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Abstract 
 

The aim of this paper is to test the out-of-sample performance of the Black 

Litterman (BL) model for a German stock portfolio compared to the traditional 

mean-variance optimized (MV) portfolio, the German stock index DAX, a reference 

portfolio, and an equally weighted portfolio. The BL model was developed as an 

alternative approach to portfolio optimization many years ago and has gained 

attention in practical portfolio management. However, in the literature, there are not 

many studies that analyze the out-of-sample performance of the model in 

comparison to other asset allocation strategies. The BL model combines implied 

returns and subjective return forecasts. In this study, for each stock, sample means 

of historical returns are employed as subjective return forecasts. The empirical 

analysis shows that the BL portfolio performs significantly better than the DAX, 

the reference portfolio and the equally weighted portfolio. However, overall, it is 

slightly outperformed by the MV portfolio. Nevertheless, the BL portfolio may be 

of greater interest to investors because -according to this study, where the subjective 

return forecasts are based on historical returns of a rather long past period of time-

it could lead in most cases to lower absolute (normalized) values for the stock 

weights and for all stocks to smaller fluctuations in the (normalized) weights 

compared to the MV portfolio. 
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1. Introduction  

Today's professional asset allocation of stock portfolios is essentially based on the 

findings of modern portfolio theory and models derived from it. To determine the 

optimal portfolio according to the traditional mean-variance portfolio optimization 

(Markowitz, 1952), the necessary input parameters (expected return values, 

variances of the returns and covariances) must be known to the investor at the time 

of the portfolio decision as forecast values for the future. In practice, historical mean 

values are often used as estimates for the respective expected values. Future returns, 

however, are random variables whose actual characteristics may differ significantly 

from their expected value. As a result, the forecasts may be subject to considerable 

estimation errors. Thus, the theoretical composition of a portfolio may be ideal at 

the time of planning. At a later point in time, however, estimation errors may cause 

the portfolio to be far removed from the characteristics of an optimal portfolio, 

because even slight deviations in the forecasts can lead to completely different 

portfolio structures. However, investors want a portfolio structure defined at the 

beginning to remain as optimal as possible in a volatile market environment, so that 

no unnecessary shifts and associated transaction costs arise (Ernst/Schurer, 2015, 

pp. 424-425). 

Various models have been developed to solve this estimation error problem. One of 

these models is the Black-Litterman (BL) model, which can be seen as a robust 

optimization method (Black/Litterman, 1991, Black/Litterman, 1992, He/Litterman, 

1999). This model is also able to integrate different estimates and forecasts of 

expected returns into the portfolio optimization process. The BL model has been of 

increasing interest for quantitative portfolio managers. This raises the question to 

what extent this model is promising, especially in comparison to the traditional 

mean-variance portfolio optimization. In the academic literature, there have been 

only few empirical studies of the out-of-sample performance of the BL model 

(Bessler/Opfer/Wolff, 2014, p. 2, Allaj, 2020, pp. 465-468).  

In fact, in the literature, there are some analyses of the rationale of the model, 

examples for applying the methodology or the suggestion of model extensions 

(Satchell and Scowcroft, 2000, Drobetz, 2003, Herold, 2003, Idzorek, 2007, 

Martellini/Ziemann, 2007, Da Silva/Lee/Pornrojnangkool, 2009, Zankl, 2009, Zhou, 

2009, Cheung, 2010, Braga/Natale, 2012, He/Grant/Fabre, 2013, Walters, 2014, 

Chen/Da/Schaumburg, 2015, Geyer/Lucivjanská, 2016, Figelman, 2017, 

Harris/Stoja/Tan, 2017, Kolm/Ritter, 2017, Tee/Huang/Lim, 2017, van der 

Schans/Steehouwer, 2017, Martin/Sankaran, 2019, and Chen/Lim, 2020). 

Bessler/Opfer/Wolff (2014) provide an out-of-sample performance analysis of the 

BL model. They test the performance relative to other asset allocation models. Their 

findings show significant higher Sharpe ratios of the BL portfolio than naïve 

strategies. Furthermore, the BL portfolios consistently outperform the traditional 

mean-variance portfolio optimization (Bessler/Opfer/Wolff, 2014, p. 3). 

Harris/Stoja/Tan (2017) consider different BL portfolios and find that the dynamic 

BL portfolios and the risk-adjusted BL portfolios outperform the benchmark and 
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the equally weighted portfolio where they use different performance measures. 

Allaj (2020) examins the out-of-sample performance of the BL model with respect 

to other asset allocation strategies and presents a new methodology for defining the 

investor's views. He finds that the strategies based on the BL model can lead to 

superior performance. 

The aim of this paper is to test the out-of-sample performance of the Black 

Litterman (BL) model compared to the traditional mean-variance portfolio and an 

equally weighted portfolio for selected German stocks. The forecast values used in 

the BL model are based on sample means. 

The BL model is presented in Chapter 2. After a short introduction, the 

determination of reference excess returns and the formation of a reference portfolio 

is shown. On this basis, subjective forecasts can then be considered for the 

subsequent determination of BL returns. With the help of these returns, the optimal 

portfolio according to BL can finally be determined. 

Chapter 3 contains the empirical analysis, which should determine the success of 

the BL model when applied to a German stock portfolio by means of certain 

performance measures for a period of several years. The results are compared to the 

success of the traditional mean-variance optimized (MV) portfolio (Markowitz, 

1952), the DAX, a reference portfolio, and an equally weighted portfolio. 

Chapter 4 summarizes the main results of the paper. 

 

2. The Black-Litterman (BL) model 

2.1 Reference excess returns and reference portfolio 

The BL model has been developed to solve the above mentioned estimation error 

problem by combining ‘neutral’ (‘implied’ or ‘reference’) returns and ‘subjective’ 

return estimates (‘views’). If only publicly available information can be used, the 

BL model uses the neutral returns as so-called reference excess returns, which are 

obtained, for example, with the help of the Capital Asset Pricing Model (CAPM). 

These equilibrium excess returns can be used as input variables in portfolio 

construction. A combination of these excess returns with subjective forecasts of 

returns can lead to the derivation of economically better-supported and more stable 

portfolio weightings. Accordingly, the BL model uses historical data, equilibrium 

considerations and individual assessments of the portfolio managers for the near 

future (Drobetz, 2003, p. 213, Ernst/Schurer, 2015, p. 497 and Bodie/Kane/Marcus, 

2018, p. 918.). 

Investors can provide return estimates for each asset in the portfolio. However, if 

they do not feel comfortable in making return forecasts they can also stay neutral 

for some assets. Besides, each forecast can be assigned a certain degree of 

uncertainty, which reflects the investor's imperfect conviction. Therefore, investors 

can distinguish between qualified forecasts and pure guesses. The idea behind this 

is that only in case of reliable return forecasts investors should deviate from the 

reference portfolio. This portfolio might be the market or another benchmark 

portfolio. Based on the asset weights of this reference portfolio, the above-
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mentioned reference excess returns can be calculated. In the original BL model, the 

observable market or benchmark weights are assumed to be the result of a mean-

variance optimization so that the reference excess returns can be derived using 

reverse optimization (Bessler/Opfer/Wolff, 2014, p. 7).  

The reference excess returns determined as equilibrium excess returns can also be 

described as "baseline forecasts", which form the basis of a passive investment 

strategy. Accordingly, their definition as strategic potential returns is also possible. 

In this case, the reference excess returns reflect the long-term return expectations 

that implicitly result from a strategic asset allocation or benchmark determined in 

advance by the investor (Bodie/Kane/Marcus, 2018, p. 918 and Ernst/Schurer, 2015, 

p. 500). The background to the inclusion of a reference portfolio is practical 

experience. Thus, investors often use indices as benchmarks for asset allocation. 

The portfolio manager's task is to achieve outperformance by deviating from the 

benchmark, i.e. to exceed the return of the benchmark. The BL model also allows 

for the selection of a reference or initial portfolio weighted according to the market 

capitalization of the individual securities. The current actual portfolio would also 

be possible (Ernst/Schurer, 2015, pp. 503-504; Feilke/Gürtler, 2008, p. 5 and 

Walters, 2014, p. 6). 

The reference excess returns can be calculated as implicit equilibrium excess returns 

by solving the quadratic utility function: 

 

2
R R R

A
Max U E(r )

2
= −                  (1) 

 

UR stands for the utility of a risky portfolio, E(rR) is the expected return of the risky 

portfolio, A is the investor’s average risk aversion coefficient, and σ2
R is the 

variance of the returns of the risky portfolio. 

The objective function is accordingly 

 

T T
R

A
U w w w max!

2
= −  →                (2) 

 

Where: w is the n×1 vector of the asset weights in the portfolio, wT is the 1×n vector 

of the asset weights in the portfolio (transposed vector w), П is the n×1 vector of 

the (implied) reference excess returns and Ʃ is the n×n covariance matrix of the 

historical asset excess returns. Under the assumption that the weightings of the 

reference portfolio are determined on the basis of the respective market 

capitalization, the associated implicit reference excess returns can be determined 

from this reference portfolio. For this purpose, the above-mentioned objective 

function is derived according to the weightings and the derivation is set to zero 

(Ernst/Schurer, 2015, pp. 504-505, Walters, 2014, pp. 9-10 and Black/Litterman, 

1991, p. 14): 
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R
opt

U
A w 0

w


= −  =


            optA w =            (3) 

 

Thus the vector П results from the reverse optimization. The optimal weights w 

result – when a market portfolio of n investments is defined – by the market 

capitalization of the respective assets in relation to the total market capitalization 

(Feilke/Gürtler, 2008, p. 6.): 
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Where: ηj is the number of the j-th asset of the market portfolio, Pj is the current 

price of asset j, and N is the number of assets in the market portfolio. The 

determination of the average risk aversion coefficient A across all investors can be 

done in different ways. For example, it can be determined by using the Sharpe ratio 

(SR) (Walters, 2014, p. 10 and He/Grant/Fabre, 2013, p. 452) or by assuming a 

certain average risk tolerance. For example, He/Litterman (1999, p. 4) use a value 

for A of 2.5 in their examples, while Drobetz (2003, p. 215) uses a risk aversion 

coefficient of 1. Tee/Huang/Lim (2017, p. 128) emphasize that a market-average 

risk aversion coefficient is not appropriate because, on the one hand, the portfolio 

under management may differ from the general market portfolio and, on the other 

hand, the style and characteristics and thus also the risk aversion of the respective 

portfolio managers may vary significantly. 

Moreover, the covariance matrix of the reference excess returns can be determined. 

This provides information on the accuracy of these (estimated or implicitly expected) 

returns. This covariance matrix thus differs from the above matrix Ʃ, which is based 

on historical (realized) excess returns. For example, if the standard deviation of the 

expected portfolio's reference excess returns is assumed to be 10% of the standard 

deviation of the historical portfolio excess returns (or equivalently, a variance that 

is 1% of the variance of the historical returns), it would be correct to use a 

covariance matrix of the (estimated or implicitly expected) reference excess returns 

that is 1% of the covariance matrix of historical returns (Bodie/Kane/Marcus, 2018, 

pp. 918-919). 

The 1% in this example can be referred to as the parameter τ. Basically, the smaller 

τ is, the less the (expected) reference excess returns spread around its expected value 

vector П (= vector of the implied reference or equilibrium excess returns) and the 

more confidence the investor will have in the reference portfolio. Provided that the 

reference portfolio was selected plausibly, τ should be selected accordingly low. In 

addition, a low τ also seems to make sense from a statistical point of view, because 

the variance of (historical) returns should be higher than the variance of expected 

returns (Zankl, 2009, p. 45, Ernst/Schurer, 2015, p. 504 and Drobetz, 2003, p. 219). 
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Therefore, the value for τ should be less than 1 (Duqi/Franci/Torluccio, 2014, p. 

1291). Black/Litterman (1992, p. 34) justify a value for τ close to 0 by stating that 

the uncertainty in the mean value (expected value) is much smaller than the 

uncertainty in the return itself. Allaj (2013, p. 229) proposes an econometric method 

for estimating τ. In the literature, τ typically ranges between 0.025 and 0.300 

(Bessler/Opfer/Wolff, 2014, p. 8). 

 

2.2 Investor’s ‘subjective’ return forecasts (‘views’) 

In the BL model, investors can integrate their own forecasts (‘views’) of future 

returns into the investment process, which can correct the above-mentioned implied 

reference excess returns. The estimates can be absolute or relative forecasts. While 

an absolute forecast refers to a concrete expected return on a particular stock in the 

coming period, a relative forecast makes statements about relationships between 

different stocks, such as the expectation that the return on stock A will be X% higher 

than the return on stock B in the coming period (Ernst/Schurer, 2015, p. 509; 

Drobetz, 2003, pp. 219-220 and Feilke/Gürtler, 2008, p. 7). 

For example, an investor assumes that in the coming period stock A will generate a 

0.7 percentage point higher excess return than stock B. This view can be expressed 

as follows: 

 

( )A B1 R 1 R 0.7% + −  =                 (5) 

 

Where: R is the excess return of the stock. 

In general, all forecasts that are a linear combination of the corresponding excess 

returns can be represented as matrix multiplication. In this example, the array of 

weights is P = (1, -1) while the array of the reference excess returns is E(R) = (RA, 

RB). The value of this linear combination is denoted Q and reflects the investor's 

forecast. Thus, in this case the value of 0.7% for Q would be included in the 

portfolio optimization process. 

It should be noted that each forecast can be assigned a certain degree of uncertainty. 

Accordingly, a standard deviation should be included, which measures the precision 

of Q. Indeed, the investor's forecast is actually Q + ε, where ε represents the forecast 

error with an expected value of zero and a standard deviation that reflects the 

investor's imperfect confidence (Bodie/Kane/Marcus, 2018, p. 920). 

More generally, it is assumed that the subjective forecasts can be expressed in the 

form of k different linear combinations of the n assets. The following equation 

serves as a basis (Ernst/Schurer, 2015, p. 509; Drobetz, 2003, pp. 219-220 and 

Feilke/Gürtler, 2008, p. 7): 

 

( )P E R Q = +                    (6) 

 

Where: Q is the k×1 vector of the returns for each subjective forecast, ε is the k×1 
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vector of the subjective forecast errors, E(R) is the k×1 vector of the expected excess 

returns, and P is the k×n matrix of the asset weights within each subjective forecast. 

For a relative forecast, the sum of the weights will be zero while it will be one for 

an absolute view. In the literature the weights within the subjective forecasts are 

computed differently, e.g. a market capitalization weighted scheme, or an equal 

weighted scheme. Thus, P also contains the information for which asset a subjective 

excess return forecasts is available (Walters, 2014, p. 13, Bessler/Opfer/Wolff, 2014, 

p. 7). 

It should be noted that the BL model does not require a subjective forecast for all 

assets in the portfolio. For example, if only 4 forecasts in a 10 asset portfolio are 

given, the subjective forecast vector Q would be a 4×1 column vector. The forecasts 

are subject to uncertainty. This uncertainty results in an error term vector ε, which 

is assumed to be random, unknown, and normally distributed with a mean of zero. 

Besides, the subjective forecasts are assumed to be independent of each other and 

also independent of the implied reference excess returns. Thus, a subjective forecast 

has the form Q + ε (Idzorek, 2007, p. 24): 

 

1 1

k k

Q

Q : :

Q

   
   

+  = +
   
      

                 (7) 

 

Where: Q is the k×1 vector of the returns for each subjective forecast, ε is the k×1 

vector of the subjective forecast errors. The value of the error term (ε) is different 

from zero unless there is a clairvoyant investor who is 100% confident in the 

expressed forecast, which is just a hypothetical case. The error term vector is not 

considered directly in the BL model, but the variance of each error term ( 2

i
 ) enters 

the BL formula. These variances form the diagonal covariance matrix Ω in which 

all values except the diagonal positions are zero. As in the model it is assumed that 

subjective forecasts are independent of each other, the off-diagonal elements of Ω 

are zero. Thus, the uncertainty of the forecasts is represented by the variances of the 

error terms ( 2

i
 ), i.e. the larger these variances, the greater the uncertainty of the 

forecasts. Ω, which is the k×k-matrix of the covariance of the subjective forecasts, 

can be represented as follows (Idzorek, 2007, p. 24): 
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The variance of the subjective forecasts is thus inversely related to the confidence 

of the investors in their forecasts. However, the BL model does not provide an 

approach to quantify this variance. Accordingly, the investor himself has to 

calculate the variance of the forecasts. Four options are proposed to determine the 

diagonal matrix Ω (Walters, 2014, p. 14): 

 

(1) The calculation is based on the assumption that the variance of the subjective 

forecasts is proportional to the variance of the asset returns. Thus, the 

following expression can be proposed for the diagonal matrix Ω 

(He/Litterman, 1999, p. 6): 

 

 ( )( )Tdiag P P =                 (9) 

 

 Where: P is the k×n matrix of the asset weights within each subjective forecast, 

Ʃ is the n×n covariance matrix of the historical asset excess returns, and τ is a 

measure of uncertainty of the equilibrium variance (Walters, 2014, p. 65). 

 

(2) The investor can determine the variance of the subjective forecasts by using a 

confidence interval around the estimated mean return. If, for example, a mean 

return of 5% is forecast and it is expected with a probability of 80% that the 

mean return will be between 4% and 6%, a variance of the forecasts of 

0.006089% can be calculated from this, assuming normally distributed returns: 

 

 ( )
2 2

22
i

0.06 0.05 0.04 0.05
0.007803 0.006089%

1.28155157 -1.28155157

− −   
 = = = =   

   
    (10) 

 

 The denominator contains the Z-score of the normal distribution where 

Prob(Z ≤ 1.28155157) = 90% and Prob(Z ≤ -1.28155157) = 10%. Thus, in 

this example, the forecast uncertainty can be interpreted as a symmetrical 80% 

confidence interval around the expected mean return of 5%. Correspondingly, 

this confidence interval implies a variance of 0.006089% in the forecast return. 

It should be noted that the matrix Ω thus does not indicate the variances of the 

returns about the mean, but rather the uncertainty in the forecast of the mean 

(Walters, 2014, pp. 14-15 and Drobetz, 2003, p. 221). 

 

(3) Another alternative for determining the matrix Ω is to use the variances of the 

residuals in case the investor uses a factor model to compute the subjective 

forecast (Walters, 2014, p. 15). 

 

(4) Finally, it is proposed to determine the forecast uncertainty by a special 

method to determine an implied confidence level (Idzorek, 2007, pp. 32-36). 
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Since the first-mentioned alternative for the determination of the matrix Ω seems to 

represent the method most frequently used in the literature, in the following only 

this is considered in this paper. 

Now the reference excess returns (as returns expected on a long-term basis) can be 

combined with the rather short-term, subjective forecasts of the investor. This is 

shown in the following section. 

 

2.3 Solving for the new combined return vector 

On the basis of a Bayesian approach the subjective return forecasts of the investor 

are combined with the vector of the reference excess returns to form a new vector 

of combined expected returns which will be denoted „BL returns“ in this paper. This 

n×1 vector (E(RBL)) can be derived after having specified the scalar (parameter τ) 

and the matrix Ω. It is shown in the following equation (Zankl, 2009, p. 40 and p. 

52; Walters, 2014, p. 19; Idzorek, 2007, pp. 18, 21 and 27, Ernst/Schurer, 2015, p. 

517): 

 

( ) ( ) ( )
1

1 1T 1 T 1
BLE R P P P Q

−
− −− −   =  +      +  

   
        (11) 

 

This formula can be transformed into the following (Zankl, 2009, pp. 52-53, 

Mankert, 2010, p. 48, Walters, 2014, p. 19, O’Toole, 2017, p. 582 and p. 586): 

 

( ) ( ) ( ) ( )
1

T T
BLE R P P P Q P

−
 =  +    +      − 
 

         (12) 

 

Thus, the BL returns are derived from the implied reference excess returns (П) and 

a correction term that takes into account the investor's subjective forecasts. On the 

basis of this formula it becomes also evident that E(RBL) is independent of the 

parameter τ, because with the way of calculating the matrix Ω used in this paper 

(equation 9), each change of τ in the product of the square bracket and the term 

before the square bracket cancels itself out. 

 

Finally, the posterior covariance matrix of returns (ƩP) can be determined (Walters, 

2014, pp. 19-20): 

 

( )
1

1 T 1
P P P

−
− −  = +  +  

 
              (13) 
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In case that no subjective forecasts are available for the assets in the portfolio, this 

formula is reduced to 

 

( ) ( )P 1 = +  = +                  (14) 

 

In the literature, this posterior covariance matrix is also expressed as follows, 

whereby the derivation from the above formula uses the Woodbury matrix identity 

(Bodie/Kane/Marcus, 2018, p. 930 und Walters, 2014, pp. 20-21): 

 

( )
1

T T
P P P P P

−
 = +  −        +               (15) 

 

The BL return vector will be used in the mean-variance optimizer to find the optimal 

BL portfolio, which is shown in the following section. 

 

2.4 Optimal portfolio according to the BL model 

The composition of the optimal portfolio according to the BL model is based on the 

traditional risk-return optimization that maximizes the investor’s utility value as 

shown above. Provided, that neither short-selling nor budget constraints are 

imposed, the solution to this maximization problem is (Idzorek, 2007, pp. 20 and 

27-28, Braga/Natale, 2012, p. 7): 

 

( )1
BL BL

1
w E R

A

−=                   (16) 

 

Where: wBL is the n×1 vector of asset weights in the BL portfolio, A is the investor’s 

risk aversion coefficient, Ʃ-1 is the inverse of the n×n covariance matrix of historical 

excess returns, and E(RBL) is the n×1 vector of the BL returns. 

In addition, the optimal vector wBL can also be determined without an explicit prior 

determination of the BL returns as follows (Zankl, 2009, pp. 55-56 and Mankert, 

2010, p. 49): 

 
1

T T
BL Ref Ref

1 1
w w P P P Q P w

A

−
   

= +  +    −     
   

        (17) 

 

Where: wRef is the n×1 vector of asset weights in the reference portfolio. 

If the matrix Ω is calculated according to equation (9), the proportionality factor τ 

has no influence on the BL returns and thus on the optimal vector wBL. The latter 

can be immediately recognized by this formula for wBL because in the first 

parenthesis, Ω is divided by τ while in this case, the matrix Ω contains τ (Zankl, 

2009, p. 74). 
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As formula (17) shows, the extent of the differences between wBL and wRef is 

determined by, among others, the subjective forecasts and the level of confidence 

in these forecasts. This difference in weights could also be called active weights 

(Braga/Natale, 2012, p. 7). 

Finally, it can be pointed out that in addition to the return adjustment by considering 

subjective forecasts, an additional risk adjustment would also be conceivable. In 

this case, the above-mentioned posterior covariance matrix would be included in 

the calculation of the optimal portfolio instead of the historical covariance matrix. 

If, however, the BL portfolio is to be compared to the traditional mean-variance 

optimized (MV) portfolio (Markowitz, 1952), only a return adjustment and the 

waiver of an additional risk adjustment would be useful (Zankl, 2009, p. 55). 

 

3. Empirical Analysis 

3.1 Methodology, performance measures, and data 

In order to analyze the out-of-sample performance of the four portfolios included 

(BL, reference, MV, and equally weighted), optimized portfolios are computed 

every six months, i.e. the portfolios are rebalanced every six months. Thus, after 

each rebalancing, the computed number of stocks is retained in the portfolio until 

the next rebalancing. The semi-annual re-composition of the portfolios is intended 

to ensure a regular response to changing market situations. Transaction costs are not 

included in the analysis, because with a semi-annual rebalancing, they are less 

significant compared to a weekly or even daily rebalancing. 

The calculation of the optimal weight of each stock in the portfolios is based on the 

(annualized) monthly logarithmic stock returns of the previous 5 years. These 

weights are used to compute the (ex post) monthly portfolio returns in the resulting 

(out-of-sample) period, which includes the time period from 30 December 2010 to 

30 December 2019. Thus, monthly stock returns from December 2005 to December 

2019 are used. 

All models include the budget restriction that portfolio weights sum to one 

according to the following equation (Bessler/Opfer/Wolff, 2014, p. 3): 

 
n

i

i 1

w 1
=

=                    (18) 

 

Where: wi is the weight of stock i in the portfolio and n is the number of stocks in 

the portfolio. 

Furthermore, the BL portfolio and the MV portfolio are constructed both on the 

assumption that short sales are permitted. The resulting portfolio weights are 

normalized to a total of 100%. The stock weights of the reference portfolio are based 

on the market capitalization of the respective stock at the time of rebalancing. 

In addition, for the BL portfolio and the MV portfolio, the risk aversion coefficient 

is set to 3. The risk-free rate is set to zero so that the excess returns equal the returns. 
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Furthermore, a value of τ = 0.2 is assumed. 

As shown above, the BL model combines implied returns and subjective return 

forecasts. The problem is how to derive subjective return forecasts. Simply 

assuming exogenously given forecasts seems not to be appropriate to evaluate the 

performance of the BL model compared to the MV portfolio and the equally 

weighted portfolio. In line with Bessler/Opfer/Wolff (2014, p. 9), sample means are 

employed as subjective return forecasts. In this paper, the annualized mean of the 

logarithmic monthly returns of the previous 5 years is used as subjective return 

forecast. It should be noted that, unlike the MV portfolio, the BL model also takes 

into account the reliability of these forecasts, which is expressed in the matrix Ω. 

To evaluate the different portfolios, several performance measures are calculated 

based on the logarithmic portfolio returns. First, the Sharpe ratio of a portfolio (SRPF) 

is computed as a performance measure frequently used in investment practice: 

 

PF f
PF

PF

r r
SR

−
=


                   (19) 

 

Where: PFr  is the mean portfolio return, rf is the risk-free rate, and σPF is the 

standard deviation of the returns. 

Besides the Sharpe ratio, the Treynor ratio (TR) is also included in the empirical 

analysis. This is a further key figure for comparing several portfolios. Unlike the 

Sharpe ratio, the Treynor ratio uses the beta factor of the portfolio (ßPF) as a measure 

of systematic risk: 

 

PF f
PF

PF

r r
TR

ß

−
=                  (20) 

 

In contrast to the Sharpe ratio, the Treynor ratio is more appropriate if the portfolio 

to be evaluated is only part of a larger, well-diversified overall portfolio or is itself 

well-diversified (Bruns/Meyer-Bullerdiek, 2020, pp. 911-912). 

In addition, the Jensen alpha (αJ) is used to measure performance, so that all three 

classical performance measures are taken into account. It can be described as a 

classical measure for determining the securities selection abilities of portfolio 

managers. Based on the Capital Asset Pricing Model (CAPM), it measures that part 

of the total return of a portfolio that is not correlated with the return of the 

benchmark. A linear regression can be used to measure the Jensen alpha (αJ): 

 

J PF BM PF PFR R ß = −  −                (21) 

 

Where: RPF is the excess return of the portfolio, RBM is the excess return of the 

benchmark, ßPF is the beta factor of the portfolio, and εPF is the residual return. 

As a further measure, the Risk-Adjusted Performance (RAP) of a portfolio is used 
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in the empirical analysis. With this measure a ranking as well as a comparison of 

portfolio and benchmark return is possible. It can be calculated as follows 

(Modigliani/Modigliani, 1997, p. 47 and Fischer, 2010, pp. 461-463): 

 

PF f
PF f BM f PF BM

PF

r r
RAP r r SR

−
= +  = + 


           (22) 

 

Where: σBM is the standard deviation of the benchmark. 

Using this performance measure leads to the same ranking as the Sharpe ratio when 

comparing different portfolios. However, a reference to a common risk level is 

established at the same time. The Risk-Adjusted Performance represents the 

portfolio return if the portfolio risk corresponds to the benchmark risk 

(Bruns/Meyer-Bullerdiek, 2020, p. 921). 

The performance of the different portfolios is determined both for the entire period 

from 30 December 2010 to 30 December 2019 and for the following periods: 

 

30 December 2010 – 30 December 2013 

30 December 2013 – 30 December 2016 

30 December 2016 – 30 December 2019 

 

The portfolio construction is based on 10 stocks that are included in the German 

DAX index: Allianz, Bayer, Daimler, Deutsche Bank, Deutsche Telekom, Deutsche 

Post, E.ON, Henkel, SAP, and Siemens. To calculate the monthly logarithmic stock 

returns, monthly closing stock prices are used which are adjusted for stock splits 

and interim income (such as dividend income or income from subscription rights). 

 

3.2 Empirical results 

The stock weights in the different portfolios at each rebalancing date are presented 

in table 1, whereby the above-mentioned normalization of the sum of the portfolio 

weights to 100% was used for all portfolios. 

In the BL portfolio (permitting short sales), the sum of all stock weights was below 

100% in 6 periods (thereof below 50% in 3 periods). For the MV portfolio 

(permitting short sales), this was the case in 5 periods (thereof in 1 period under 

50%). The corresponding normalization to 100% resulted in the individual absolute 

stock weights being correspondingly higher. 

The invested capital is initially allocated to the individual stocks according to the 

weightings determined for each portfolio. The number of stocks determined in each 

case is then retained until the next portfolio reallocation, which takes place after six 

months ("rebalancing"). The weights for each stock in the equally weighted 

portfolio are set at 10% at each rebalancing date. 
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Table 1: (Normalized) Stock weights in the MV portfolio 

 

Table 2: (Normalized) Stock weights in the BL portfolio 

 Allianz Bayer Daimler Dt. Bank Dt. Post Dt.Telek. E.ON Henkel SAP Siemens Total 

30 Dec. 10 -4.91% 162.25% 12.79% -98.17% -77.98% -81.30% -57.39% 140.40% -27.43% 131.75% 100% 

30 June 11 59.78% 105.49% 37.90% -78.11% -67.92% 19.51% -124.85% 73.64% -18.45% 93.00% 100% 

30 Dec. 11 -18.03% 221.06% -5.71% -201.89% -86.30% -92.57% -233.64% 153.05% 93.44% 270.60% 100% 

29 June 12 6.16% 32.16% -36.65% -73.92% 10.02% 26.52% -87.07% 114.72% 108.92% -0.85% 100% 

28 Dec. 12 67.86% 19.94% -59.48% -57.55% -19.81% 20.11% -148.62% 137.54% 141.62% -1.61% 100% 

28 June 13 52.34% 1.11% -11.29% -21.18% -12.02% 45.11% -92.75% 136.62% 32.17% -30.13% 100% 

30 Dec. 13 21.85% 12.37% -15.46% -9.24% 20.63% 24.78% -62.92% 71.52% 35.28% 1.20% 100% 

30 June 14 67.07% 7.79% -29.54% -56.07% 66.80% 39.50% -65.58% 73.21% -11.92% 8.74% 100% 

30 Dec. 14 85.91% 13.75% -43.30% -69.89% 89.64% 31.91% -71.12% 46.47% 9.27% 7.36% 100% 

30 June 15 85.85% 48.75% -47.69% -62.68% 102.64% 35.65% -65.45% 27.47% 26.66% -51.20% 100% 

30 Dec. 15 89.97% 29.51% -44.54% -53.21% 119.20% 42.87% -42.08% 1.23% 58.91% -101.87% 100% 

30 June 16 101.99% 14.54% -64.87% -77.07% 129.88% 30.52% -37.74% 38.49% 50.68% -86.43% 100% 

30 Dec. 16 72.57% 21.74% -39.32% -45.99% 88.46% 25.98% -31.09% -2.66% 28.81% -18.50% 100% 

30 June 17 91.95% 30.24% -45.43% -48.12% 78.75% 19.88% -26.82% -18.35% 21.19% -3.29% 100% 

29 Dec. 17 91.86% 17.24% -34.13% -57.67% 112.95% 25.81% -29.73% -27.05% 25.20% -24.48% 100% 

29 June 18 122.50% 2.57% -49.80% -78.66% 70.33% 23.95% -21.14% -14.24% 24.06% 20.43% 100% 

28 Dec. 18 227.45% -36.65% -48.09% -109.99% 34.95% 54.68% -12.98% -38.17% -1.29% 30.09% 100% 

28 June 19 197.82% 7.71% -62.70% -81.97% 44.37% 20.58% -18.43% -44.49% 42.45% -5.35% 100% 

 Allianz Bayer Daimler Dt. Bank Dt. Post Dt.Telek. E.ON Henkel SAP Siemens Total 

30 Dec. 10 -9.32% 79.27% 17.80% -27.15% -26.77% -15.37% -11.45% 52.74% 0.32% 39.94% 100% 

30 June 11 2.93% 58.14% 19.15% -20.40% -21.42% 21.16% -32.42% 36.72% 3.57% 32.56% 100% 

30 Dec. 11 -27.65% 125.71% 5.52% -69.62% -43.24% -22.26% -90.17% 73.14% 61.83% 86.73% 100% 

29 June 12 -15.33% 69.12% -20.89% -55.63% -10.81% 5.22% -83.23% 99.98% 106.22% 5.34% 100% 

28 Dec. 12 14.59% 63.95% -20.29% -34.82% -13.06% -21.22% -128.12% 97.99% 130.36% 10.63% 100% 

28 June 13 5.62% 24.75% 0.79% -9.15% 0.09% 22.26% -54.28% 82.09% 26.25% 1.58% 100% 

30 Dec. 13 4.30% 21.29% 1.04% -2.62% 8.58% 13.53% -28.63% 46.20% 27.66% 8.65% 100% 

30 June 14 8.60% 18.83% 2.15% -16.04% 25.74% 19.25% -22.22% 43.76% 9.00% 10.93% 100% 

30 Dec. 14 12.83% 21.27% 1.17% -19.27% 32.11% 17.18% -29.55% 36.84% 19.57% 7.85% 100% 

30 June 15 13.97% 34.77% 1.70% -17.90% 35.86% 20.61% -28.20% 27.88% 19.27% -7.96% 100% 

30 Dec. 15 27.75% 26.85% -0.86% -24.25% 39.15% 30.85% -33.26% 24.39% 31.50% -22.12% 100% 

30 June 16 21.16% 21.64% -9.36% -38.90% 43.16% 27.87% -30.84% 47.84% 30.07% -12.65% 100% 

30 Dec. 16 25.29% 14.46% -0.18% -17.45% 32.92% 22.59% -20.35% 18.69% 16.71% 7.31% 100% 

30 June 17 33.87% 15.28% -3.03% -16.96% 27.57% 16.17% -16.40% 14.09% 16.47% 12.93% 100% 

29 Dec. 17 36.21% 5.61% 2.51% -22.38% 44.11% 22.20% -13.98% 8.38% 13.65% 3.68% 100% 

29 June 18 45.76% 1.35% -4.29% -36.35% 22.10% 22.83% -11.94% 10.68% 30.04% 19.83% 100% 

28 Dec. 18 106.10% -37.57% -16.26% -62.94% 5.11% 52.96% -15.48% 4.61% 45.44% 18.04% 100% 

28 June 19 96.58% -17.66% -19.46% -41.26% 11.52% 28.07% -15.00% -15.91% 64.94% 8.18% 100% 
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Table 3: Stock weights in the reference portfolio 

 Allianz Bayer Daimler Dt. Bank 
Dt. 

Post 

Dt.Tele

k. 
E.ON Henkel SAP Siemens Total 

30 Dec. 10 11.58% 13.33% 13.67% 7.71% 3.02% 8.23% 12.19% 2.28% 9.58% 18.39% 100% 

30 June 11 12.14% 13.40% 12.08% 10.36% 3.03% 9.05% 10.78% 2.29% 10.58% 16.29% 100% 

30 Dec. 11 11.54% 13.07% 10.00% 8.74% 3.28% 9.32% 10.81% 2.65% 13.33% 17.25% 100% 

29 June 12 11.42% 14.58% 10.26% 8.46% 3.75% 8.29% 9.85% 2.91% 13.70% 16.77% 100% 

28 Dec. 12 12.59% 15.93% 10.82% 8.00% 3.95% 6.71% 7.05% 2.86% 14.39% 17.69% 100% 

28 June 13 12.76% 17.33% 11.54% 8.10% 4.52% 6.98% 6.59% 3.28% 13.13% 15.77% 100% 

30 Dec. 13 12.34% 17.39% 12.99% 7.33% 5.32% 7.92% 5.33% 3.06% 11.88% 16.44% 100% 

30 June 14 11.92% 17.45% 14.76% 6.05% 5.29% 8.20% 6.09% 3.09% 10.90% 16.26% 100% 

30 Dec. 14 13.02% 17.02% 14.27% 6.73% 5.31% 8.55% 5.75% 3.23% 10.99% 15.14% 100% 

30 June 15 12.69% 16.92% 15.93% 6.79% 4.92% 9.33% 4.73% 3.47% 11.39% 13.83% 100% 

30 Dec. 15 14.44% 16.03% 15.02% 5.89% 4.84% 10.25% 3.22% 3.49% 13.27% 13.56% 100% 

30 June 16 13.62% 16.33% 12.84% 4.12% 5.46% 10.19% 3.83% 3.86% 14.38% 15.37% 100% 

30 Dec. 16 13.42% 15.20% 13.26% 4.72% 5.54% 9.53% 2.40% 3.67% 14.70% 17.55% 100% 

30 June 17 13.90% 17.44% 11.41% 3.93% 5.35% 9.16% 2.98% 3.80% 15.53% 16.49% 100% 

29 Dec. 17 14.83% 14.88% 11.96% 5.20% 6.30% 8.26% 3.44% 3.30% 15.91% 15.92% 100% 

29 June 18 14.32% 15.17% 10.31% 3.17% 5.17% 8.19% 3.73% 3.44% 19.37% 17.13% 100% 

28 Dec. 18 16.32% 12.58% 9.19% 2.95% 5.00% 10.63% 4.22% 3.73% 17.87% 17.51% 100% 

28 June 19 17.85% 10.16% 8.98% 2.34% 5.49% 9.87% 4.27% 2.87% 22.04% 16.15% 100% 

 

The values in tables 1-2 show very high fluctuations in the respective stock weights. 

This becomes clear when looking at the mean values (μweight) and standard deviations 

(σweight) of the periodic weights (table 4). 

 

Table 4: Mean and standard deviations of (normalized) stock weights 

 

MV portfolio BL portfolio 

 μweight. σweight.  μweight. σweight. 

Allianz 78.89% 62.09% Allianz 22.40% 34.09% 

Bayer 39.53% 62.58% Bayer 30.39% 37.71% 

Daimler -32.63% 27.04% Daimler -2.38% 11.47% 

Deutsche Bank -71.19% 40.64% Deutsche Bank -29.62% 18.37% 

Deutsche Post 39.14% 68.88% Deutsche Post 11.82% 26.24% 

Deutsche Telekom 17.42% 39.26% Deutsche Telekom 15.77% 18.87% 

E.ON -68.30% 55.36% E.ON -36.97% 32.10% 

Henkel 48.30% 67.26% Henkel 39.45% 32.43% 

SAP 35.53% 43.77% SAP 36.27% 34.76% 

Siemens 13.30% 83.97% Siemens 12.86% 23.43% 

Mean 10.00% 55.08% Mean 10.00% 26.95% 
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Table 5: Mean and standard deviations of stock weights (reference portfolio) 

 

Reference portfolio 
 μweight. σweight. 

Allianz 13.37% 1.71% 

Bayer 15.23% 2.06% 

Daimler 12.18% 2.05% 

Deutsche Bank 6.14% 2.27% 

Deutsche Post 4.75% 0.95% 

Deutsche Telekom 8.82% 1.08% 

E.ON 5.96% 3.02% 

Henkel 3.18% 0.48% 

SAP 14.05% 3.24% 

Siemens 16.31% 1.27% 

Mean 10.00% 1.81% 

 

The stock weights for the BL portfolio shown above are based on subjective return 

forecasts that are derived from the respective (annualized) mean of the monthly 

logarithmic returns from the 5 years prior to the respective rebalancing of the 

portfolio. The analysis was also performed for subjective return forecasts based on 

the monthly logarithmic returns of 1 year and 0.5 years before the portfolio 

rebalancing. However, in these two cases, the sum of all stock weights in the BL 

portfolio was negative in some periods, which is equivalent to a short position in 

this portfolio. For this reason, no further analysis of these two cases was performed 

in this paper. 

Using the stock weights shown above at each time of rebalancing, and the prices of 

all stocks at the end of the month, the monthly values and the respective monthly 

logarithmic returns for each portfolio can be calculated. This is done for all periods 

mentioned above. It should again be pointed out that no actual stock prices are used 

in the analysis, but stock prices that are adjusted for dividend payments, payments 

from the proceeds of subscription rights, stock splits, etc. The monthly logarithmic 

portfolio returns determined from the portfolio values form the basis of the 

performance analysis. In order to calculate beta, Treynor ratio, and Jensen alpha, 

the DAX serves as the benchmark. The performance values are shown in the 

following tables, with each period considered separately. 
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Table 6: Performance results for the period 30 Dec. 2010 – 30 Dec. 2019 

 
 DAX MV BL Reference EW 

Mean return 0.6022% 2.2254% 1.6562% 0.6037% 0.5979% 

Standard deviation 4.7508% 10.1097% 7.1462% 4.9292% 4.7622% 

Sharpe ratio 12.6752% 22.0125% 23.1753% 12.2482% 12.5555% 

Correl. with DAX 1.0000 0.2186 0.4896 0.9835 0.9744 

Beta 1.0000 0.4651 0.7365 1.0204 0.9767 

Treynor ratio 0.6022% 4.7847% 2.2488% 0.5917% 0.6122% 

Jensen alpha 0.0000% 1.9453% 1.2127% -0.0107% 0.0098% 

RAP 0.6022% 1.0458% 1.1010% 0.5819% 0.5965% 

 

Table 7: Performance results for the period 30 Dec. 2010 – 30 Dec. 2013 

 
 DAX MV BL Reference EW 

Mean return 0.8978% 2.1284% 2.6137% 1.0366% 1.1691% 

Standard deviation 5.5440% 13.9671% 9.2517% 5.6190% 5.3516% 

Sharpe ratio 16.1932% 15.2383% 28.2516% 18.4473% 21.8457% 

Correl. with DAX 1.0000 0.2070 0.4378 0.9840 0.9834 

Beta 1.0000 0.5215 0.7306 0.9973 0.9493 

Treynor ratio 0.8978% 4.0815% 3.5774% 1.0393% 1.2315% 

Jensen alpha 0.0000% 1.6602% 1.9578% 0.1412% 0.3169% 

RAP 0.8978% 0.8448% 1.5663% 1.0227% 1.2111% 

 

Table 8: Performance results for the period 30 Dec. 2013 – 30 Dec. 2016 

 
 DAX MV BL Reference EW 

Mean return 0.5109% 1.7792% 1.1434% 0.4909% 0.4234% 

Standard deviation 5.0077% 7.6790% 5.5608% 5.1701% 5.1034% 

Sharpe ratio 10.2026% 23.1704% 20.5613% 9.4944% 8.2955% 

Correl. with DAX 1.0000 0.2720 0.7331 0.9860 0.9736 

Beta 1.0000 0.4171 0.8141 1.0180 0.9922 

Treynor ratio 0.5109% 4.2662% 1.4045% 0.4822% 0.4267% 

Jensen alpha 0.0000% 1.5662% 0.7274% -0.0292% -0.0836% 

RAP 0.5109% 1.1603% 1.0297% 0.4755% 0.4154% 
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Table 9: Performance results for the period 30 Dec. 2016 – 30 Dec. 2019 

 
 DAX MV BL Reference EW 

Mean return 0.3978% 2.7686% 1.2114% 0.2838% 0.2013% 

Standard deviation 3.6117% 7.6089% 6.1799% 3.9578% 3.7576% 

Sharpe ratio 11.0154% 36.3866% 19.6015% 7.1702% 5.3576% 

Correl. with DAX 1.0000 0.2077 0.3365 0.9805 0.9623 

Beta 1.0000 0.4375 0.5758 1.0745 1.0012 

Treynor ratio 0.3978% 6.3278% 2.1038% 0.2641% 0.2011% 

Jensen alpha 0.0000% 2.5945% 0.9823% -0.1437% -0.1970% 

RAP 0.3978% 1.3142% 0.7079% 0.2590% 0.1935% 

 

The tables show that the mean returns and standard deviations vary, in part 

significantly, among the respective portfolios. For the overall period, the BL 

portfolio achieves the highest Sharpe ratio but the MV portfolio is only just behind. 

The DAX, the equally weighted portfolio and the reference portfolio follow at a 

greater distance, reaching quite similar values. These portfolios are very similar in 

terms of composition, so that the values for beta, correlation and Treynor ratio are 

very close together. For the MV portfolio, the Treynor ratio is higher compared to 

the BL portfolio, whereby all Treynor Ratios of these portfolios are significantly 

higher than for the DAX, reference portfolio and equally weighted portfolio. These 

results are also reflected in the Jensen alpha in a similar way. For the RAP measure 

-as theoretically shown above- the same order is obtained as for the Sharpe ratio. 

The following tables show a ranking of the individual portfolios in terms of 

performance measures for each period. The performance measure RAP is not 

included in the ranking because it leads to the same order as the Sharpe ratio. 

 

Table 10: Ranking of the portfolios for the period 30 Dec. 2010 – 30 Dec. 2019 

 
 DAX MV BL Reference EW 

Sharpe ratio 3 2 1 5 4 

Treynor ratio 4 1 2 5 3 

Jensen alpha 4 1 2 5 3 

 

Table 11: Ranking of the portfolios for the period 30 Dec. 2010 – 30 Dec. 2013 

 
 DAX MV BL Reference EW 

Sharpe ratio 4 5 1 3 2 

Treynor ratio 5 1 2 4 3 

Jensen alpha 5 2 1 4 3 
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Table 12: Ranking of the portfolios for the period 30 Dec. 2013 – 30 Dec. 2016 

 
 DAX MV BL Reference EW 

Sharpe ratio 3 1 2 4 5 

Treynor ratio 3 1 2 4 5 

Jensen alpha 3 1 2 4 5 

 

Table 13: Ranking of the portfolios for the period 30 Dec. 2016 – 30 Dec. 2019 

 
 DAX MV BL Reference EW 

Sharpe ratio 3 1 2 4 5 

Treynor ratio 3 1 2 4 5 

Jensen alpha 3 1 2 4 5 

 

As these tables show, overall, the best performing portfolios are the MV portfolio 

and the BL portfolio, with the former mostly coming first. One exception is the 

period 30 Dec. 2010 – 30 Dec. 2013, in which the BL portfolio is superior. During 

this period, the large ranking difference of the MV portfolio is noticeable. While 

this portfolio has the lowest Sharpe ratio, its Treynor ratio is the highest. This is due 

to the relatively high standard deviation and the relatively low beta. The latter in 

turn is related to the low correlation with the DAX. 

The comparative portfolios (DAX, reference portfolio, equally weighted portfolio) 

share the last three places in most cases. The reference portfolio leads to the lowest 

performance values over the entire period, although it is usually in 4th place in the 

respective single periods. In the last two subperiods, the DAX achieves better results 

than the reference portfolio and the equally weighted portfolio, although these 

differences are only very small overall, which is particularly true for the overall 

period. 

 

4. Conclusion 

The BL model uses historical data, equilibrium considerations and individual 

assessments of the portfolio managers for the near future. It can therefore be 

assumed that a combination of the ("neutral") reference excess returns with 

individual return forecasts leads to the derivation of economically better and more 

stable stock weights in the portfolio. In this study, the success of the BL portfolio is 

examined by means of an empirical analysis of a German stock portfolio. 

In conclusion, the BL portfolio performs significantly better than the DAX, the 

reference portfolio and the equally weighted portfolio. However, overall, it is 

slightly outperformed by the traditional mean-variance optimized (MV) portfolio. 

Nevertheless, it may be of greater interest to investors because – as shown above – 

the BL portfolio could lead in most cases to lower absolute (normalized) values for 

the stock weights and for all stocks to smaller fluctuations in the (normalized) 

weights (measured as standard deviations of the weights) compared to the MV 
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portfolio. Although high short positions also occur, the absolute (normalized) values 

for the weights, on average, are lower overall than in the MV portfolio. However, 

in this study, this is true if 5-year periods of historical monthly returns are used for 

the subjective return forecast determination. In the case of 1-year or 0.5-year periods 

as the basis for determining these forecasts, the sum of all stock weights in the BL 

portfolio was negative in some periods, which is equivalent to a short position in 

this portfolio. Therefore, no further analysis of these two cases was performed in 

this paper. 

According to this paper, the BL portfolio leads to better results than the benchmark 

index (DAX), the reference portfolio, or the equally weighted portfolio. The 

complex approach to the asset allocation should not be a problem in practice. 

However, it should be noted that the results of this study cannot be generalized. 

Further investigations with alternative forecasting methods have to be conducted. 

Furthermore, this study assumes a risk aversion parameter of 3, a factor τ of 0.2, 

and a risk-free rate of 0%. To determine the matrix Ω as a diagonal matrix, it is 

assumed in this study that the variance of the subjective forecasts is proportional to 

the variance of the asset returns. Furthermore, this study refers only to the selected 

stock portfolios and only to certain selected periods. Further investigations are 

therefore necessary for alternative input parameters, stock markets and periods, and 

should include an exclusion of short sales as many investors are restricted to long 

only positions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Out-of-sample performance of the Black-Litterman model 49  

References 

[1] Allaj, E., The Black–Litterman model: a consistent estimation of the parameter 

tau, Financial Markets and Portfolio Management, 27, (2013), 217-251. 

[2] Allaj, E., The Black-Litterman model and views from a reverse optimization 

procedure: An out-of-sample performance evaluation, Computational 

Management Science, 17 (3), (2020), 465-492. 

[3]  Bessler, W., Opfer, H. and Wolff, D., Multi-asset portfolio optimization and 

out of-sample performance: an evaluation of Black–Litterman, mean-variance, 

and naïve diversification approaches, The European Journal of Finance, (2014), 

DOI: 10.1080/1351847X.2014.953699 

[4]  Black, F. and Litterman, R., Asset Allocation: Combing Investor Views with 

Market Equilibrium, Journal of Fixed Income, 1 (September), (1991), 7-18.  

[5]  Black, F. and Litterman, R., Global Portfolio Optimization, Financial Analysts 

Journal, 48 (5), (1992), 28-43. 

[6]  Bodie, Z., Kane, A. and Marcus, A.J., Investments, 11th edition, McGraw-Hill 

Education, New York, 2018. 

[7]  Braga, M.D. and Natale, F.P., Active risk sensitivity to views using the Black-

Litterman model, Journal of Asset Management, 13 (1), (2012), 5-21. 

[8]  Bruns, C. and Meyer-Bullerdiek, F., Professionelles Portfoliomanagement, 6th 

edition, Schäffer-Poeschel Verlag, Stuttgart, 2020. 

[9]  Chen, L., Da, Z. and Schaumburg, E., Implementing Black-Litterman using an 

equivalent Formula and Equity Analyst Target Prices, Journal of Investing, 24 

(1), (2015), 34-47. 

[10]  Chen, S.D. and Lim, A.E.B., A Generalized Black–Litterman Model, 

Operations Research, 68 (2), 381-410. 

[11]  Cheung, W., The Black–Litterman model explained, Journal of Asset 

Management, 11, (2010), 229-243. 

[12]  Da Silva, A.S., Lee, W. and Pornrojnangkool, B., The Black–Litterman Model 

for Active Portfolio Management, Journal of Portfolio Management, 35 (2), 

61-70. 

[13]  Drobetz, W., Einsatz des Black-Litterman-Verfahrens in der Asset Allocation, 

Dichtl, H., Kleeberg, J. M. and Schlenger, C. (editor), Handbuch Asset 

Allocation, Uhlenbruch-Verlag, Bad Soden, 2003, 203-239. 

[14]  Duqi, A., Franci, L. and Torluccio, G., The Black-Litterman model: the 

definition of views based on volatility forecasts, Applied Financial Economics, 

24 (19), (2014), 1285-1296. 

[15]  Ernst, D. and Schurer, M., Portfolio Management, Theorie und Praxis mit 

Excel und Matlab, UVK Verlagsgesellschaft, Konstanz/München, 2015. 

[16]  Feilke, F. and Gürtler, M., Quantitatives Prognosemodell für die Anwendung 

des Black-Litterman-Verfahrens, Centre for Financial Research (CFR) (editor), 

Vortrag beim 7. Kölner Finanzmarktkolloquium, 2008. 

[17]  Figelman, I., Black-Litterman with a Factor Structure Applied to Multi-Asset 

Portfolios, Journal of Portfolio Management, 44 (2), (2017), 136-155. 



50                                     Frieder Meyer-Bullerdiek  

[18]  Fischer, B.R., Performanceanalyse in der Praxis, 3rd edition, De Gruyter 

Oldenbourg Verlag, München, 2010. 

[19]  Geyer, A. and Lucivjanská, K., The Black–Litterman Approach and Views 

from Predictive Regressions: Theory and Implementation, Journal of Portfolio 

Management, 42 (4), (2016), 38-48. 

[20]  Harris, R.D.F., Stoja, E. and Tan, L., The dynamic Black–Litterman approach 

to asset allocation, European Journal of Operational Research, 259 (3), (2017), 

1085-1096. 

[21]  He, G. and Litterman, R., The Intuition Behind Black-Litterman Model 

Portfolios, Goldman, Sachs & Co. (editor), Investment Management Research, 

December 1999. 

[22]  He, P.W., Grant, A. and Fabre, J., Economic value of analyst recommendations 

in Australia: an application of the Black–Litterman asset allocation model, 

Accounting and Finance, 53 (2), 441-470. 

[23]  Herold, U., Portfolio Construction with Qualitative Forecasts, Journal of 

Portfolio Management, 30 (1), (2003), 61-72. 

[24]  Idzorek, T.M., A step-by-step guide to the Black-Litterman Model, Satchell, 

S. (editor), Forecasting expected returns in the financial markets, Elsevier, 

Amsterdam et al., 2007, 17-38. 

[25]  Kolm, P. and Ritter, G., On the Bayesian interpretation of Black-Litterman, 

European Journal of Operational Research, 258 (2), (2017), 564-572. 

[26] Mankert, C., The Black-Litterman Model – Towards its use in practice, The 

KTH Royal Institute of Technology, Doctoral Thesis, Stockholm, 2010. 

[27]  Markowitz, H., Portfolio selection, Journal of Finance, 7 (1), (1952), 77-91. 

[28]  Martellini, L. and Ziemann, V., Extending Black-Litterman Analysis Beyond 

the Mean-Variance Framework, Journal of Portfolio Management, 33 (4), 

(2007), 33-44. 

[29]  Martin, K.J. and Sankaran, H., Using the Black-Litterman Model: A View on 

Opinions, Journal of Investing, 28 (1), (2019), 112-122. 

[30] Modigliani, F./Modigliani, L., Risk Adjusted Performance: How to measure it 

and why, Journal of Portfolio Management, 23 (2), (1997) 45-54. 

[31]  O’Toole, R., The Black–Litterman model: active risk targetting and the 

parameter tau, Journal of Asset Management, 18 (7), (2017), 580-587. 

[32]  Satchell, S. and Scowcroft, A., A demystification of the Black–Litterman 

model: Managing quantitative and traditional portfolio construction, Journal 

of Asset Management, 1 (2), (2000), 138-150. 

[33]  Tee, C.W., Huang, S. and Lim, K.G., Performance Control and Risk 

Calibration in the Black-Litterman Model, Journal of Portfolio Management, 

43 (3), (2017), 126-135. 

[34]  van der Schans, M. and Steehouwer, H., Time-Dependent Black-Litterman, 

Journal of Asset Management, 18 (5), (2017), 371-387. 

[35]  Walters, Jay, The Black-Litterman Model in Detail (June 20, 2014). Available 

at SSRN: https://ssrn.com/abstract=1314585. 

https://ssrn.com/abstract=1314585


Out-of-sample performance of the Black-Litterman model 51  

[36]  Zankl, S., Real Estate Asset Allocation auf Basis des Black-Litterman- 

Ansatzes, University of Passau, Doctoral Thesis, Passau, 2009. 

[37]  Zhou, G., Beyond Black–Litterman: Letting the Data Speak, Journal of 

Portfolio Management, 36 (1), (2009), 36-45. 


