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Abstract

The aim of this paper is to determine the optimal initial height of
a sand dune that may favor its formation when it is completely im-
mersed in an aquatic environment. We formulate an optimal control
problem governed by the equations which model the formation dynam-
ics of this dune through its height under the effect of the incompress-
ible flows in space dimension 2, where the control plays the role of
an uncertainty on the initial height. To solve this problem, we use a
Chebyshev-Gauss-Lobatto spectral approach PN−2,M−2-type in space
and the Second-order backward Euler scheme. The Chebyshev-Gauss-
Lobatto quadrature and the Composite-Trapezoidal method are also
used. Further numerical tests are given to illustrate our approch and
compare the approach and optimal solutions.
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1 Introduction

Sanding is an environmental phenomenon whose stake has been the subject

of many contributions for an effective struggle [12, 13, 15, 16, 17, 18, 19]. Yet

we can not influence this phenomenon until we have a good understanding

of the process that governs its formation. It is in this perspective that we

have developed and studied numerically a mathematical model [17, 18] that

describes the sand dune formation dynamics across its height in an incom-

pressible flows where the dune is supposed to be completely submerged and

occupies a bounded open regulated domain Γµ =]−1
µ

, 1
µ
[2, (µ > 1) of R2.

The results obtained allowed us to understand the sand dune formation

dynamics in an aquatic environment over a time interval [0, T ], T > 0 [17, 18].

Thus, in order to implement these results, we were interested in this work

to determine the optimal initial height which can favor the dune formation

at a given instant t, with the same initial data [17, 18] that we consider as

the observation data. And to better understand the control action on the

approximate height, we use this optimal value as initial data to calculate the

optimum height. To achieve this, we formulate an optimal control problem

governed by the equations which model the dune formation dynamics, while

acting on the initial height of this dune with a control that plays the uncertainty

role on This one [1, 5, 20, 22].

Several approaches are used to solve a large class of optimal control prob-

lems [1, 4, 6, 7, 14, 20, 24, 26]. For our problem, we use the Second-order

backward Euler scheme for time semi-discretization and the Chebyshev-Gauss-

Lobatto spectral approach PN−2,M−2-type [2, 8, 18, 21] for spatial discretiza-

tion. This approach is based on use Chebyshev polynomials of degree at most

N − 2 following x and at most M − 2 following y to approximate the func-

tions and their derivatives on the Chebyshev-Gauss-Lobatto usual grid of col-

location points. Furthermore, we approximate the cost function using the

Chebyshev-Gauss-Lobatto quadrature method for integral on Γµ domain and
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the Composite-Trapezoidal method for integral on time interval [3, 9].

The paper is organized as follows : Section 2 is devoted to the formulation

of optimal control problem. In Section 3 we present the numerical schemes

that we used. Numerical results are presented and discussion in Section 4. We

concludes this paper in section 5.

2 Problem Formulation

Let Γµ =]−1
µ

, 1
µ
[2, (µ > 1), a regular bounded domain occupied by a sand

dune which is supposed to be completely immersed in an incompressible flows

in a regular open domain Ω =]− 1, 1[2 of R2.

Let T > 0. Note : Q =]0, T [×Γµ and the control space U = L2(Γµ).

The model problem under consideration is to find the optimal control vopt and

the optimal height hopt which minimize the cost function :

J(v) =
1

2

∫ T

0

‖ h(t, x, y)− hobs ‖2
L2

w(Γµ) dt +
α

2
‖ v ‖2

L2
w(Γµ), (1)

subject to :

∂h

∂t
−∇.(m∇h) = Φ(t, x, y) in Q (2)

‖ ∇h ‖≤ 1, m(‖ ∇h ‖ −1) = 0 in Q (3)

h(0, x, y) = hobs + v(x, y) on Γµ, (4)

where

• h(t, x, y) is the dune height;

• hobs is an observation data;

• Φ(t, x, y) is a source term;

• m(t, x, y) is the mass density of the sand grains transported by the flows;

• v(x, y) denotes the control variable that plays the role of an uncertainty on

the initial height of the dune;

• α denotes a real coefficient of regularization.

The norm ‖ ‖L2
w(Γµ) is defined for a continuous function φ to a weight function

w [8, 21], by the following relation :

‖ φ ‖L2
w(Γµ)= (

∫ 1
µ

− 1
µ

∫ 1
µ

− 1
µ

| φ(x, y) |2 w(x)w(y)dxdy)
1
2 . (5)
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Note Uad = {u ∈ U : ‖ ∇u ‖≤ 1}, the admissibles controls set.

Choose Φ, m and h in L2(Q), and the observation data hobs in L2(Γµ).

We assume that problem (1)-(4) has a unique solution (hopt, vopt). We propose

a reformulation as follows :

J(u) = min
v∈Uad

J(v), (6)

subject to Eqs. (2)-(4).

3 Numerical Schemes

In this section, we give the numerical Schemes that we use to discrete

problem (1)-(4). The approximate process of the considered problem includes

the approximation as well as the discretization of the cost function and the

constraints model.

3.1 Approximation of the Constraints model

For a given positif integer r, we consider a time step discretisation ∆t = T
r
,

with T ≥ 1. Then we define the knots of the interval [0; T ] given by tn = n∆t,

with n ∈ {0, . . . , r}.
For a given continues function ϕ(t, x, y), we approximate ϕ at the knots tn

by ϕ(tn, x, y) ≈ ϕn(x, y).

In order to approach in time the Eq. (2), we used second-order backward

Euler scheme which is given by :

∂tϕ(tn+1, x, y) ≈ 3ϕn+1(x, y)− 4ϕn(x, y) + ϕn−1(x, y)

2∆t
, for n = 1, . . . , r. (7)

Let Λ =]− 1, 1[. For a given positive integers N and M we denote by PN−2(Λ)

and PM−2(Λ) sets of orthogonal polynomials of degree less than or equal to

N − 2 and M − 2, respectively.

Let denote PN−2,M−2(Λ×Λ) = PN−2(Λ)⊗PM−2(Λ), the set of polynomials

defined on Λ×Λ of degree N −2 according to the variable x and degree M −2

according to the variable y, where ⊗ denotes Kronecker product [11].
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The Chebyshev-Gauss-Lobatto spectral approach PN−2,M−2-type consists

in approaching functions and its derivatives using Chebyshev polynomials and

the Chebyshev-Gauss-Lobatto mesh [8, 21]. For µ > 1, interval ]−1
µ

, 1
µ
[ subset

]− 1, 1[, PN−2,M−2(Γµ) subset PN−2,M−2(Λ× Λ).

Let (xxi, yyj) a grid of Γµ defined by : xxi = 1
µ
cos( iπ

N
), i = 1, . . . , N−1 yyj =

1
µ
cos( jπ

N
), j = 1, . . . ,M − 1. We write Eqs. (2)-(4) at the nodes (xxi, yyj)

and at point tn+1 for i = 1, . . . , N − 1, j = 1, . . . ,M − 1 and n = 0, 1, . . . , r.

Let us consider the following approximations :

h(tn+1, xxi, yyi) ≈ hn+1
i,j ,

m(tn+1, xxi, yyi) ≈ mn+1
i,j ,

φ(tn+1, xxi, yyi) ≈ φn+1
i,j ,

v(xxi, yyi) ≈ vi,j.

(8)

We approach the first and secondary operators of derivation of ϕ = m, h in

PN−2,M−2(Γµ)

∂ϕn+1(xi; yj)

∂x
=

N∑
k=0

d̃N,1
i,k ϕn+1

k,j ;

∂ϕn+1(xi; yj)

∂y
=

M∑
l=0

d̃M,1
j,l ϕn+1

i,l

∂2ϕn+1(xi; yj)

∂x2
=

N∑
k=0

d̃N,2
i,k ϕn+1

k,j ;

∂2ϕn+1(xi; yj)

∂y2
=

M∑
l=0

d̃M,2
j,l ϕn+1

i,l ,

(9)

where d̃N,1
i,k and d̃N,2, 1 ≤ i ≤ N − 1; 1 ≤ k ≤ N − 1 are coefficients of

the Chebyshev differentiation matrix of order 1 D̃N and order 2 (D̃N)2 in

PN−2(Λ) [8, 21].

Using the approximations (8) and the schemes (7) and (9) we obtain the dis-
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crete form of Eq. (2) as follows :

3hn+1
i,j − 4hn

i,j + hn−1
i,j

2∆t
−

( N−1∑
k=1

d̃N,1
i,k mn+1

k,j

)( N−1∑
k=1

d̃N,1
i,k hn+1

k,j

)
−mn+1

i,j

N−1∑
k=1

d̃N,2
i,k hn+1

k,j

−
( M−1∑

l=1

d̃M,1
j,l mn+1

i,l

)( M−1∑
l=1

d̃M,1
j,l hn+1

i,l

)
−mn+1

i,j

M−1∑
l=1

d̃M,2
j,l hn+1

i,l = Φn+1
i,j ,

(10)

For n = 0, 1, . . . , r Let

An+1
1 = 2∆t(diag[(D̃N ⊗ IN−1)m

n+1]I). ∗ (D̃N ⊗ IM−1), (11)

An+1
2 = 2∆t

[
diag

(
mn+1

)
I
]
. ∗

(
(D̃N)2 ⊗ IM−1

)
, (12)

An+1
3 = 2∆t

(
diag

[
(IM−1 ⊗ D̃M)mn+1

]
I
)
. ∗

(
IN−1 ⊗ D̃M

)
, (13)

An+1
4 = 2∆t

[
diag

(
mn+1

)
I
]
. ∗

(
IN−1 ⊗ (D̃M)2

)
, (14)

where IN−1, IM−1 are (N − 1)× (N − 1) and (M − 1)× (M − 1) dimensional

identity matrices,

I is (N − 1)(M − 1)× (N − 1)(M − 1) dimensional matrix with entries equal

to 1,

mn+1 is a vector of order (N − 1)(M − 1)× 1 given by:

mn+1 = (mn+1
1,1 ; ...; mn+1

1,M−1; m
n+1
2,1 ; ...; mn+1

2,M−1; .....; m
n+1
N−1,1; ...; m

n+1
N−1,M−1)

t,

An+1
1 , An+1

2 , An+1
3 , An+1

4 are (N − 1)(M − 1)× (N − 1)(M − 1) dimensional

matrices given by the second, third, fourth and fifth terms, respectively, in the

first member of Eq. (10).

.∗ denotes multiplication element per element of the same dimensional matri-

ces. Then using Eqs. (11)-(14), we can write the matrice formulation for Eq.

(10) as follows :

Cn+1Hn+1 = 4Hn −Hn−1 + Rn+1, n = 1, . . . , r, (15)

where Hn+1, Rn+1 are vectors of order (N − 1)(M − 1)× 1 given by :

Hn+1 = (hn+1
1,1 , . . . , hn+1

1,M−1, h
n+1
2,1 , . . . , hn+1

2,M−1, . . . , h
n+1
N−1,1, . . . , h

n+1
N−1,M−1)

t,

Rn+1 = 2∆t(Φn+1
1,1 , . . . , Φn+1

1,M−1, Φ
n+1
2,1 , . . . , Φn+1

2,M−1, . . . , Φ
n+1
N−1,1, . . . , Φ

n+1
N−1,M−1)

t.

Cn+1 is (N − 1)(M − 1)× (N − 1)(M − 1) dimensional matrix given by :

Cn+1 = 3(IN−1 ⊗ IM−1)− An+1
1 − An+1

2 − An+1
3 − An+1

4 . (16)
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Assuming Cn+1 reversible, we can rewrite Eq. (15) as follows :

Hn+1 = (Cn+1)−1(4Hn −Hn−1 + Rn+1), n = 1, . . . , r. (17)

3.2 Approximation of the Cost Function

The basic principle of the Chebyshev-Gauss-Lobatto quadrature and the

Composite-Trapezoidal method is describe in many references [3, 9, 10, 23, 25].

Using Eq. (5) and the Chebyshev-Gauss-Lobatto quadrature, we obtain the

following approximations :

‖ h(t, x, y)− hobs ‖2
L2

w(Γµ) =

∫ 1
µ

− 1
µ

∫ 1
µ

− 1
µ

| h(t, x, y)− hobs |2 w(x)w(y)dxdy

=

∫ 1
µ

− 1
µ

( ∫ 1
µ

− 1
µ

| h(t, x, y)− hobs |2 w(x)dx
)
w(y)dy

≈
∫ 1

µ

− 1
µ

( N−1∑
i=1

| h(t, xxi, y)− hobs |2 wi

)
w(y)dy

≈
M−1∑
j=1

( N−1∑
i=1

| h(t, xxi, yyj)− hobs |2 wi

)
wj

(18)

and

‖ v(x, y) ‖2
L2

w(Γµ) =

∫ 1
µ

− 1
µ

∫ 1
µ

− 1
µ

| v(x, y) |2 w(x)w(y)dxdy

=

∫ 1
µ

− 1
µ

( ∫ 1
µ

− 1
µ

| v(x, y) |2 w(x)dx
)
w(y)dy

≈
∫ 1

µ

− 1
µ

( N−1∑
i=1

| v(xxi, y) |2 wi

)
w(y)dy

≈
M−1∑
j=1

( N−1∑
i=1

| v(xxi, yyj) |2 wi

)
wj,

(19)

where wi, is the Chebyshev-Gauss-Lobatto coefficient [8, 9, 21], define by :

wi =

{
π

2N
, i = 0, N

π
N

, i = 1, . . . , N − 1,
(20)
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as well as wj, j = 0, 1, . . . ,M.

By subtituting Eqs. (18)-(19) in Eq. (1) we get for i = 1, . . . , N − 1 and

j = 1, . . . ,M − 1 :

JN,M(v) ≈ 1

2

∫ T

0

( M−1∑
j=1

N−1∑
i=1

| h(t, xxi, yyj)− hobs |2 wiwj

)
dt

+
α

2

M−1∑
j=1

N−1∑
i=1

| v(xxi, yyj) |2 wiwj. (21)

Using composite trapezoidal formula on interval [0, T ], we obtain from Eq.

(21) :

Jn
N,M(v) ≈

(∆t

4

n∑
k=0

( M−1∑
j=1

N−1∑
i=1

[(hk
i,j − hobs)2 + (hk+1

i,j − hobs)2]
)

+
α

2

M−1∑
j=1

N−1∑
i=1

v2
i,j

)
wiwj. (22)

We can rewrite Eq. (22) in the following form :

Jn
N,M(V ) ≈

(∆t

4

n∑
k=0

([
(diag(Hk −Hobs))(Hk −Hobs)

]t

+
[
(diag(Hk+1 −Hobs))(Hk+1 −Hobs)

]t)
+

α

2

(
(diag(V ))V

)t
)
(WN ⊗WM),(23)

where Hobs, V are vectors of order (N − 1)(M − 1)× 1 given by :

Hobs = (hobs, . . . , hobs)t, (24)

V = (v1,1, . . . , v1,M−1, v2,1, . . . , v2,M−1, . . . , vN−1,1, . . . , vN−1,M−1)
t, (25)

WN , WM are vectors of order (N − 1)× 1 and (M − 1)× 1, respectively, given

by :

WN = (w1, . . . , wN−1)
t,

WM = (w1, . . . , wM−1)
t,

diag(X) is L× L dimensional matrix define from X = (X1, X2, . . . , XL)t by :

diag(X) =


X1 0

0 X2 0
. . . . . . . . .

0 XL−1 0

0 XL

 , with L = (N − 1)(M − 1). (26)
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From the discrete form of Eq. (4), we obtain :

H0
opt = Hobs + Vopt, (27)

where H0
opt and Vopt are vectors of order (N − 1)(M − 1) × 1 denotes initial

optimal height and optimal control, respectively, given by:

H0
opt = (h0,opt

1,1 , . . . , h0,opt
1,M−1, h

0,opt
2,1 , . . . , h0,opt

2,M−1, . . . , h
0,opt
N−1,1, . . . , h

0,opt
N−1,M−1)

t, (28)

Vopt = (vopt
1,1 , . . . , vopt

1,M−1, v
opt
2,1 , . . . , vopt

2,M−1, . . . , v
opt
N−1,1, . . . , v

opt
N−1,M−1)

t. (29)

We deduce from Eq. (17) and (27) the optimal height vector Hopt given by :

Hn+1
opt = (Cn+1)−1(4Hn

opt −Hn−1
opt + Rn+1), n = 1, . . . , r. (30)

4 Numerical Results

We choose N = M = 20, T = 1, α = 10−2, ∆t = 2.10−3 and consider

observation data as follows :

hobs = (1− x2)(1− y2).

Figures 1, 2, 3 and 4 describe the spatial profile of the optimal control

for 501 time discretization points and 361 nodes of the Γµ domain for µ =

10, 150, 200, 300. These graphics show that, as the domain is small, the optimal

control is compact.

With the same parameters, the spatial profiles of the approximate height

(Figures 5, 6, 9, 10) and the optimum height (Figures 7, 8, 11, 12) of the dune

are shown at t = 0.042 for a time steps ∆t = 2.10−3. These graphics show

that more the Γµ domain is small, more the control affects the approximate

height, significantly. The control action generates a significant disturbance of

this height, causing a sharpening of the dune. The spatial profile of optimum

height in Figures. 7, 8, 11 and 12 confirm this.
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Figure 1: Spatial profile of optimal control for ∆t = 2.10−3, N = M = 20 and

µ = 10.

Figure 2: Spatial profile of optimal control for ∆t = 2.10−3, N = M = 20 and

µ = 150.
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Figure 3: Spatial profile of optimal control for ∆t = 2.10−3, N = M = 20 and

µ = 200.

Figure 4: Spatial profile of optimal control for ∆t = 2.10−3, N = M = 20 and

µ = 300.
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Figure 5: Spatial profile of approach dune height at t = 0, 042, for ∆t =

2.10−3, N = M = 20 and µ = 10.

Figure 6: Spatial profile of approach dune height at t = 0, 042, for ∆t =

2.10−3, N = M = 20 and µ = 150.
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Figure 7: Spatial profile of optimum dune height at t = 0, 042, for ∆t =

2.10−3, N = M = 20 and µ = 10.

Figure 8: Spatial profile of optimum dune height at t = 0, 042, for ∆t =

2.10−3, N = M = 20 and µ = 150.
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Figure 9: Spatial profile of approach dune height at t = 0, 042, for ∆t =

2.10−3, N = M = 20 and µ = 200.

Figure 10: Spatial profile of approach dune height at t = 0, 042, for ∆t =

2.10−3, N = M = 20 and µ = 300.
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Figure 11: Spatial profile of optimum dune height at t = 0, 042, for ∆t =

2.10−3, N = M = 20 and µ = 200.

Figure 12: Spatial profile of optimum dune height at t = 0, 042, for ∆t =

2.10−3, N = M = 20 and µ = 300.
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5 Conclusion

In this paper we have studied numerically an optimal control problem of

sand dune formation dynamics in an aquatic environment. The aim is to deter-

mine the initial optimal height which favor dune formation in aquatic environ-

ment. we are formulate an optimal control problem governed by the equations

which model the dune formation dynamics, while acting on the initial height

of this dune with a control that plays the uncertainty role on This one. We are

using the Chebyshev-Gauss-Lobatto spectral approach PN−2,M−2-type and the

second-order backward Euler scheme to approach the constraints model. The

Chebyshev-Gauss-Lobatto quadrature and the Composite-Trapezoidal method

are used to approximate the cost function. Numerical results that we obtain

show that the methodology that we used is effective and convenient to ap-

proach the optimal control problem considered. Our futur work will be de-

voted to study an optimal distributed control problem of the dune formation

dynamics in an aquatic environment or under the wind effect.
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