard 

software usually provides parameter estimators that are not robust against 

unknown forms of heteroskedasticity. Different bootstrap methodologies are 

available which are able to generate heteroskedasticity robust parameter estimates. 

However, common literature is mostly focused on univariate time series models. 

This study applies a natural extension of the non-parametric pairs bootstrap 

methodology to different VAR models, taking into account empirical stock market 

data of the FTSE 100, DAX 30 and S&P 500. A comparison shows that the 

t-values of the bootstrap models’ parameters are considerably lower than the 
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ordinary ones and that the determinants of the covariance matrices are clearly 

smaller. 
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1  Introduction and Literature Review 

Since the pioneer work of [11], Vector-autoregressive (VAR) models have 

become one of the most applied models for the analysis of multivariate time series. 

These models have proven to be useful for describing and forecasting the dynamic 

behavior of economic and financial time series. Common standard econometric 

software like EViews and JMulti, for instance, allow for modeling VAR models. 

According to [9], the t-values of estimated VAR models’ parameter matrices have 

their standard asymptotic distributions if the lag order is chosen to be equal or 

larger than two, even if the variables employed are  1I , as shown by [12] and 

[1]. This property makes time series analysis in a VAR model framework to a 

flexible tool for researchers.  

    VAR model parameter estimates, provided by standard econometric software, 

typically rely on this asymptotic theory. Furthermore, these estimators do usually 

not account for the presence of heteroskedasticity which has an essential impact 

on the estimators’ robustness. Volatility clustering in financial time series is 

according to [6] a well known as stylized fact. Even if the lag order of a VAR 

model is chosen to be large enough to generate independent errors, the data may 

still remain heteroskedastic distributed. Figure 1 shows the monthly log-returns of 

the FTSE 100, DAX 30 and the S&P 500 stock indices from December 

2000-December 2010. A visual inspection of figure 1 depicts at least two 
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outcomes: Firstly, all three stock markets exhibit alternating periods of high and 

low volatility. The second is that these clusters apparently occur at the same time. 

From January 2001 until January 2003 the stock markets show a relatively high 

volatility, whereas the period from May 2004 until September 2007 was relatively 

low. Afterwards the volatility increased again. The latter increase of stock 

markets’ volatilities was associated with the financial crisis.    

   Employing VAR models to analyze correlation, dependence and causality 

schemes requires robustness of the parameter estimates. [7] report that, despite the 

superconsistency of standard estimators for the cointegration parameters in a VAR 

model, the small sample properties are often poor. In their simulation study they 

show that their proposed Generalized Least Squares Estimator (GLS3) provides 

estimates which are robust against conditional heteroskedasticity, even in smaller 

samples. The GLS3 estimator as proposed by [7] requires a numerical 

optimization procedure to estimate the parameters of the underlying multivariate 

GARCH process and, thus, this approach can be considered as parametric. [4] 

discusses different bootstrapping methodologies that account for the presence of 

an unknown form of heteroskedasticity in the data. In the context of dynamic 

regression models [4] considers studies of [5] who analyze three approaches, 

namely a recursive-design wild bootstrap, a fixed design wild bootstrap procedure 

and a pairs bootstrap approach where the lagged dependent variables used as 

regressors are treated as if they were exogenous. [5] show, that all three 

approaches yield the correct asymptotic distribution of the OLS estimator, given 

suitable assumptions. However, in the multivariate VAR framework the 

contemporaneous correlation structure between the endogenous variables has to be 

taken into account. Wild bootstrapping is according to [4] more closely linked to 

the discussions of regression models than pairs bootstrap. Employing wild 

bootstrap in a univariate model framework makes use of a so called 

pick-distribution. The latter is uncorrelated with the error of the autoregressive 

model and generates heteroskedasticity in the repeated sampling procedure. 
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However, in the multivariate VAR model, applying different drawn vectors from 

the pick-distribution, such as proposed by [8] for instance, to each error vector of 

the endogenous variables employed in each bootstrap sample would lead to 

different correlation structures in the covariance matrix. In contrast, using the 

same vector of the pick-distribution for all endogenous variables’ error vectors in 

each sample would generate a correlation structure that is higher than the 

empirical one. Consequently, both approaches would lead to incorrect correlation 

structures of the VAR model’s contemporaneous covariance matrix. Figure 1 

shows that from January 2003 – August 2003 the volatilities of the S&P 500 and 

the FTSE 100 are relatively low, whereas the volatility of the DAX 30 seems to be 

still in a high volatility state. Even if the volatility clustering apparently occurs 

simultaneously, the volatility clusters are not perfectly correlated.  

    

Figure 1:  Monthly log-returns of different stock indices over a 10-years period 

 

Due to the potential problems associated with wild bootstrapping procedure, 

a natural extension of heteroskedasticity robust bootstrapping in the context of 

VAR models is the application of the pairs bootstrap approach where the lagged 
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dependent variables used as regressors are treated as if they were exogenous. To 

the best of my knowledge there are no other studies available that apply the latter 

bootstrap methodology to VAR models in order to estimate heteroskedasticity 

robust parameters. This paper is organized as follows. The next part presents the 

econometric methodology of an extension of the pairs bootstrap methodology and 

its application to VAR models. Thereafter this methodology is applied to three 

different bivariate VAR models describing the dynamic stochastic processes 

between some preselected stock markets. The last section concludes.   

 

 

2  Econometric Methodology 

In the academic literature different model selection criteria for VAR-models 

are discussed. The purpose of the latter is to choose a lag order ensuring the error 

distribution to exhibit no serial correlation. Let a standard VAR-model of lag 

order p  be given by 

1 1 ...t t p t p tY c AY A Y       ,             (1) 

where tY  is a 1K  -vector of endogenous variables, 1,..., pA A  are 

K K -parameter matrices of lagged vectors 1,...,t t pY Y  . Provided that the lag 

order p  is chosen to be large enough to generate independent errors, the error 

distribution is assumed to be independent distributed and given by  0,t  . 

According to [9], the VAR model of equation (1) can be simply estimated via 

OLS, so that the parameter vector then is given by  

1

1 01

0

ˆ

ˆ

T T
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b Z

Zb


            
                     
                      

0 0 0

0 0 0 0 0 0

0 0 0

  
    

  
,      (2) 

where   and 0  are    1T p K    matrices with 
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 1, 1 , 1 1, ,, ,..., ,..., ,...,t K t t p K t py y y y     1  and 0  is a matrix with zeros and 

 01 0 'KZ Z  is    1K T p    vector with  01 0 'KZ Z    1, ,,..., 't p K t py y  . 

The sample values 1,...,T T p   are in line with [4] treated as pre-sample values. 

The parameter vector  1
ˆ ˆ 'Kb b  stacks the rows of the matrices 1,..., pA A  into 

columns, that is 1
ˆ 'b  stacks the first rows of parameter matrices 1,..., pA A  into a 

column, ˆ
Kb  stacks the K  th rows of parameter matrices 1,..., pA A into a 

column and so forth. The properties in line with standard asymptotic theory can in 

line with [9] be summarized with       ˆ1 1
ˆ ˆ ˆ' ' 0,

d

K K b
T b b b b N     where 

  1

ˆ plim ' /
b

Z Z T
   . 

   [4] gives an overview of different non-parametric methodologies that can be 

used to generate bootstrapping samples. In the presence of an unknown form of 

heteroskedasticity, a non-parametric bootstrapping methodology may be employed 

to generate artificial samples. If the lag order p  is large enough, the pairs 

      1 1 1 1 1,..., ; ,..., ,..., ,...,t Kt t Kt t p Kt py y y y y y     can be considered as iid  

drawings from some joint distribution. Therefore, the model of equation (1) can be 

pairwise bootstrapped. Given a multivariate framework, pairwise bootstrapping 

should ensure that the correlation structure of the non-diagonal elements of   is 

maintained.  

   Let the endogenous variables be given by  1 ,..., 't Kty y , then the pairs 

bootstrap sample *S  of the corresponding multivariate data generating 

autoregressive process of order p  is then given by  

       * * * * * *
1 1 1 1 1* ,..., ; ,..., ,..., ,..., ,  1,...i t iKt i t iKt i t p iKt pS y y y y y y i n          (3) 

where 1,...i n  denotes the number of bootstrapped samples. Each observation in 

*S  is pairwise drawn from       1 1 1 1 1,..., ; ,..., ,..., ,...,t Kt t Kt t p Kt py y y y y y      
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with replacement. Given equation (2),  2n p K K    parameter estimates 

corresponding to n  artificial samples can be estimated easily via OLS with 

1
* *
1 01

**
0

ˆ * * *

ˆ * * *

T T

KK

b Z

Zb


           
                   
                     

0 0 0

0 0 0 0 0 0

0 0 0

  
    

  
,     (4) 

 whereby the empirical density function   then, is given by 

 :  probability       * * * * * *
1 1 1 1 1

1
  on  ,..., ; ,..., ,..., ,...,i t iKt i t iKt i t p iKt py y y y y y

T     ,  (5) 

with 1,...,t T  and 1,...,i n . This methodology is a natural extension of the 

pairs bootstrap approach applied in [5] study and treats the lagged dependent 

variables in the regressor set of (2) as if they were fixed. [5] show that pairwise 

bootstrapping yield the correct asymptotic distribution for the OLS estimator so 

that    * *
1 1
ˆ ˆ ' 'K KE b b b b   as n  . However, [5] study is rather focused on 

univariate data generating processes in the context of dynamic regression models 

instead of simultaneous equation regression models as analyzed in this study. 

 

 

3  Discussion of the Results  

The pairs bootstrapping approach is applied to three VAR models. The first 

VAR model takes into account the log prices of the German leading stock index 

DAX 30 and the British leading stock index FTSE 100. The second VAR model 

involves the log prices of the FTSE 100 and the US-stock index S&P 500, 

whereas the third model takes into account the log prices of the DAX 30 and the 

S&P 500. Even though these stock markets are chosen for illustration reasons, 

they are of economically importance due to the industrial production. In particular, 

they are considered in the literature analyzing stochastic linkages, such as 

cointegration relationships, among stock markets (see [3], [2] & [10]).  
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   The models involve 10 years of monthly stock market data running from 

December 2000 until December 2010 and, thus, corresponding to 120 

observations. Even though the Schwarz Criterion suggests a lag order of 1p  , 

the VAR models are fitted with a lag order of 2p   in order to maintain 

standard properties and to ensure independency concerning the error distribution, 

satisfying the condition for the pairs bootstrap methodology. The Portmanteau- 

and LM-tests are performed with 16, respectively 5 lags for all models.2 The 

Portmanteau- test statistics suggest that there is no remaining autocorrelation on a 

common significance level of 5%. Even though the LM-test statistic rejects the 

null hypothesis of no autocorrelation concerning the first VAR-(2) model, the 

further analysis assumes that there is more evidence against autocorrelation as the 

Portmanteau-tests account for a higher lag-order.  

   Furthermore, the multivariate ARCH-LM tests accounting for 5 lags show 

clearly that the residuals are heteroskedastic distributed as all p-values are below 

the common significance level of 5%.3 Equations (6)-(8) of Table 1 in the 

appendix show the EViews output of the parameter estimates of the VAR-(2) 

models, whereas equations (9)-(11) of table 2 presents the parameter estimates of 

the corresponding pairwise bootstrapped models. The parameter estimates of 

equations (9)-(11) are based upon 1000n   bootstrap samples. Equations (6)-(11) 

suggest that the ordinary parameter estimates are quite close to the bootstrapped 

ones. The standard deviations which are given in parenthesis are, as expected, 

slightly higher for the bootstrapped parameter estimates. Furthermore, the 

determinants of covariance matrices of the bootstrapped models are smaller in 

comparison to the ordinary models of equations (6)-(8), even though the estimates 

of the covariance matrices are within 1.5 times the standard deviation of the 

                                                 

2 The p-values of the Portmanteau tests are 0.0949, 0.0764 and 0.1169, whereas the 
corresponding p-values of the LM-tests are 0.0260, 0.4740 and 0.2261. 
 
3 The corresponding p-values are 0.0003, 0.0013 and 0.0001. 
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corresponding bootstrapped estimates of equations (9)-(11).  

   In order to figure out if the covariances are significantly different from each 

other, the difference between the log-determinant corresponding to the ordinary 

model’s covariance matrix and the log-determinant of the bootstrapped model’s 

covariance matrix is multiplied with T p =118 which is assumed to result in a 

test statistic that is chi-square distributed with 10 degrees of freedom. The idea 

rests upon the Wald-test statistic as the latter compares the magnitude of 

covariance matrices between restricted and unrestricted model. As each model 

contains 10 parameters and the bootstrap model is considered as restricted model, 

the test statistic is under the null hypothesis assumed to be chi-square distributed 

with 10 degrees of freedom. The corresponding test statistics are estimated to be 

1 =21.3763 (equations (6) and (9)), 2 =93.2989 (equations (7) and (10)) and 

3 =22.2200 (equations (8) and (11)) and thus, the null hypothesis can be rejected 

for all models.4 It is worth noting, however, that the application of this test 

requires the assumption that the underlying stochastic processes generating the 

ordinary and bootstrapped model is the same. Given this assumption, the 

bootstrapped parameter estimates, which exhibit robustness against an unknown 

form of heteroskedasticity, fit the data better in comparison to the ordinary models 

of equations (6)-(9).   

   In contrast to the 3-step estimation set-up for estimating the cointegration 

parameters in the VECM, as suggested by [7], the approach as proposed in this 

study does not involve to estimation of an underlying multivariate 

GARCH-process. The simulation of 1000n   samples allows for any unknown 

form of heteroskedasticity as the samples are drawn with replacement from the 

underlying data generating process while the parameter variances can directly be 

estimated over the simulated samples.    

                                                 

4 The corresponding p-values are 0.0186, 0.0000 and 0.0140. 
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4  Conclusion   

Applying the pairs bootstrap methodology to empirical heteroskedastic 

distributed data shows that the parameter estimates are quite close to each other. 

Models, as the VAR models discussed here, can be used in applied work to 

analyze and parameterize stock markets causality schemes such as 

Granger-causality, for instance. The non-parametric bootstrapping procedure as 

discussed in this study can be also employed for heteroskedasticity robust 

hypothesis testing within the VAR model framework which is, however, left for 

future research. Future simulation studies may provide further evidence for robust 

hypothesis testing when applying this methodology to VAR models exhibiting an 

unknown form of heteroskedasticity. Furthermore, standard software like EViews 

and JMulti, for instance, provide Vector-Error-Correction models (VECM) as a 

natural extension of the VAR methodology of cointegrated time series data. The 

3-step generalized least squares estimator, as proposed by [7], may be modified in 

future studies such that the estimation of a multivariate GARCH process may be 

substituted by an adequate bootstrapping procedure which is left for future studies, 

too.  
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Appendix 

Table 1: VAR-(2)-models parameter estimates from the standard software EViews   

                                                                              

 

 

   

   

   
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Table 2:  VAR-(2)-models with pairwise bootstrapped parameter estimates 
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