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1 Introduction

This is the text of the introduction. In many regression methods, its usu-

ally about finding a linear or curvilinear relationship based on the scatter plot.

Most regression methods estimate the average (mean) value of the response

variable. Some z-x scatter plots do not obey this dictatorship due to influen-

tial points also known as outliers. Financial and insurance data among others

have significant variability and are in some cases known as heavy-tailed data

markovich2008nonparametric. Those data possess isolated points (from the

cloud) that distort any attempt to make a simple linear or other average-

based regression. This is one of the reasons why many robust methods are be-

ing developed in both parametric and non-parametric ways. Robust because

they aim to get rid of being influenced by extreme values. This is the case

in methods as LAD (Least Absolute Deviations) which estimate the median

or 1/2-quantile value of the response variable (see [12]). Conditional quantile

regression as developped in [6] is more general and gives a more general de-

scription of the response variable at each level in (0, 1). The local polynomial

regression method, mostly used for non-parametric estimations, is robust but

is still influenced by abnormally far-off points at boundaries. Outliers pull

the curve toward them in places where there are few amounts of points. [3]

devised a method to perform the analysis without deleting them by filling the

gap between the dense cloud and the very distant points by adding pseudo-

points before making the non-parametric estimation of the probability density

function. Our approach, in this paper, gives absolute robustness to these non-

parametric methods estimates by solving the problem of outliers, smoothing

the estimators and giving the possibility in forecasting. We base our estima-

tions on the Nadaraya [11] - Watson [16] (NW) method which is a particular

case of local polynomial regression. The method consists of detecting points

likely to change the behavior of the curves towards the borders by using the

method of Tukey then making an estimation of the quantile as discussed in [15]

then reintegrating the ouliers by predicting their response variable by k-NN

algorithm. The latter is a data mining tool with predictive power from obser-

vations using distance or similarity. Prediction is possible when estimates are

smooth. We performed a two step-estimation which consist of estimating the

quantile location shift or the QAR (Quantile AutoRegressive). After smooth-
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ing it and predicting the response for the ouliers (omitted in the first place),

the CSF (Conditional scale function) is estimated from the residuals. Specific

assumptions, also found in literature, are made to ascertain the consistency of

ours estimations. The data generating process is discussed in section 2. The

combination of smoothing method and the ouliers handling reduce the bias of

the estimate compared to the results in [8]. To illustrate that, we simulated

identical processes in terms of parameters, then obtained estimates from the

processes and computed the quadratic errors. These errors are very small and

confirm that our estimates are accurate. In section 4, we discuss the empirical

estimation of the conditional distribution function and its inverse. Our re-

sults can be used in finance in calculating CVaR (Conditional Value-at-Risk),

expected shortfall, etc. Considering a Quantile Autoregressive model,

Xt = ατ (Zt) + ut, t = 1, 2, . . . (1)

where ατ (Zt) is the τ th Conditional Quantile Function of Xt given Zt and the

innovation ut are assumed to be independent and identically distributed with

zero τ th quantile and constant scale function, see [8]. Rough kernel estimators

of ατ (z) and $τ (z) were derived and their consistencies proven in [4]. To im-

prove the accuracy of the estimations, a bootstrap kernel estimator of ατ (Zt)

was determined and shown to be consistent, see [9]. This paper extends [9] by

assuming that the innovations follow Quantile Autoregressive Conditional Het-

eroscedastic process similar to Autoregressive-Quantile Autoregressive Condi-

tional Heteroscedastic process proposed in [8]:

Xt = ατ (Zt) + $τ (Zt)εt, t = 1, 2, . . . (2)

where ατ (Zt) is the conditional θ-quantile function of Xt given Zt; $τ (Zt) is

a conditional scale function at τ -level and εt is independent and identically

distributed (i.i.d.) error with zero τ -quantile and unit scale. The function

$τ (Zt) can be expressed as

$τ (Zt) = λ$(Zt) (3)

where $(Zt) is the so called volatility found in [1] and [14] which are some key

references on Engle’s ARCH models and λ is a positive constant depending on

τ (see [10]). An example of this kind of function is Autoregressive - Generalized

Autoregressive Conditional Heteroscedastic AR(1)-GARCH(1,1),

Xt = αt + $tet, t = 1, 2, . . . , (4)
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where

αt = µ + δXt−1

ut = $et

$t =
√

w + αu2
t−1 + β$2

t−1

et ∼ N (0, 1), independent of Xt−1

(5)

and µ ∈ (−∞,∞), δ < 1, β > 0, α > 0, w > 0, α + β < 1. Note that αt

may also be an ARMA (see [17]). The specifications for model (4) are given

in section 2.4.

Considering other financial time series models, the model (1) can be seen as a

robust generalization of AR-ARCH- models, introduced in [17], and their non-

parametric generalizations reviewed by [5]. For instance, consider a financial

time series model of AR(p)-ARCH(p)-type,

Xt = α(Zt) + $(Zt)et, t = 1, 2, . . . (6)

Where Zt = (Xt−1, Xt−2, · · · , Xt−p), α(·) and $(·) arbitrary functions rep-

resenting, respectively, the conditional mean and conditional variance of the

process.

A partitioned stationary α-mixed time series (Xt, Zt), where the Xt ∈ R and

the variate Zt ∈ Rd are respectively At-measurable and At−1-measurable is

considered. For some τ ∈ (0, 1), the conditional τ -quantile of Xt given the

past Ft−1 assumed to be determined by Zt is estimated. For simplicity, we

assume that Zt = Xt−1 ∈ R throughout the rest of the discussion.

2 Model definition

Definition 2.1. A process is said to be weakly stationary, if its first and

second moments are time invariant. Meaning that

E[Xt] = E[Xt−1] = λ < ∞, ∀t (7)

V(Xt) = ρ0 < ∞, ∀t and (8)

Cov(Xt, Xt−k) = ρk, ∀t,∀k. (9)

The third property only depends on the difference t− (t− k).
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In the next section, we discuss the properties of the model AR(1)-ARCH(1)

that will be simulated for the application of our findings.

2.1 AR(1) process

Recall that the process of application or to be simulated is a combination of

two processes. The first is the AR(1) represented by

Xt = µ + δXt−1 + et (10)

where µ ∈ R is a constant and et is white noise with mean 0, constant variance

σ2
e and is independent of the lagged value Xt−1. This model represents some

outputs, in financial time series for instance, that depend on their own previous

values and an innovation term (stochastic term)

Theorem 2.2. The AR(1) process is stationary and ergodic for δ < 1.

Proof. Using the definition 2.1, we specify the parameter that yield the sta-

tionarity of the AR(1) process.

E[Xt] = µ + δ E[Xt−1] + 0

λ = µ + δλ

=
µ

1− δ

(11)

and

V(Xt) = 0 + V(δXt−1 + et)

ρ0 = δ2 V(Xt−1) + V(et) + 2 Cov(Xt−1, et)︸ ︷︷ ︸
=0

= δ2ρ0 + σ2
e

=
σ2

e

1− δ2

(12)
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We calculate the covariance, for k = 1, as

Cov(Xt, Xt−1) = E[XtXt−1]− E[Xt] E[Xt−1]

ρ1 = E[µXt−1 + δX2
t−1 + etXt−1]−

µ2

(1− δ)2

=
µ2

1− δ
+ δ E[X2

t ]− µ2

(1− δ)2

=
−µ2δ

(1− δ)2
+ δ

(
V(Xt) + (E[Xt])

2)
=

−µ2δ

(1− δ)2
+ δ

(
σ2

e

1− δ2
+

µ2

(1− δ)2

)
= δ

σ2
e

1− δ2

(13)

Now, for k = 2 and using the properties of the Covariance, we have

Cov(Xt, Xt−2) = Cov(µ + δXt−1 + et, Xt−2)

ρ2 = Cov(µ, Xt−2) + δ Cov(Xt−1, Xt−2) + Cov(et, Xt−2)

= 0 + δρ1 + 0

= δ2 σ2
e

1− δ2

(14)

We conclude that

Cov(Xt, Xt−k) = ρk = δk σ2
e

1− δ2
(15)

2.2 ARCH(1) process

As the AR(1) models the outputs from the previous ones, the ARCH(1)

is the modelization of the actual innovation as function of the previous ones

too. ARCH-based process are being utilized in most of the current time se-

ries analysis in finance, economics, etc because they model the volatility. An

ARCH(1) is depicted by

εt = $et, (16)

$ =
(
ω + αε2

t−1

) 1
2 , t = 1, 2, . . . (17)
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with the conditions ω > 0, α < 1 and et i.i.d with zero mean and variance 1

and independent to εt−1. There conditions allow the data generation process

to be stationary. To show it, we calculate the following statistics:

E[εt] = E
[(

ω + αε2
t−1

) 1
2 et

]
= E

[(
ω + αε2

t−1

) 1
2

]
× E [et]︸ ︷︷ ︸

=0

= 0.

(18)

Let’s also introduce the conditional statistics that will enable the calculation

the variance of the process.

2.2.1 Conditional expectation

The conditional expectation of the ARCH(1) process is

E [εt | εt−1] = E
[(

ω + αε2
t−1

) 1
2 et | εt−1

]
=

(
ω + αε2

t−1

) 1
2 E[et | εt−1]

=
(
ω + αε2

t−1

) 1
2 E[et]

= 0.

(19)

2.2.2 Conditional variance

V [εt | εt−1] = V
[(

ω + αε2
t−1

) 1
2 et | εt−1

]
= E

[(
ω + αε2

t−1

)
e2

t | εt−1

]
=

(
ω + αε2

t−1

)
E[e2

t ]

= ω + αε2
t−1.

(20)

The variance of the process is therefore given by the law of total variance

V(εt) = E [V(εt | εt−1)] + V (E[εt | εt−1])

= E
[
ω + αε2

t−1

]
= ω + α E[ε2

t−1]

= ω + α
(
V(εt) + (E[εt])

2)
= ω + α V(εt)

V(εt) =
ω

1− α
.

(21)
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For this process, the covariance

Cov(εt, εt−k) = 0 ∀k > 0. (22)

2.3 GARCH(1,1) process

This process depends on both the previous innovation and the previous

conditional variance. It’s defined as

εt = $et, (23)

$ =
(
ω + αε2

t−1 + β$2
t−1

) 1
2 , (24)

et ∼ N (0, 1), independent of εt−1 and $t−1, t = 1, 2, . . . (25)

Using the definition 2.1, we can show the specifications of the GARCH(1,1).

We calculate, as in the previous section, the statistics

E[εt] = E
[(

ω + αε2
t−1 + β$2

t−1

) 1
2 et

]
= E

[(
ω + αε2

t−1 + β$2
t−1

) 1
2

]
E [et]

= 0.

(26)

The conditional expectation of the GARCH(1,1) process is given by

E[εt | εt−1] = E
[(

ω + αε2
t−1 + β$2

t−1

) 1
2 et | εt−1

]
= E

[(
ω + αε2

t−1 + β$2
t−1

) 1
2

]
E [et | εt−1]

= 0,

(27)

and the conditional variance

V(εt | εt−1) = E
[
ε2

t | εt−1

]
= E

[(
ω + αε2

t−1 + β$2
t−1

)
e2

t | εt−1

]
= E

[(
ω + αε2

t−1 + β$2
t−1

)
| εt−1

]
E

[
e2

t | εt−1

]
= ω + αε2

t−1 + β$2
t−1.

(28)
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The law of total variance yields

V(εt) = E[$2] + V(0)

= E
[
ω + αε2

t−1 + β$2
t−1

]
= ω + α E

[
ε2

t−1

]
+ β E

[
$2

t−1

]
= ω + α V(εt) + β V(εt)

V(εt) =
ω

1− α− β
.

(29)

This variance is positive and finite for ω > 0 and α + β < 1.

2.4 AR(1)-GARCH(1,1)

A financial time series can be of this form which is function of the previous

return and the previous volatility or innovation. Our data generation process

will be of the form:

Xt = αt + ut

αt = µ + δXt−1

ut = $et

$t =
(
ω + αX2

t−1 + β$2
t−1

) 1
2

et ∼ N (0, 1), independent of Xt−1.

(30)

Here, we also calculate the statistics using the definition 2.1 in order to show

the conditions over the coefficients that ascertain the stationarity of the pro-

cess. The first moment is given by

E[Xt] = E
[
µ + δXt−1 +

(
ω + αu2

t−1 + β$2
t−1

) 1
2 et

]
= µ + δ E[Xt−1] + E

[(
ω + αu2

t−1 + β$2
t−1

) 1
2

]
E[et]

= µ + δ E[Xt]

E[Xt] =
µ

1− δ
.

(31)

2.4.1 Conditional expectation

E[Xt | Xt−1] = µ + δXt−1 + E
[(

ω + αu2
t−1 + β$2

t−1

) 1
2 et | Xt−1

]
= µ + δXt−1.

(32)
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2.4.2 Conditional variance

V(Xt | Xt−1) = E[X2
t | Xt−1]− (µ + δXt−1)

2

= E
[(

ω + (αe2
t−1 + β)$2

t−1

)
| Xt−1

]
× E[e2

t | Xt−1]

= ω + (α + β) E
[
$2

t−1 | Xt−1

] (33)

2.4.3 Law of total variance

V(Xt) = E [V(Xt | Xt−1)] + V (E[Xt | Xt−1])

= E
[
ω + (α + β) E

[
$2

t−1 | Xt−1

]]
+ V (µ + δXt−1)

= ω + (α + β) E
[
$2

t−1

]
+ δ2 V(Xt)(

1− δ2
)
V [Xt] = ω + (α + β) E

[
$2

t−1

] (34)

We have

E
[
$2

t

]
= ω + (α + β) E

[
$2

t−1

]
(35)

and for stationary, we’ll assume the moments to be time-independent. That

is,

E
[
$2

t

]
=

ω

1− α− β
(36)

Finally,

V[X] =
ω

(1− δ2) (1− α− β)
(37)

which is positive and finite for ω > 0, δ < 1 and α + β < 1.

3 Simulation of AR(1)-ARCH(1) processes

All our estimations will take into account a data generated from an AR(1)-

ARCH(1), a process as in the section 2.4 where the GARCH term β = 0. In

order to graphically show how the curves behave in view of the variation of
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the coefficients satisfying the conditions and which do not (See Figure 1, 2, 3

and 4). The Figure 3 and Figure 4 show non-stationary process because the

parameters do not satisfy the conditions discussed in the previous section.

Now, having a clear information of the parameters that will come into play,

we can simulate a stationary AR(1)-ARCH(1) (see Figure 1) process in order

to apply our estimations that are discussed in the following section.

4 Estimation of quantile functions

To obtain the QAR-QARCH model from (1), we simply take its τ th condi-

tional quantile and we obtain:

Qτ (Xt | Xt−1) = ατ (Xt−1) = α(Xt−1) + $(Xt−1)q
e
τ (38)

where qe
τ = F−1

e (τ) is the τ th quantile of {et}. To make the reading less

difficult, Xt−1 is changed to Zt. Note that (38) is the estimation of the CVaR

(Conditional Value-at-Risk) discussed in . Now, centering the response variable

in (1) at its τ th-quantile in (38), we get:

Xt − ατ (Zt) = $(Zt) (et − qe
τ ) (39)

which is equivalent to the quantile autoregressive model:

Xt = ατ (Zt) + ετ , (40)

where ετ = $(Zt) (et − qe
τ ) is 0 τ -quantile, i.e, Qτ (ετ ) = 0.

We made the following assumptions:

Assumption 1. The kernel function K : Rd −→ R is symmetrical, non-

negative and bounded satisfying
∫

K(s)ds = 1 with
∫

Rd sK(s) = 0.

Assumption 2. The process is strong mixing.

The following definition, tells more about a strong mixing process.

Definition 4.1 (strong mixing). A stationary process Xt with σ-algebras

At = {Xj,−∞ < j ≤ t} and At = {Xj, t ≤ j < ∞}, t = 1, . . . , n, is said to

be strong mixing if

α(s) = sup
A∈At, B∈At+s

{P(A ∩B)− P(A) P(B)} −→ 0 as n −→∞
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Assumption 3. The (positive) smoothing parameter is such that b → 0,

nb →∞ as n →∞.

Assumption 4. 1. f(x, z) and f(z) exist.

2. for fixed (x, z), 0 < F (x|z) < 1 and f(z) > 0 are continuous in the

neighborhood of z where the estimator is to be estimated.

3. The derivatives F (j)(x | z) = djF (x|z)
dzj and f (j)(z) = djf(z)

dzj , for j = 1, 2,

exist

4. F (x | z) is a convex function in x for fixed z.

5. The conditional density f(x|z) = dF (x|z)
dx

exists and is continuous in the

neighborhood of x

6. f (ατ (z) | z) > 0 and f ($τ (z) | z) > 0

4.1 Non-parametric QAR

Theorem 4.2. Let γτ (x, µ) = γτ (x − µ) = (τ − I(x− µ ≤ 0)) (x − µ) and

(x, σ) ∈ R2. Then, γτ satisfies the Lipschitz continuity condition:

γτ (x, σ)− γτ (x, σ′) ≤ Mσ − σ′

with the Lipschitz constant M = 1 and for all σ, σ′.

Proof of Theorem 4.2. Similar to the proof of Lemma 3.1 in [8, p .74-75]

Consider the model (38) and the assumption made on the innovation ετ .

By definition, ετ is zero τ -quantile meaning

Pr(ετ ≤ 0) = Pr(ετ ≤ 0 | Zt) = τ (41)

and using (41), we have

Pr(Xt ≤ ατ (Z) | Zt) = E [I (Xt ≤ ατ (Zt)) | Zt] = τ (42)
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which is equivalent to F (ατ (Zt) | Zt) = τ . The conditional quantile function

ατ minimizes the objective function E [γτ (Xt, ατ ) | Zt], i.e.

ατ (z) = argmin
ατ

E [γτ (X, ατ ) | Zt = z] (43)

and is empirically given by

α̂τ (z) = argmin
ατ

1

n

n∑
t=1

Kb(Zt − z)γτ (Xt, ατ ) (44)

Let’s denote ϕ̂n,τ = 1
n

∑n
t=1 Kb(Zt − z)γτ (Xt, ατ ). The zero of the equation

d
dατ

ϕn,τ = 0 is

α̂τ (z) = inf {µ : F (µ | z) ≥ τ} ≡ F̂−1(τ | z) (45)

where

F̂ (x | z) =
[
nf̂(z)

]−1
n∑

t=1

Kb(Zt − z)I (Xt ≤ x) (46)

Where I(·) is the indicator function which is 1 if the condition X∗
t ≤ x∗ holds

and 0 otherwise.

4.2 Empirical Conditional Distribution Function and its

inverse

From the sequence {(Xt, Zt)}1≤t≤n of i.i.d. random variables, divide a span of

our data into non-overlapping bins of the same size z∗1 = min(zt) < z∗2 < · · · <
z∗n−1 < z∗N = max(zt), t = 1, 2, . . . , n and compute the kernel matrix K with

elements given by

(kij) 1≤i≤N
1≤j≤n

= Kb(z
∗
i − Zj) =

1

b
K

(
z∗i − Zj

b

)
(47)

Where K is the kernel density function (KDE) and b is the smoothing param-

eter. The matrix of kernels is given by

MK =


Kb(z

∗
1 − Z1) Kb(z

∗
1 − Z2) · · · Kb(z

∗
1 − Zn)

Kb(z
∗
2 − Z1) Kb(z

∗
2 − Z2) · · · Kb(z

∗
2 − Zn)

...
...

...
...

Kb(z
∗
N − Z1) Kb(z

∗
N − Z2) · · · Kb(z

∗
N − Zn)

 (48)
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The estimation of the empirical probability density function of Zt is given by

ĝ(z∗i ) =
1

n

n∑
j=1

kij (49)

and the matrix expression of ĝ

Mĝ =
1

n
MK1n, 1n = (1, 1, . . . , 1)T ∈ Rn (50)

=
1

n


Kb(z

∗
1 − Z1) Kb(z

∗
1 − Z2) · · · Kb(z

∗
1 − Zn)

Kb(z
∗
2 − Z1) Kb(z

∗
2 − Z2) · · · Kb(z

∗
2 − Zn)

...
...

...
...

Kb(z
∗
N − Z1) Kb(z

∗
N − Z2) · · · Kb(z

∗
N − Zn)




1

1
...

1

 (51)

=
1

n


Kb(z

∗
1 − Z1) + Kb(z

∗
1 − Z2) + · · ·+ Kb(z

∗
1 − Zn)

Kb(z
∗
2 − Z1) + Kb(z

∗
2 − Z2) + · · ·+ Kb(z

∗
2 − Zn)

...

Kb(z
∗
N − Z1) + Kb(z

∗
N − Z2) + · · ·+ Kb(z

∗
N − Zn)

 (52)

which is a vector of N elements. We also introduce the indicator matrix MI

with columns representing each I(Xt ≤ x) for fixed x (for each column) and

t = 1, 2, . . . , n. The product of the kernel matrix MK and the matrix MI

contains all the summations (also seen as joint probability density function at

Xt = x and Zt = z∗).

f̂(x, z∗) =
n∑

t=1

Kb(z
∗ − Zt)I(Xt ≤ x) (53)

with matrix form MI for all fixed couple (z∗, x) ∈ R2.

MI =


I(x1 ≤ x1) I(x1 ≤ x2) . . . I(x1 ≤ xn)

I(x2 ≤ x1) I(x2 ≤ x2) . . . I(x2 ≤ xn)
...

I(xn ≤ x1) I(xn ≤ x2) . . . I(xn ≤ xn)

 (54)

=


1 I(x1 ≤ x2) . . . I(x1 ≤ xn)

I(x2 ≤ x1) 1 . . . I(x2 ≤ xn)
...

I(xn ≤ x1) I(xn ≤ x2) . . . 1

 (55)
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The elements of MI are 1 where the inequalities are true and 0 otherwise. The

matrix of the joint probability density function in (53) is

Mf̂ = MkMI

=


Kb(z

∗
1 − Z1) Kb(z

∗
1 − Z2) · · · Kb(z

∗
1 − Zn)

Kb(z
∗
2 − Z1) Kb(z

∗
2 − Z2) · · · Kb(z

∗
2 − Zn)

...
...

...
...

Kb(z
∗
N − Z1) Kb(z

∗
N − Z2) · · · Kb(z

∗
N − Zn)

×


1 I(x1 ≤ x2) . . . I(x1 ≤ xn)

I(x2 ≤ x1) 1 . . . I(x2 ≤ xn)
...

I(xn ≤ x1) I(xn ≤ x2) . . . 1



(56)

and the one for conditional cumulative distribution functions (CCDF) is given

by

(Fji) 1≤j≤n
1≤i≤N

=

∑n
t=1 kit · I(Xt ≤ xj)

nĝ(z∗i )
(57)

with matrix form

MF̂ = MKMI/ (MK1n×n) (58)

=



n∑
t=1

Kb(z
∗
1 − Zt)I(Xt ≤ x1)

n∑
t=1

Kb(z
∗
1 − Zt)

· · ·

n∑
t=1

Kb(z
∗
1 − Zt)I(Xt ≤ xn)

n∑
t=1

Kb(z
∗
1 − Zt)

...
...

...
n∑

t=1

Kb(z
∗
N − Zt)I(Xt ≤ x1)

n∑
t=1

Kb(z
∗
N − Zt)

· · ·

n∑
t=1

Kb(z
∗
N − Zt)I(Xt ≤ xn)

n∑
t=1

Kb(z
∗
N − Zt)


(59)

Each element of the (n × N)-matrix MF̂ is the computation of F̂ (xj | z∗i ).

For each row i of F , 1 ≤ i ≤ N , we choose the minimum of xj’s that satisfy

F̂ (xj | zi) ≥ τ, τ ∈ (0, 1). This estimates the QAR or F̂−1(τ | z∗). We notice

that the number of selected xj’s will exactly be the number of bins.
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4.3 k Nearest Neighbor (k-NN) prediction

The prediction α̃τ (z) of a future value or any value Zn+1 = z is easy in

parametric regression once we have the estimated coefficients of a model. But

in non-parametric regression, this prediction is somehow impossible. Recent

research on this problem suggests methods more or less feasible for our type of

estimation. There is the kNN (k Nearest Neighbor)[2] method which consists

of finding the k values, z∗1, . . . , z
∗
k close to z. The requirement of this method

is that the estimator ατ is to be smooth [2][13]. Unfortunately, the estimation

of the QAR in (44) is not smooth and suffers from boundary issues. Having

estimated α̂τ (z
∗
i ) and the bin points z∗i , i = 1, . . . , N , thus, α̃τ (z) will be the

average of α̂τ (z
∗
1), . . . , α̂τ (z

∗
k). In other words,

α̃τ (z) =
1

k

k∑
i=1

α̂τ (z
∗
i ) (60)

This approach is used to predict the values α̃τ (Zt) which is a sequence of n

points. The figure 6 represents the prediction for the entire data (for instance,

the daily returns) at τ = 0.25, 0.50, 0.75, 0.9. In order to see if the prediction

is accurate, the following error is calculated (the mean squared error of the

difference between α̂τ (z
∗
i ) and α̃τ (z

∗
i ) for bins z∗1 , . . . , z

∗
N)

ẽp =
1

N

N∑
i=1

(α̂τ (z
∗
i )− α̃τ (z

∗
i ))

2 (61)

The same prediction applies when we have the non-parametric estimation of

the conditional scale function $̂τ .

4.4 Non-parametric QARCH

Considering that the QAR is already estimated, we have

Qτ [γτ (Xt − ατ (Zt))] = $(Zt)Qτ [γτ (et − qe
τ )] (62)

The ratio of Xt − ατ (Zt) in (39) and the left part in (62) gives

Xt − ατ (Zt)

Qτ [γτ (Xt − ατ (Zt))]
=

et − qe
τ

Qτ [γτ (et − qe
τ )]

(63)
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This transformation leads to the QAR-QARCH model

Xt = ατ (Zt) + $τ (Zt)ητ (64)

where $τ (Zt) = Qτ [γτ (Xt − ατ (Zt))] and ητ = et−qe
τ

Qτ [γτ (et−qe
τ )]

is zero τ -quantile

with unit scale. This property leads to the expression

Pr (γτ (ητ ) ≤ 1) = Pr (γτ (ητ ) ≤ 1 | Z) = τ (65)

This is identifiable to (42), if Xt and ατ (Zt) are replaced by γτ (Xt − ατ (Zt))

and $τ (Zt) respectively. Thus, $τ (Zt) minimizes E [γτ (γτ (Xt, ατ (Zt)) , $τ (Zt)) | Zt],

i.e.

$τ (Zt) = argmin
$τ

E [γτ (X∗
t , $τ ) | Zt] (66)

or is empirically given by

$̂τ (Zt) = argmin
$τ

1

n

n∑
t=1

Kb(Zt − z)γτ (X
∗
t , $τ ) (67)

where X∗
t = γτ (Xt, ατ (Zt)). Again, if we denote ϕ̂n,τ = 1

n

∑n
t=1 Kb(Zt −

z)γτ (X∗
t , $τ ), then dϕ̂n,τ

d$τ
= 0 has as solution

$̂τ (z) = inf
{

x∗ ∈ R+
∗ : F̂ (x∗ | z) ≥ τ

}
≡ F̂−1(τ | z) (68)

with

F̂ (x∗ | z) =
[
nf̂(z)

]−1
n∑

t=1

Kb(Zt − z)I(X∗
t ≤ x∗) (69)

We prove the consistency of our estimations with the following theorem

Theorem 4.3. Suppose that the assumptions 1, 2, 3 and 4 hold. Then, α̂τ

and $̂τ are consistent and asymptotically normal in distribution.

Proof of theorem 4.3. The proof is found in our previous work [13].
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5 Bias reduction

5.1 Outliers detection

Before estimating the conditional quantile function α̂τ , we first did the

detection of the far-off points which are points outside the interval

[Q1 − 3× (Q3 −Q1), Q3 + 3× (Q3 −Q1)]

where Q1 and Q3 are the first and the third quantiles of the sequence of random

variables Z1, Z2, . . . , Zn.

5.2 Kernel smoother

The idea here is to regress the rough QAR estimation (without outliers)

on the bins z∗1 , z
∗
2 , . . . , z

∗
N using Nadaraya - Watson kernel regression. The

resulting smoothed curve is used to predicted the today’s QAR for Zt’s, t =

1, 2, . . . , n. Figure 5.2 shows the limits of the interval. It shows also the rough

estimation of the QAR without removing the outliers (red curve) and the

predicted smooth curve The blue curve is the one for the smoothed estimator

of the conditional quantile function α̃τ (Zt) which doesn’t feel the boundaries.

The red curve which represent the rough estimation is sensitive to the outliers

and that lead to the increase the bias. Therefore, calculating the MASE (Mean

Average Squared Error) of the latter will lead to big errors. That’s why the

smooth estimation is adequate for this type of time series. The MASE is given

by

MASE (α̂τ (z)) =
1

n

n∑
j=2

[
1

m

m∑
i=1

(α̂τ,1(zi)− α̂τ,j(zi))
2

]
(70)

where α̂τ,1(zi) is a fixed estimation of the QAR and α̂τ,j(zi) is also a QAR

estimate for every j = 2, 3, ...,m. The same formula is used to compare the

accuracy of the estimators of the two functions ατ and $τ .

6 Accuracy of estimations

In order to show the accuracy of our smooth estimators, we simulated (random)

AR(1)-ARCH(1) process of size m = 250, 500, 1000 with same coefficients µ =
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0.5, δ = 0.3, ω = 1, α = 0.35 and et ∼ N (0, 1). The following tables confirm

the accuracy of the smooth estimations.

7 Quantile error

From our previous paper [13], we showed the asymptotic properties of the

conditional scale function estimate through inversion of the conditional CCDF

as in (69) with the assumption that the quantile location shift ατ is zero.

The properties for the QAR estimate are the same given that the two CCDFs

in (46) and (69) differ respectively in the conditional part I(Xt ≤ x) and

I(X∗
t ≤ x∗) only. Thus, assuming we have estimated the two components

using the prediction method, the quantile error ητ can be estimate as

η̂τ =
Xt − α̃τ (Zt)

$̃τ (Zt)
(71)

and should verify the conditions (41) and (65). Moreover, if the conditions

hold, then the estimators are accurate. From our simulation, the estimations

seem to be accurate for quantile τ = 0.75 (see Table 5).

8 Monte Carlo study

The figure 6 represents the overlay of the data process plot and the esti-

mated α̃τ (z) using the kNN prediction method. In fact, the non-parametric

estimation of α̂τ (z) was first carried out using the smoothed estimator along

with the outliers detection using box-plot fences in order to correct the bound-

ary issue (see [13]). The comparison between α̂τ (z) and the predicted α̃τ (z)

for bins z is represented by Figure 7. Note that the prediction error in (61)

was evaluated to 10−6 and the Figure 7 illustrates it as well. The outliers

detection technique and prediction give less weight to extreme points that are

not considered in the first estimation, then are re-involved in the prediction.

This made our estimations less sensitive to the boundaries (see Figure 7).

On the graphs above, we see the smoothed estimation of the QAR for a

given data set from an AR(1)-ARCH(1) process. For instance, this can be the
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estimation of daily conditional returns from previous values. Now that we’re

able to estimation the smoothed QAR for the each previous value, that help to

determine the estimation of the smoothed QARCH using the same approach

that can be summarized as follow:

1. Use the smoothed estimate of the QAR and the response X to determine

the residuals

Rt = Xt − α̃τ (Zt)

2. Use Rt to estimate the rough CSF, $̂(z), in (67) where X∗
t = γτ (Rt, 0)

3. Determine $̃(Zt) from $̂(z) using KNN prediction.

The figures above represent the estimations of smoothed QAR for propor-

tions 0.25, 0.50, 0.75 and 0.90. Given an AR(1)-ARCH(1) time series, we

are able to calculate today’s return based on the yesterday’s at proportion

τ ∈ (0, 1). This feature describe the response variable but not totally because

we need to know the conditional variation at the given proportion τ . That’s

why the smoothed estimation of the CSF is necessary.

9 Conclusion

The problem of estimating the conditional scale function when the autore-

gressive part is not zero was carried out by the use of Nadaraya-Watson kernel

estimation and Quantile Autoregression method. The rough estimation of the

QAR feels the boundaries and that increased the bias of the estimates. We

were able to correct the boundary issue and showed the accuracy of our es-

timations. The use of the k-NN method enabled the calculation the quantile

error for each proportion τ ∈ (0, 1). The next step will the application of our

approach on real data.
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Figure 1: AR(1)-ARCH(1) process for µ = 0.5, δ = 0.25, ω = 1, α = 0.35

Table 1: MASE for τ = 0.25
n rough α̂0.25 smooth α̂0.25 rough $̂0.25 smooth $̂0.25

250 1.13482 0.03078 0.03457 0.00075

500 0.94149 0.04128 0.04916 0.00075

1000 1.22881 0.00671 0.15645 0.00115

Table 2: MASE for τ = 0.50 (median)

n rough α̂0.50 smooth α̂0.50 rough $̂0.50 smooth $̂0.50

250 0.6184 0.01963 0.08938 0.00401

500 1.21301 0.00873 0.3448 0.00526

1000 1.54507 0.0091 0.3595 0.00816
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Figure 2: AR(1)-ARCH(1) process for µ = 0.5, δ = −0.75, ω = 1, α = 0.5

Table 3: MASE for τ = 0.75
n rough α̂0.75 smooth α̂0.75 rough $̂0.75 smooth $̂0.75

250 1.88628 0.03351 1.36976 0.0126

500 0.39451 0.02664 0.69214 0.02616

1000 1.28018 0.01356 1.21384 0.02367

Table 4: MASE for τ = 0.90
n rough α̂0.90 smooth α̂0.90 rough $̂0.90 smooth $̂0.90

250 0.66136 0.222 0.62655 0.17793

500 0.99836 0.12574 1.09674 0.27295

1000 1.76097 0.07349 1.47431 0.1794
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Figure 3: AR(1)-ARCH(1) process for µ = 0.5, δ = 0.95, ω = 1, α = 1.2

Table 5: Summary of quantile errors

τ Min. 1st Qu. Med Mean 3rd Qu. Max. Pr(ητ ≤ 0) Pr (η∗τ ≤ 1)

0.25 -47.18 0.03 3.00 3.53 6.48 61.04 0.25 0.42

0.50 -16.78 -1.46 0.02 0.17 1.61 22.99 0.50 0.62

0.75 -16.61 -2.86 -1.49 -1.32 0.06 21.53 0.74 0.74

0.90 -16.62 -2.79 -1.95 -1.92 -1.09 12.96 0.89 0.96

where η∗τ = γτ (ητ ).
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Figure 4: AR(1)-ARCH(1) process for µ = 0.5, δ = 1, ω = 1, α = 1
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Figure 5: Rough (red) and smooth predicted (blue) QAR
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Figure 6: Predicted conditional quantile returns
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Figure 7: Graphical overlay of α̃τ (z) [red points] and α̂τ (z) [blue curve]


