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Abstract 

    The paper analyzes the operation of a defense logistics system. In more detail, 

the examined system consists of a one warehouse, the first supply echelon and 

four battlefields, the second supply echelon, which face four non-identical demand 

rates. Characterized as a divergent dynamic supply network, the system is 

analyzed by modeling it as markovian process with discrete space. Major outputs 

of the modeling process are the evaluation of the performance measures of Work 

In Process (WIP) , Fill Rate (FR) and the presentation of the behavior of the 

performance measures in relation with a number of variables such as safety stock 

(s) , replenishment rates (μ) and demand rates (λ). 
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1  Introduction  
This paper deals with the analytical modelling of a dynamic supply system 

with two stages (warehouse, customers). The operation of every system is 

depended by the system’s strucure, system’s behavior and system’s 

interconnectivity. The system’s strucure is a divergent one (the final stages are 

connected with a warehouse). System’s behavior involves inputs, processing and 

outputs of military material, information or data. The replenishment times between 

the members are random and follow a Coxian-2 phase type distribution. Further, 

the customers face a demand distributed according to Poisson distribution and the 

warehouse is never starved.  

Based on the above assumptions, the performance of this supply chain system 

is explored. The system is modelled as continuous time Markov process with 

discrete space. The structure of the transition matrices of these specific systems is 

examined and a computational algorithm is developed to generate it for different 

values of system characteristics.The proposed algorithm allows the calculation of 

performance measures from the derivation of the steady state probabilities. 

The system performance is evaluated by the metrics of special interest from 

the view point of achieving customer service targets, viz., fill rates, cycle times. 

Performance measures such as the average inventory (WIP),fill rate (FR) of the 

military supply chain are examined as a function of system characteristics i.e. 

number of battlefields (R) and replenishment time characteristics μi1, μi2, 

di1,di2,d1,d2 i=1,2 and demand characteristics λi.  

The authors aim to provide a modelling process for the analysis of defence 

supply systems which are characterized of high variability. Further, a 

computational process for stochastic models is presented. Last but not least, a 

number of managerial insights concerning defence supply operation are stressed.  

The outline of our paper is as follows: in the second part the relating 

literature is presented. In the third part and the fourth part, the system and the 

model are presented correspondingly whereas in the fifth part the behaviour of the 
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performance measures is offered.  

 

 

2  Literature Review  

The literature on the split out inventory models is categorized in two 

categories a) Pure split out inventory models and b) Applied in defense operations 

split out inventory models.  

 

 

2.1. Pure split out inventory models 

Anderson and Melchiors (2001) present an inventory system with one 

distribution center and multiple retailers with independent Poisson demands, (S, 

S-1) base stock policy, lost sales and deterministic lead times. Moutqatipkul and 

Yerandee (2008) deal with a supply network with one distribution center multiple 

retailers and (S,s) periodic review inventory policies. Axsater (2003) deals with a 

two echelon inventory system with a central warehouse and a number of retailers 

following a continuous review installation stock (R,Q) policies. Axsater et al 

(2004) consider a one-warehouse and N-retailers inventory system. A heuristic 

method to optimize policy parameters is developed. Ahire and Schimdt (1996) 

analyze a Mixed Continuous Periodic One –Warehouse N- retailers inventory 

system. An analytical approximate model is processed to predict system 

performance under different operating conditions. Marklund (2002) introduces a 

new replenishment policy of a inventory system consisting of one warehouse and 

an arbitrary number of non-identical retailers. Further, a technique for the exact 

evaluation of the expected inventory holding and backorder costs of the system is 

presented. Rifai and Rossetti (2007) analyze an inventory system of one 

warehouse and N identical retailers and implement the reorder point, the order 

quantity (R.Q) inventory policy. They develop an iterative heuristic optimization 
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algorithm in  order to minimize the total annual inventory investment subjected 

to average annual ordering frequency and expected number of backorder 

constraints. Last but not least, Thangam and Uthayakumar (2008) propose a split- 

out supply network with independent retailers and a single supplier following a 

continuous review policy (R.Q). Based on the assumptions of 1) Poisson demand 

at retailers 2) constant transportation times 3) partial backlogging an approximate 

cost function to find potential reorder points is presented.  

 

 

2.2. Applied in defense operations split out inventory models 

A system of a split out supply network of repairable spare parts for fighting 

airplanes is popular concerning the applied models in defense logistics. Besaler 

and Veinott (1996) analyze a network of a central warehouse and a number of 

bases facing random demand. An ordering policy which minimizes expected costs 

is sought. Lau et al (2006) propose a Monte Carlo simulation model to study a 

multi –echelon repairable item inventory system. Muckstadt (1979) develops a 

mathematical model for a system consisting of a group Air Forces bases and a 

central depot. The model determines the stock levels at each air base. Rappold and 

Roo (2009) deal with a model corresponding to joint problem of facility location, 

inventory allocation and capacity investment in a two echelon single item service 

parts supply chain with stochastic demand. Gupta and Albright (1992) model a 

split out inventory system for the repairs of military spare parts. Owning to 

Markovian approach, they evaluate steady state operating characteristics of the 

inventory system.  

 

 

 

 



V. Vrysagotis, M. Vidalis and A. Paris  
 

5  

3 The System    

Supplying military units is a paramount task for any military administration: 

the quantity of supplies and their replenishment rate directly affects how effective 

a team is operating during a military operation. Replenishing the supplies 

efficiently is thus a very important factor of success in the field 

 

 
Figure 1: the distribution system 

. 

In this study, major aim is to evaluate how time variability in replenishing the 

supplies can affect military units during an operation problem under consideration. 

A central replenishment source and K scattered military units -each facing 

different pressures is assumed. The central source has sufficient supplies to cover 

any demand of the supported units, which communicate with it when the fire 

power is critically limited.  

The normal time of replenishment varies, following an exponential distribution 

with a mean value μ1. Unpredictable events result in a delay of replenishment, 

which then follows an exponential distribution with a mean value μ2. Thus, the 

variability of replenishment time can be expressed as a Coxian distribution with 

two phases (1st phase: normal replenishment, 2st phase: replenishment facing 

difficulties). 
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4  The Model   

The two-echelon supply network  consists of R+1 members: R military units 

who receive orders from the external enviroment and one manufacturer that serves 

the military units’ orders. Independent Poisson demands with mean rates λ1, λ2, 

λ3,…,λn .The military unit’s orders are replenished by the manufacturer, who is 

never starved. The replenishment time intervals are random variables with high 

variability which is enforced by unexpected events (such as enemy attacks, 

transportation breakdowns etc.). A fraction of the military units’ orders dR1,    

(0≤ d1≤1) needs a random time to be served, exponentially distributed with rate 

μR1. The rest of the fraction, dR2, (0 ≤d2=1-d1≤1) faces an additional time of delay, 

also exponentially distributed with rate μR2. Thus, the total replenishment time 

follows the Coxian distribution with two phases (Coxian-2). Due to the fact that 

the military unit’s ordering is triggered by the reorder point s, it is assumed that 

there is never more than one order outstanding. After an order is placed, the 

military unit serves the external demand until its remaining inventory reaches zero 

or the outstanding order is arrived. When an order by manufacturer arrives, the 

military unit re-examines the inventory at hand to decide whether a new order 

needs to be triggered The military units follow (s, S) inventory policy meaning 

that whenever the inventory drops below s the military units order S-s quantity.  

 

 

4.1. The Modeling Process 

It is important to describe the ‘physics’ of the problem before we attempt to 

solve it. The modeler’s art is to incorporate in the solution as much of the ‘physics’ 

of the problem as possible. After the problem definition, the next step is to 

formulate a model that is an accurate representation of reality. Then we can use 

the model to see which decisions produce the best outputs. The last step is to 

implement the model and update it over time.  
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Modeling involves  

• abstraction,  

• simplification, and  

• formalization, in light of particular methods and assumptions, in order to 

better understand a particular part or feature of the world, and to 

potentially intervene. 

We based our modeling on Markov stochastic processes, which allowed us to 

evaluate different scenarios, each with certain parameters in place, such as: 

1. spot of replenishment of each team si, where i = 1, 2, 3,…, K  

2. quantity of supplies qi each unit demands  

3. mean time value of normal replenishment μi1  

4. mean time value of delayed replenishment μi2  

5. probability of unpredictable events occurring di  

6. rate of consumption λi for the team  

 

 

4.2. Assumptions of the model 

The two-echelon supply chain consists of i+1 members, i nodes who react 

with the external enviroment and one Distribution center (DC) that serves the 

military units’ orders 

Independent Poisson demands with mean rates λ1, λ2, λ3,…, λn at 1st echelon 

The node’s orders are replenished by the DC, who is never starved. The 

replenishment time intervals are random variables with high variability which is 

enforced by unexpected events (such as enemy attacks, transportation breakdowns 

etc.). A fraction of the nodes’ orders di1, (0≤ di1 ≤ 1) needs a random time to be 

served, exponentially distributed with rate μi1. The rest of the fraction, di2, (0 ≤ di2 

=1- di1 ≤ 1) faces an additional time of delay, also exponentially distributed with 

rate μi2. Thus, the total replenishment time follows the Coxian distribution with 

two phases (Coxian-2). Due to the fact that the node’s ordering is triggered by the 
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reorder point s, it is assumed that there is never more than one order outstanding. 

After an order is placed, the military unit serves the external demand until its 

remaining inventory reaches zero or the outstanding order is arrived.  

When an order by DC arrives, the node re-examines the inventory at hand to 

decide whether a new order needs to be triggered. The nodes follow (s, S) 

inventory policy meaning that whenever the inventory drops below s the node 

order a S-s quantity.     

 
Figure 2 : A graphical representation of Coxian distribution 

 

 

4.3. Notation  

λR : external demand rate at the military unit R  

μR1 : mean replenishment rate from the manufacturer to the military unit during 

the first phase  

μR2 : mean replenishment rate from the manufacturer to the military unit during 

the second phase  

dR1: probability that the order will arrive having only one phase of delay, which is 

the usual case  
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dR2: probability that the order will arrive having two phases of delay, which 

happens more rarely  

SR: order-up-to level at the military unit R  

sR: re-order point at the military unit R  

qr=S-s: size of the order placed by the military unit to the manufacturer.  

IRt: inventory at hand at military unit at time t.  

Cp: product price per unit  

: holding cost at the military unit per unit  

: shortage cost at the military unit per unit  

FRR: fill rate at the military unit R  

WIPR: average inventory at the military unit R, on transport or in the system  

THRR: average output rate of the military unit R  

 

 

4.4. Markovian model 

We model the inventory system as a continuous time Markov process with 

finite number of states. The state of the system is defined by the R vector (pRt, IRt) 

with 0 ≤  It ≤ s or by the number It  for s < It ≤ S where:  

I Rt: military unit’s inventory level (on hand) at time t, 0 ≤  It ≤ S and  

p Rt : the number of phase of replenishment process, at time t,  p=1,2 for 0 ≤  It  

≤ s  

p=1,2,…,k if Coxian distribution with k phases is adopted. 

  

 

4.4.1. State Transitions  

Occurrence of an external demand at time t: the state of the military unit R It 

jumps from n to n-1. The probability of exactly one customer arriving in a small 
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interval Δt is λ·Δt, while the probability of more than one customers arriving is 

considered as 0(Δt) and hence it is disregarded.  

Shipment arrival at the military unit Rat time t that has faced only one phase of 

delay: It increases by an amount q. The probability of a shipment arriving at the 

military unit with one phase of delay in the interval Δt is d1∙μ1∙Δt.  

Shipment arrival at the military unit Rat time t faces an additional (2nd) phase of 

delay: It   remains stable. The probability that a shipment will pass to the 2nd 

phase in the interval Δt is d2∙μ1∙Δt.  

Shipment arrival at the military unit Rat time t that has faced two phases of delay: 

It increases by an amount q. The probability of a shipment arriving at the military 

unit in the interval Δt is μ2∙Δt. 

The total number of states, i.e. the dimension of the transition matrix, is given  

                        2(𝑠𝑅+1)𝑎𝑅−1 ∓ (𝑆𝑅 − 𝑠𝑅)𝑎𝑅−1 (1)  

where 𝑎𝑅−1 the states for R-1 military units  

 

 

4.4.2. Structure of Transition Matrix  

The structure of the transition matrix is affected by the military units 

replenishment policy: up-to-order level SR and reorder point sR. This matrix is a 

tri-diagonal matrix and consists of three sets of sub-matrices:  

1. the set of sub-matrices in the main diagonal, denoted by Dκ, 

2. the set of sub-matrices under the main diagonal, denoted by Lκ and 

3. the set of sub-matrices above the main diagonal, denoted by Uκ 

 

 

 

4.4.3. Dimensions and number of submatrices 

Submatrices D  

𝑠𝑅+1submatrices with dimensions: (𝑘𝑅𝑎𝑅−1)  × (𝑘𝑅𝑎𝑅−1) (2)      
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𝑆𝑅 − 𝑠𝑅 submatrices with dimensions:𝑎𝑅−1 × 𝑎𝑅−1 (3)   

Submatrices A 

𝑠𝑅 submatrices with dimensions:   𝑘𝑅 × 𝑎𝑅−1 (4)  

one (1) submatrix with dimensions: (𝑘𝑅𝑎𝑅−1) × 𝑎𝑅−1 (5)  

Submatrices K  

sR submatrices with dimensions:(𝑘𝑅𝑎𝑅−1) × (𝑘𝑅𝑎𝑅−1) (6)      

one (1) submatrix with dimensions (𝑘𝑅𝑎𝑅−1) × 𝑎𝑅−1 (7)  

𝑆𝑅 − 𝑠𝑅 with dimensions 𝑎𝑅−1 × 𝑎𝑅−1 (8)  

 

 

 
Figure 3: Structure of Transition Matrix 
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5  Numerical Results  

5.1. Fill rate of each military unit and time rates (military unit 1) 

 

Figure 4 : Fill rate of each military unit and time rates (military unit 1) 

For each battle point, we assume R=4 and we point out the impact on fillrate 

of each military unit (fll rate local) replenishment time rates (μ1,μ2) have. Ιt is  

profound that as time rates  increase fill rate also increase. Fill Rate reaches the 

maximum of about 1 (less than 100). 

 

5.2. Fill rate of each military unit and time rates (military unit 2) 

 

Figure 5 : Fill rate of each military unit and time rates (military unit 2) 
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5.3. Fill rate of each military unit and time rates (military unit 3) 

 

Figure 6 : Fill rate of each military unit and time rates (military unit 3) 

 

 

 

5.4.  Fill rate of each military unit and time rates (military unit 4) 

 

Figure 7: Fill rate of each military unit and time rates (military unit 4) 
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5.5.  Fill rate of each military unit and external demand rate(λ) 

military unit 1 

 

Figure 8: Fill rate of each military unit and external demand rate (λ) military unit 1 

 

5.6.  Fill rate of each military unit and external demand rate(λ) 

(military unit 2)  

We have same behavior as in the case of military unit 1 with the minimum 

value of about 20%.  

 

Figure 9 : Fill rate of each military unit and external demand rate(λ) (military unit 2) 
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5.7. Fill rate of each military unit and external demand rate(λ) 

(military unit 3)  

We have same behavior as in the case of military unit 1 with the minimum 

value of about 20 %.  

 

Figure 10: Fill rate of each military unit and external demand rate(λ) (military unit 3) 

 

5.8. Fill rate of each military unit and external demand rate(λ) 

(military unit 4)  

We have same behavior as in the case of military unit 1 with the minimum 

value of about 20%.  

 

Figure 11: Fill rate of each military unit and external demand rate(λ)(military unit 4) 



16             A quantitative model for the distribution operations in defense logistics  

5.9.  Fill rate of each military unit and safety stock (s) (military 

unit 1)  
We assume R=4. As safety stock increases from 1 to 5 fill rate increases from 

more than 35% to about 65%. 

 

Figure 12: Fill rate of each military unit and safety stock (s) (military unit 1) 

 

5.10. Fill rate of each military unit and safety stock (s) (military 

unit 2)  
We have same behavior as in the case of military unit 1. Fill rate increases 

from 37% to 41% as safety stock increases from 1 to 5.  

 

Figure 13: Fill rate of each military unit and safety stock (s)- military unit 2 
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5.11. Fill rate of each military unit and safety stock (s) (military 

unit 3) 
We have same behavior as in the case of military unit 1.Fill rate increases 

from 37% to 41% as safety stock increases from 1 to 5. 

 
Figure 14: Fill rate of each military unit and safety stock (s) (military unit 3) 

 

5.12. Fill rate of each military unit and safety stock (s) (military 

unit 4)  

We have same behavior as in the case of military unit 1. Fill rate increases 

from 37% to 41% as safety stock increases from 1 to 5.  

 

Figure 15 : Fill rate of each military unit and safety stock (s) (military unit 4) 
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6  Conclusions   

Concluding, a number of relations between the operating variables is stressed. 

First, the fill rate of each military unit increases as mean replenishment time rates 

(μ1,μ2) increases. In contrast the fill rate of each military unit decreases as mean 

demand rate increase. Last but not least, the fill rate of each military unit increases 

as safety stock (s) increases. For further research, it is proposed the development 

of a model with more than one distribution centers and a number of suppliers 

procured the distribution centers.    
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