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Conservative finite volume element scheme

for the regularized long wave equation

Quanxiang Wang1

Abstract

In this paper, a conservative finite volume element scheme for solving
the regularized long wave equation is presented. Theoretical analysis
shows that the proposed scheme can conserve the mass and energy.
The efficiency of the scheme is illustrated by simulating propagation of
single solitary wave, interaction of two solitary waves and undular bores.
Numerical results indicate that this scheme is second-order accuracy in
space and time, and has good conservation properties.
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1 Introduction

The regularized long wave (RLW) equation has been proposed by Peregrine

[1] to describe the nonlinear dispersive waves. It has been shown that the

1 College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.
E-mail: wangqx@njau.edu.cn

Article Info: Received : August 11, 2017. Revised : September 9, 2017.
Published online : October 31, 2017.



2 Conservative finite volume element scheme...

equation governs a great number of important physical phenomena, such as the

nonlinear transverse waves in shallow water and ionacoustic waves in plasma

[2]. Because of the balance between nonlinear and dispersive effects, these

waves preserve a stable waveform.

The RLW equation derived for long waves propagating in the positive x

direction, is given by

ut + ux + εuux − µuxxt = 0, x ∈ [a, b], (1)

where ε and µ are positive parameters, the subscripts x and t denote differen-

tiation and the boundary condition is u → 0 as x → ±∞. In this paper, we

will adopt periodic boundary conditions for the equation.

Benjamin et al. [3], have studied the mathematical theory of this equation

as a regularized version of the Korteweg-de Viries equation. Olver [4] has

shown that the RLW equation possesses only three conservation quantities

corresponding to mass, momentum and energy

I1 =

∫ b

a

udx, (2)

I2 =

∫ b

a

(
u2 + (µux)

2
)
dx, (3)

I3 =

∫ b

a

(
εu3 + 3u2

)
dx, (4)

respectively.

The RLW equation has been the subject of extensive investigations and

a large number of numerical schemes have been designed to study it. For

example, Peregrine [1] has proposed a simple finite difference scheme which

is first-order accurate in time. Jain et al. [5] combined a splitting method

and cubic spline technique to solve the RLW equation. Gardner et al. [6]

solved the RLW equation using a least-squares technique and linear space-

time finite elements. Zaki [7] has used splitting method and the cubic B-

spline finite elements to solve the RLW equation. Daǧ [8] has combined the

quadratic B-spline functions with the least-squares method to solve the RLW

equation. Cubic and quintic B-spline functions have also been used to develop a

collocation method to solve the RLW equation [9,10]. Dogan [11] has solved the

RLW equation using linear finite elements within Galerkin’s method. Recently,

Mei and Chen [12] proposed a new Galerkin method for the equation.
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The finite volume element method has been one of the most commonly

used numerical methods for solving partial differential equations. One main

attractive property of the method is that, the mass conservation law is main-

tained, which is fairly desirable for fluid and underground fluid computations.

So it has been extensively used in computational fluid dynamics [13-18].

In this study, we propose a conservative finite volume element scheme for

the RLW equation. It has been shown that the scheme can conserve mass and

energy of the RLW equation. The numerical scheme is derived based on the

discrete variational derivative method (DVDM). Furihata has used the DVDM

to design a stable finite difference scheme for the Cahn-Hilliard equation [19].

Further, Matsuo et al., [20,21] have extended the method to solve nonlinear

Klein-Gordon equation and Degasperis-Procesi equation.

This paper is organized as follows. In Section 2, preliminaries and notations

are introduced. In Section 3, the proposed conservative finite volume element

scheme is presented. Some numerical experiments are provided to illustrate the

effectiveness and accuracy of the proposed scheme in Section 4. We conclude

the paper in Section 5.

2 Preliminaries and notations

Definition 2.1. This is a text of a definition.

ax+ by + c = 0.

In this section, we introduce notations and useful propositions employed in

this paper.

2.1 Trial and test function spaces

The region of interest [a, b] can be decomposed into a grid Th with nodes

a = x0 < x1 < x2 < · · · < xN−1 < xN = b. (5)

where xi − xi−1 = h and h = b−a
N

. Denote Th = {Ii : Ii = [xi−1, xi], i =

1, 2, · · ·N}. Accordingly we place a dual grid T ∗
h with nodes

a = x0 < x1/2 < x3/2 < · · · < xN−3/2 < xN−1/2 < xN = b, (6)
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where xi−1/2 = xi − h/2, (i = 1, 2, · · · , N). Denote I∗0 = [x0, x1/2], I
∗
i =

[xi−1/2, xi+1/2] and I∗N = [xN−1/2, xN ].

Select the trial function space Uh as the linear element space with respect

to Th. The basis function of the node xi is

φi(x) =

{
1− | x− xi | /h, xi−1 ≤ x ≤ xi+1,

0, elsewhere.
(7)

Then numerical solution U for Eq. (1) can be uniquely written as U =
N∑

i=1

Uiφi(x), where Ui = U(xi, t). So in the element Ii, we have

U = Ui−1(1− χ) + Uiχ, (8)

U ′ = (Ui − Ui−1)/h, (9)

where χ = (x− xi−1)/h.

The test function space Vh corresponding to T ∗
h is taken as the piecewise

constant function space. The test function of the nodes xj is

ψj(x) =

{
1, xj−1/2 ≤ x ≤ xj+1/2,

0, elsewhere,
(10)

The numerical solution is denoted by Un
k ' u(kh, n∆t), where ∆t is the

time step. For the regularized long wave equation, we adopt the following

periodic boundary conditions

∂m+lu

∂xm∂tl

∣∣∣
x=a

=
∂m+lu

∂xm∂tl

∣∣∣
x=b

, (m, l = 0, 1). (11)

So the discrete periodic boundary conditions are

Un
k = Un

k mod N
for ∀k ∈ Z. (12)

2.2 Conserved quantities

In order to see the conservation property, it is convenient to work with the

following representation

ut − µuxxt = − ∂

∂x

(
δG

δu

)
, (13)
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where δG
δu

is the Euler-Lagrange variational derivative defined by

δG

δu
=
∂G

∂u
− ∂

∂x

(
δG

δux

)
and G = u2

2
+ ε

6
u3.

Proposition 1. Let u be the solution of Eq. (13). Then the total mass I1 =∫ b

a
udx is independent of t. Namely,

dI1
dt

= 0. (14)

Proposition 2. Let u be the solution of Eq. (13). Then the total energy

I3 =
∫ b

a
(εu3 + 3u2) dx is independent of t. Namely,

dI3
dt

= 0. (15)

Proof According to the chain rule, we have

1

6

dI3
dt

=

∫ b

a

δG

δu
utdx.

By the Eq. (13), we can get

1

6

dI3
dt

=

∫ b

a

[(
δG

δu
− µuxt

)
ut + µuxtut

]
dx

=

∫ b

a

[
−
(
µuxt −

δG

δu

)
∂

∂x

(
µuxt −

δG

δu

)
+
µ

2

∂

∂x
(ut)

2

]
dx

=
1

2

∫ b

a

∂

∂x

[
−
(
µuxt −

δG

δu

)2

+ µ (ut)
2

]
dx

=
1

2

[
−
(
µuxt −

δG

δu

)2

+ µ (ut)
2

]b

a

.

At last, we can complete the proof using the Eq. (11).

3 Design of schemes

3.1 Discrete variational derivative method

In the following, we recall the discrete variational derivative method briefly.
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Firstly, we define the energy as follows:

J(u) =

∫ b

a

G(u)dx, (16)

where we call G the energy function throughout this paper. As the discretiza-

tion of energy function, we employ the following finite volume element approx-

imation

Gd(U) ' G, (17)

Then we define the total discrete energy as follows:

J(u) =

∫ b

a

Gd(U)dx, (18)

To obtain the approximation δGd

δ(U,V )
of Euler-Lagrange derivative δG

δu
, we need

to compute the following difference:

J(U)− J(V ) =

∫ b

a

δGd

δ(U, V )
(U − V )dx. (19)

3.2 Conservative finite volume element scheme

Using any ψ ∈ Vh to multiply both sides of Eq. (13) and integrating on the

interval [a, b], we can obtain the following semi-discrete scheme((
1− µ∂2

x

)
ut, ψ

)
=

(
− ∂

∂x

(
δG

δu

)
, ψ

)
, (20)

where (·, ·) denotes the inner product of L2([a, b]).

Now we discretize the above semi-discrete scheme in time. To simplify the

notation, we will use the difference operator δ
〈1〉
n un = un+1−un−1

2∆t
. Additionally,

we define the discrete version of Euler-Lagrange derivative δG
δu

= u+ ε
2
u2 by

δGd

δ(un+1, un, un−1)
= un +

εun(un+1 + un + un−1)

6
. (21)

At last, we can get the following conservative finite volume element scheme((
1− µ∂2

x

)
δ〈1〉n un, ψ

)
=

(
− ∂

∂x

(
δGd

δ(un+1, un, un−1)

)
, ψ

)
. (22)

The Eq. (22) has the following discrete mass and energy conservation law.
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Theorem 1. (Discrete mass conservation law). Under the discrete periodic

boundary condition, then numerical solution by Eq. (22) conserves mass∫ b

a

undx = const. (23)

Theorem 2. (Discrete energy conservation law). Under the discrete periodic

boundary condition, then numerical solution by Eq. (22) conserves energy

6

∫ b

a

Gn
ddx = const. (24)

Proof

1

∆t

∫ b

a

(
Gn+1

d −Gn
d

)
dx

=

(
δG̃d

δ(un+1, un, un−1)
, δ〈1〉n un

)

=

(
δG̃d

δ(un+1, un, un−1)
− µ∂xδ

〈1〉
n un + µ∂xδ

〈1〉
n un, δ〈1〉n un

)

=

(
δG̃d

δ(un+1, un, un−1)
− µ∂xδ

〈1〉
n un, δ〈1〉n un

)
+
(
µ∂xδ

〈1〉
n un, δ〈1〉n un

)
=

(
δG̃d

δ(un+1, un, un−1)
− µ∂xδ

〈1〉
n un,

∂

∂x

(
δGd

δ(un+1, un, un−1)
− µ∂xδ

〈1〉
n un

))
+
(
µ∂xδ

〈1〉
n un, δ〈1〉n un

)
.

At last, we can complete the proof using the periodic boundary conditions.

4 Numerical experiments

In this section, we solve three test problems to demonstrate the efficiency

of the proposed conservative finite volume element scheme. In order to check

the accuracy of the scheme, we compute L2 and L∞ error norms defined as

follows

L2 =

√√√√ N∑
i=1

|Ui − ui|2h, (25)
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Table 1: Error norms for single solitary wave, c = 0.1.

h ∆t L∞ r L2 r

1/2 2/5 1.0647e-03 - 2.8143e-03 -

1/4 1/5 2.6628e-04 1.9994 7.0358e-04 2.0000

1/8 1/10 6.6611e-05 1.9991 1.7671e-04 1.9933

1/16 1/20 1.6665e-05 1.9989 4.7213e-05 1.9041

L∞ = max
i
|Ui − ui|. (26)

Additionally, we define the convergence rate r

r = log2(
||U2h − u||
||Uh − u||

),

where Uh is the numerical solution with space step h, u the analytical solution,

N the number of node. The rate approaches the number 2 would indicate

second-order accuracy in space and time. We will monitor the conservation

quantities of the RLW equation to examine the conserved properties of the

numerical scheme.

4.1 Single solitary wave

Eq. (1) has the following analytical solution which describes solitary wave

u(x, t) = 3c sech2 (k[x− x0 − vt]) , k =
1

2

√
εc

µ(1 + εc)
, (27)

where 3c is amplitude of the solitary wave which is initially centered on x = x0

traveling with velocity v = 1 + εc. Setting t = 0, the initial condition is

obtained

u(x, 0) = 3c sech2 (k[x− x0]) . (28)

To compare our results with those given in other references, we will take ε =

µ = 1.0, x0 = 0, c = 0.1, and solve the problem over the domain [−40, 60] in

the following.

In order to demonstrate the accuracy of our method, we have integrated

the problem at various resolutions up to time t = 20. The L2 and L∞ error
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Figure 1: The propagation for single solitary wave, c = 0.1.

norms for u have been computed by conservative finite volume element scheme.

They are displayed in Table 1. Examination of the table shows that the error

measures of our method diminish approximately quadratically as the space

and time step are simultaneously halved. In other words, the proposed finite

volume element scheme is second-order accuracy in space and time.

We perform a simulation with space step h = 1/8 and time step ∆t = 1/10

for single solitary wave on the time interval [0, 20]. Figure 1 presents that the

solitary wave propagates towards the right without change in form. It is easy

to find that the solitary wave continues to evolve with the initial velocity. We

also perform a simulation with the resolution to check the conservation of our

scheme. Figure 2 presents the error in the discrete mass and energy for the

proposed scheme. From the figure, we can find that our scheme can conserve

mass and energy within 10−13, which is strict conservation in numerical sense

and conforms the theoretical result.

To make comparison with the earlier works, we compute invariants and

error norms for single solitary wave with h = 1/8 and ∆t = 1/10 up to t = 20.

The previous results are also listed in Table 2. It is deduced from the L∞

error norm and conserved quantities that our scheme performs the motion of

single solitary wave satisfactorily. For example, the proposed scheme provides

smaller error than those presented in [9,10,12] . Additionally, the discrete

mass and energy are constant during the simulation. The discrete momentum

is conserved within 10−6 which is satisfactory.
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Figure 2: (a) Error in the discrete mass; (b) Error in the discrete energy. Single

solitary wave.

Table 2: Invariants and error norms for single solitary wave, h = 1/8 and

∆t = 1/10.

Method Time L∞ I1 I2 I3

Analytical 0 3.979949748 0.810462494 2.579007437

Our method 0 0 3.979927104 0.810360229 2.578672806

20 6.6611e-05 3.979927104 0.810360998 2.578672806

[9] 0 0 3.979927 0.81046251 2.57900750

20 1.1600e-04 3.979883 0.81027618 2.57839258

[10] 0 0 3.9799271 0.8104625 2.5790075

20 7.3370e-05 3.9798832 0.8104612 2.5790031

[12] 0 0 3.97993 0.81035 2.57901

20 9.1465e-05 3.97972 0.81026 2.57873
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Figure 3: The propagation for two solitary waves. c1 = 0.2, c2 = 0.1, h = 1/8,

∆t = 1/10.

4.2 Two solitary waves

In this section, the interaction of two solitary waves is studied by using the

following initial conditions

u(x, 0) = 3c1 sech2 (k1[x− x01]) + 3c2 sech2 (k2[x− x02]) , (29)

where k1 = 1
2

√
εc1

µ(1+εc1)
, k2 = 1

2

√
εc2

µ(1+εc2)
. The parameters ε and µ are taken

as 0.1.

Firstly, we study the behavior of the interaction of two solitary waves having

different amplitudes and travelling in the same direction. In order to compare

our method with eariler results, we will solve the RLW equation over the

region [-200,400] with x01 = −177, x02 = −147, c1 = 0.2 and c2 = 0.1. The

experiment is run from t = 0 to t = 400 to allow the interaction to take

place. Figure 3 shows the interaction of two positive solitary waves. Figure

4 presents the error in the discrete mass and energy for the proposed scheme.

It is observed that our scheme can conserve mass and energy within 10−12,

which is also strict conservation in numerical sense and conforms the theoretical

analysis. Numerical results in Table 3 shows the comparison of the conserved

quantities I1, I2 and I3 obtained by our scheme with previous results [11,12].

From the table, we can observe that the mass and energy are not changed

during the interaction of the two solitary waves and the conservation is best

in our method.
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Figure 4: (a) Error in the discrete mass; (b) Error in the discrete energy. Two

solitary waves.

Table 3: Invariants for two solitary waves. c1 = 0.2 and c2 = 0.1.

Method Time I1 I2 I3

Analytical 9.858725131 3.240356319 10.76226277

Our method 0 9.858258030 3.243206628 10.77312299

200 9.858258030 3.243814635 10.77312299

400 9.858258030 3.243289136 10.77312299

[11] 0 9.8586 3.2449 10.7788

200 9.8786 3.2523 10.8036

400 9.8930 3.2585 10.8251

[12] 0 9.8583 3.2328 10.7623

200 9.8574 3.2384 10.7654

400 9.8563 3.2351 10.7703
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Figure 5: The propagation for two solitary waves at (a)t = 0, (b)t = 5,

(c)t = 10 and (d)t = 15.

Now we simulate the interaction of a positive and negative solitary wave.

In this case, the RLW equation is solved over the domain [0, 80] and the pa-

rameters are chosen as k1 = 0.4, k2 = 0.6, x01 = 23 and x02 = 38. We perform

a simulation with space step h = 1/10 and time step ∆t = 1/10. Figure 5

shows the interaction of the two solitary waves and it is observed that there

are at least two additional solitary waves produced, which is consistent with

the results in [22,23].

At last, we study the interaction of two negative solitary waves over the

region [0, 120] with k1 = 0.6, k2 = 0.8, x01 = 82, x02 = 67, h = ∆t = 1/10. The

process of interaction is presented in Figure 6 and additional solitary waves are

also produced. Hence the interaction is inelastic and this is in good agreement

with those reported in [22].

4.3 Wave undulation

In this subsection, we consider the development of an undular bore with

the initial condition

u(x, 0) =
1

2
u0

[
1− tanh

(
x− xc

d

)]
, (30)
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Figure 6: The propagation for two solitary waves at (a)t = 0, (b)t = 5,

(c)t = 10 and (d)t = 20.

Figure 7: The development of undular bore for steep slope d = 2.0.
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Figure 8: The development of undular bore for gentle slope d = 5.0.

where u(x, 0) denotes the elevation of the water above the equilibrium surface

at t = 0, u0 denotes the magnitude of the change in water level which is

centered on x = xc. For the undular bore, d represents the slope between the

still water and deeper water.

For comparison with earlier studies, we take ε = 1.5, µ = 1/6, u0 = 0.1,

x0 = 0. The problem is solved over the range [−60, 300] up to t = 250 with

space step h = 0.24 and time step ∆t = 0.1. In addition, the boundary

conditions have been chosen as u = u0 for x = −60 and u = 0 for x = 300.

Figure 7 and 8 present the development of the undular bore at various

times from t = 0 to t = 250 for steep slope d = 2.0 and gentle slope d = 5.0,

respectively. It is observed that there is no instability during the undulation

process. Amplitudes and positions of first two peaks are given in Table 4.

From the table, we can find that the undulations are almost travelled with the

same velocity and amplitude will increase when steep slope is considered. So

we can conclude that the slopes only have an effect on amplitudes. The results

are consistent with previous works [9,12]. The growth change of the leading

undulation for both steep and gentle slopes are shown in Figure 9. It can be

seen that the formation of the first undulation is almost at t = 3 and the rate

of growth is fast in the beginning and then decreases slowly. For gentle slope,

the first undulation is formed at t = 29, as reported in [12].

In this case, the quantities I1, I2 and I3 are no longer constant but increase
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Table 4: Amplitudes and positions of undulations at t = 250.

d = 2.0 d = 5.0

Position Amplitude Position Amplitude

Our method

Leading undulation 265.92 0.18175 265.20 0.17744

Second undulation 254.16 0.16156 253.92 0.15249

[9]

Leading undulation 265.92 0.182 264.96 0.178

Second undulation 254.16 0.162 253.92 0.153

[12]

Leading undulation 265.92 0.18225 265.20 0.17791

Second undulation 254.40 0.16230 253.92 0.15344

Figure 9: The development of leading undulation.
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Table 5: The numerical results for M1, M2 and M3.

Time M1 M2 M3

Analytical 0.1050000 0.0106667 0.03307500

d = 2.0 50 0.1075000 0.0109898 0.03466875

150 0.1075000 0.0109865 0.03466875

250 0.1075000 0.0109851 0.03466875

d = 5.0 50 0.1075000 0.0109976 0.03466875

150 0.1075000 0.0109926 0.03466875

250 0.1075000 0.0109892 0.03466875

linearly throughout the simulation at the following rates

M1 =
dI1
dt

=
d

dt

∫ b

a

udx = u0 +
1

2
u2

0 = 0.105,

M2 =
dI2
dt

=
d

dt

∫ b

a

(
u2 + (µux)

2
)
dx = u2

0 +
2

3
u2

0 = 0.0106667,

M3 =
dI3
dt

=
d

dt

∫ b

a

(
εu3 + 3u2

)
dx = 3u2

0 + 3u3
0 +

3

4
u4

0 = 0.033075. (31)

The numerical results for M1, M2 and M3 are given in Table 5 for d = 2.0 and

d = 5.0. It is observed that the numerical growth rates of mass and energy are

constant and there is no obvious change for the growth rates of momentum.

5 Conclusion

In this paper, the conservative finite volume element scheme is introduced

for solving the initial boundary problems of the RLW equation. The conserva-

tion of the proposed numerical scheme is proved. The efficiency of the scheme

is illustrated by simulating propagation of single solitary wave, interaction of

two solitary waves and undular bores. Numerical results demonstrate that the

proposed finite volume element scheme is second-order accuracy in space and

time. Moreover, the new scheme can conserve mass and energy to machine

accuracy. Since the present method is simple and efficient, it can also be used

to solve other similar problems. This is our ongoing research.
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