
Journal of Computations & Modelling, vol.9, no.3, 2019, 1-10 
ISSN: 1792-7625 (print), 1792-8850 (online)

Scientific Press International Limited

Analysing the optimal conversion boundary

of convertible bonds close to maturity

Bolujo Joseph Adegboyegun1 and Titilayo Omotayo Akinwumi2

Abstract

This paper studies the short-time behavior of the optimal conversion
boundary of convertible bonds using singular perturbation technique.
The fundamental result is the analytic prediction of the optimal con-
version price close to maturity. Even though the asymptotic expansion
is valid for a short time interval, it complements the conventional ap-
proaches to evaluate this financial instrument at times that are not close
to expiry. The analysis presented here is applicable to a wide range of
nonlinear derivatives pricing problems.
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1 Introduction

Convertible bonds (CBs) are hybrid financial instruments that can be con-

verted into the bond issuing firm’s common stocks with a preset conversion

ratio, or hold the bond till maturity to receive coupons and the face value

prescribed in the contract agreement. The investors may decide to convert

the CBs into equity based on the price path followed by the underlying stock.

A higher dividend per bond if converted often lead to a higher possibility to

trigger conversion that dilutes existing equity holders value [7]. There were

also theoretical and empirical arguments for early conversion when investors

faced short-sale costs, transaction costs, or funding costs [3, 11]. CBs have a

financial structure that combines the characteristics of stocks and bonds. The

dominant determinant of value depends on the prevailing market conditions.

From the perspective of a borrower, CBs have the benefit of lower interest

rate cost than the straight bond, and it offers a relatively cheap way for many

companies to raise capital. However, there is a drawback that the issuer faces

capital structure uncertainty. On the other hand, in return for a declined yield

faced by investors, there is an upside participation in the performance of the

equities of the issuing firm [3].

The pricing of CBs has long been acknowledged as a very challenging prob-

lem in quantitative finance because of the associated moving boundary, along

with singular behaviour at expiry date. It is numerically challenging for most

conventional pricing methods to effectively track the dynamic of CBs in the

surrounding neighborhood of maturity date. For instance, when using the finite

difference method [10, 17] and finite element method [8, 12], a fine discretiza-

tion of the time domain is needed near expiry to obtain a reasonably accurate

result [13]. This practice is not only computationally expensive but has lim-

ited accuracy. Financially, the exact location of critical conversion prices is

crucial to the investors for financial decisions and hedging [1]. Therefore, it is

desirable to further study the dynamics of this financial security near maturity

date to complement the traditional pricing approaches.

The literature analyzing singular behavior of early exercise price of finan-

cial derivatives are limited. Among the works trying to study this phenomenon

is Chen & Zhu [6]. Their work focused on American put options with no divi-

dend payment modeled on the Black-Scholes framework. While this appears a
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source of inspiration, it is never optimal to convert CBs without dividend yield

on the underlying before expiry. Financially, when both dividend and coupons

payment are zero, the investors have no incentive to give up their conversion

right early, then an American-style CB resembles its European counterpart.

In a related study, Alobaidi & Mallier [2] analyzed zero-coupon American con-

verts based on Vasicek and Cox-Ingersoll-Ross models. A matched asymptotic

solution is obtained within the transitional region between the two co-existing

states.

This paper aims to match solutions that are asymptotically valid on dif-

ferent regimes to derive a solution that is uniformly valid close to maturity.

We consider standard CBs under the Black-Scholes model with zero coupons,

which can be exchanged for one unit of stock at any time at or before the

maturity date. The bonds pay an amount K, the face value, at maturity if the

option to redeem is not exercised. The choice of our model allows the evalua-

tion of our results within a framework that permits objective comparison with

the existing works.

The remainder of this paper proceeds as follows. Section 2 states the under-

lying assumptions of the Black-Scholes model, and present the free boundary

problem of CBs with the embedded early conversion right. In Section 3, we

derive the asymptotic behavior of CBs near the expiration time. Section 4

discusses our explicit analytical results and concludes the paper.

2 Free boundary problem of CBs

Following the Grundy and Verwijmeren [9] empirical results that CBs pric-

ing models assumed a perfect market, like Brennan and Schwartz [4], we adopt

this perfect market setting. Under this setting, there is no transaction cost,

both equity and bond holders have equal access to market information and

trade continuously without arbitrage opportunities. We assume further that

there is no senior or junior debt issued, only block conversion is allowed, pos-

session of all convertibles is diffused, and default risk is neglected [1].

Let V (S, t) denotes the value of a CB, which is a measurable function of

the underlying stock price, S and time, t. Under the risk neutral measure, the
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stock price follows lognormal diffusion process

dS

S
= µdt + σdZ, (1)

where the drift µ volatility σ are constants, and dZ denotes the increment

of a standard Brownian motion process. In light of no-arbitrage arguments,

the following free boundary problem modelled the pricing dynamics of the

standard CBs

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ (r − δ)S

∂V

∂S
− rV = 0, 0 < S < Sf , t > 0

V (S, T ) = max(nS, Z)

V (Sf , t) = nSf

∂V

∂S
(Sf , t) = n

lim
S→0

V (S, t) = Ze−r(T−t),

(2)

where r is the risk-free interest rate, K is the strike price, and δ is the con-

tinuous dividend payment. For simplicity, we assume r − δ > 0. Problem (2)

is defined on S ∈ [0, Sf (t)], t ∈ [0, T ]. For each t ∈ [0, T ], there exists a stock

price S for which conversion before the final time T is optimal. This value

defines a continuous curve Sf ; a moving interface separating the region where

it is advantageous to hold the bond from where exercise is optimal. The loca-

tion of Sf (t) at final time, T is given as Sf (T ) = K
n
. Intuitively, problem (2)

is defined in a domain part of whose boundary is moving as time passes, and

its behavior is similar to the so called Stefan problem [15, 14].

3 Matched asymptotic expansion of the opti-

mal conversion boundary

In this section, we derive the matched asymptotic expansion of Sf (t) from

differential system (2) using the singular perturbation technique [5]. First,

we transform (2) into an equivalent dimensionless form by introducing new

variables:

x = ln

(
S

K

)
, xf (τ) = ln

(
Sf (t)

K

)
, Kv(x, τ) = (V (S, t)−S)ek1τ , and τ =

σ2(T − t)

2
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With the new variable and conversion ratio n = 1, one can easily check that

the free boundary problem (2) is transformed into the following problem:

∂v

∂τ
=

∂2v

∂x2
+ (k1 − k2 − 1)

∂v

∂x
− k2e

xek1τ

p(x, 0) = max(1− ex, 0)

lim
x→−∞

v(x, τ) = 1− exek1τ

p(xf (τ), τ) = 0

∂v

∂x
(xf , τ) = 0,

(3)

where k1 and k1 are defined as k1 = 2r
σ2 , k2 = 2δ

σ2 respectively. Since Sf (T ) = K,

xf (0) = 0. It should be remarked that the continuity of state variables, V (S, t)

and its first derivative with respect to S on Sf (t) corresponds to the continuity

of v(x, τ) and its first derivative on xf (τ).

According to the essence of the so-called singular perturbation approach,

we set τ = εT ′, where T ′ = O(1) and ε is a small positive artificial parameter

0 < ε� 1. Then,we obtain

∂v

∂T ′
= ε

∂2v

∂x2
+ ε(k1 − k2 − 1)

∂p

∂x
− εk2e

x+k1εT ′

v(x, 0) = max(1− ex, 0)

lim
x→−∞

v(x, T ′) = 1− exeεk1T ′

v(xf , T
′) = 0

∂v

∂x
(xf , T

′) = 0.

(4)

To construct the matched asymptotic solution, we naively treat Equation (4)

as a regular perturbation problem. Then, we produce the outer approximation

by assuming that the solution v(x, T ′) of PDE system (4) can be expanded in

powers of ε. Thus, we obtain an outer expansion which valid for x < 0:

v(x, T ′) = 1− ex(1 + k1εT
′) + O(ε2) (5)

As it is shown, the outer expansion breaks down as x → 0+, i.e, the outer

solution is discontinuous in this regime. Because we cannot impose boundary

conditions on the leading-order outer solution, we require inner boundary layer

to satisfy these boundary conditions. To achieve this, we represent v(x, T ′) by
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inner expansion with corner layer x − xf1 = O(εp) and introduce a stretched

or interior layer variable

y =
x− xf

εp
,

where y = O(1). Substituting y into the governing PDE contained in Equa-

tion (4) and balance the leading-order terms, we obtain p = 1. The problem

v(x, T ′) = v(y, T ′) becomes

ε
∂v

∂T ′
− dxf

dτ

∂v

∂y
=

∂2v

∂y2
+ ε(k1 − k2 − 1)

∂v

∂y
− k2ε

2[1 + yε + xf + k1εT
′]

v(0, T ′) = 0,
∂v

∂y
(y = 0, T ′) = 0

(6)

The technical justification for the inner expansion require the scaling x = εpX

where X = O(1). Adopting x into Equation (3) and equate the higher terms

produces p = 1/2. The scaling x = ε1/2X bridges between the outer region

and the inner region near the moving boundary xf .

To continue with the asymptotic analysis, we explore the solution of (6) in

a series form:

v(x, T ′) = ε1/2v0 + εv1 + O(ε3/2), (7)

where v(x, T ′) = O(ε3/2). Substituting v(X, T ′) in Equation (6), with x =

ε1/2X and x = yε + xf , we obtain sequence of leading-order PDE systems

∂v0

∂T ′
=

∂2v0

∂X2

v0(X, 0) = max(−X, 0)

lim
X→−∞

v0(X, T ) = −X

lim
X→∞

∂v0(X,T )

∂T ′
= 0

(8)

∂v1

∂T ′
=

∂2v1

∂X2
+ (k1 − k2 − 1)

∂v0

∂X
− k2

v1(X, 0) = max(
−X2

2!
, 0)

lim
X→−∞

v1(X,T ′) =
−X2

2!
− k1T

′

lim
X→∞

∂v1(X,T ′)

∂X
(X,T ′) = 0

(9)
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For mathematical justification, the boundary conditions as X → −∞ are

obtained by matching with the outer expansion, whereas the ones as X →∞
are needed to complete the PDE systems.

In order to obtain analytical solutions of the PDE systems (8) and (9),

we adopt the similarity solution techniques [16]. Following this method, we

consider a solution structure v0(X,T ′) = T ′1/2g0(γ) and v1(X, T ′) = Tg1(γ)

for (8) and (9) respectively, where γ = X

2
√

T ′ . Thus, it is not difficult to

show that the above systems transformed respectively to ordinary differential

systems

g′′0(γ) + 2γg′0(γ)− 2g0(γ) = 0

lim
γ→−∞

g0(γ) = −2γ, lim
γ→∞

g′0(γ) = 0
(10)

and

g′′1(γ) + 2γg′1(γ)− 4g0(γ) = 2(k1 − k2 − 1)erfc(γ) + 4k2

lim
γ→−∞

g1(γ) = −2γ2 + k1(α− 1), lim
γ→∞

g′1(γ) = 0.
(11)

The general solution of g0(γ) is obtained as

g0(γ) = C0γC1[e
−γ2

+ γ
√

πerfc(γ)] (12)

After imposing the limit condition γ → −∞ and the boundary conditions

g0(γ) = g′0(γ) = 0 as γ → ∞, it is straightforward to obtain the analytical

solution as

g0(γ) =
e−γ2

√
π
− γerfc(γ), (13)

where

erfc(γ) = 1− 2√
π

∞∑
n=0

(
(−1)nγ2n+1

n!(2n + 1)

)
.

Following the same procedures for system (11), we assume for the moment

the general solution

g1(γ) = g1a(γ)e−γ2

+ g1b
(γ)erfc(γ) + g1c(γ), (14)

which, after performing some mathematical manipulations results in

g1(γ) =

(
k2 − k1 + 1 +

γe−γ2

2
√

π
− (1 + 2γ2)erfc(γ)

4

)
erfc(γ)− k2. (15)
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By exploring the asymptotic expansion of erfc(γ), the solutions g0(γ) and g1(γ)

as γ →∞, can be written respectively as

g0(γ) =
e−γ2

2γ2
√

π
+ O

(
e−γ2

γ2

)
(16)

g1(γ) = −k2. (17)

Finally, the transformed unknown boundary xf (τ) is determined by matching

the solution v(x, τ) in the two different regions. We require that the expansions

agree asymptotically in these regimes, where X → ∞ and γ → ∞ as ε → 0.

Hence, by taking the limit values as γ → ∞ corresponding to x → xf , and

using the leading-order terms, we obtain the transcendental equation:

e−x2
f /4τ

2
√

πτ
− k2 = 0, (18)

with the solution

xf (τ) = 2
√

τ

(
− ln(2k2

√
πτ)

)1/2

(19)

Reverting to the state variables with xf (τ) = ln

(
Sf (t)

K

)
, we obtain

Sf (t) = Kexp

[
σ
√

2(T − t)

(
− ln

2δ
√

2π(T − t)

σ

)1/2]
(20)

The matched asymptotic expansion for the optimal conversion boundary of

CBs is now complete. The new-found Equation (20) is important in CBs

trading. Specifically, once Sf (t) is known, the nonlinear pricing problem (4)

becomes a linear one, and it is straightforward to predict the CBs dynamics.

It should be remarked that as δ → 0, Sf (t) → ∞. This implies that the

conversion option should never be exercised when the bond pays no dividend

and investors are better off holding the bond to maturity. Higher dividend per

bond when converted results in a higher possibility to trigger conversion that

dilutes existing share holders value [7].
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4 Discussion and conclusion

The specific result of this paper is Equation (19), the optimal conversion

price of CBs valid close to maturity. This result can be used to validate numeri-

cal solutions designed for more complicated cases where no analytical solutions

exist.It worth mentioning that provided the dividend yield on underlying stock

is non negative, xf is of the form
√

τ
(
− ln

√
τ
)
. This result follows the existing

works where related issues were addressed [2].

To investigate the singular behaviour of optimal conversion boundary close

to expiry, we estimate the limiting of Sf (t) and its first derivative as t→ T :

lim
t→T

Sf (t)) = K, and lim
t→T

dSf

dt
=∞

The limiting value of Sf (t), K as t → T aligns with both theoretical and

empirical reasonings that if a zero-coupons CBs held to due date, it could

be traded for a cash amount of the ratio of principal and the conversion ratio

(here conversion ratio, n=1). Furthermore, the infinite slope at t = T should be

expected because the optimal asset price changes drastically in the surrounding

neighborhood of maturity time. The future work would extend the singular

perturbation technique to multiple stopping problems, including convertible

bonds with embedded call and put options.
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