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Abstract 

The aim of the present work is the calculation of the surviving combat units of 

three tactical engagements of homogeneous forces. For this purpose, we describe 

the deterministic mathematical models for tactical engagements of heterogeneous 

forces between regular military forces. It should be noted that a homogeneously 

armed military power is held by a type of weapon system, e.g. tanks. These 

models assume that there is a positive number expressing the firepower of the 

military units, as well as how the two forces have equivalent efficacy in the use of 

weapons systems. These models are of theoretical interest and describe ancient 

battles, while failing to reflect modern military conflicts. Instead, heterogeneously 

forces have different attrition rates, which are defined by the type of weapons, the 

types of enemy targets and various factors. 
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1  Introduction 

Strategy and tactic of opponents can be considered as two main characteristic 

elements of a general combat. The first general approach (military, political, etc) 

is designed to achieve an exhaustion of the enemy, while the second refers to more 

specific approaches in order to achieve specific objectives, which serve the 

general strategy. The purpose of this paper is the calculation of the surviving 

combat units of three tactical engagements of homogeneous forces at time 𝑡 as 

well as the description of the deterministic mathematical models describing the 

battles between tactical engagements of heterogeneous forces. It should be 

mentioned that a tactical engagement of homogeneous force is one that holds a 

type weapon system, e.g. tanks. Mathematical models of tactical engagements of 

homogeneous forces assume that a positive number exists representing the 

firepower of military units, as well as how the forces have equivalent efficacy in 

the use of their weapon systems. These models, mainly of theoretical interest, are 

considered suitable for describing battles of antiquity, and usually fail to reflect 

the modern military conflicts. Conversely, tactical engagements of heterogeneous 

forces have different attrition rates, determined by the type of weapon systems, the 

type of enemy targets and various other factors ([25]). 

A pioneer in the study of the theory of combat is Frederick Lanchester (1868-

1946). The deterministic mathematical modeling of a battle between tactical 

engagements of heterogeneous forces based on the approach of attrition rates, are 

considered to be real functions of both the weapon characteristics, and the fires to 

the opponent force. The direct solutions of the deterministic differential equations 

focus on the determination of the force strengths at any time 𝑡 of the battles when 

the initial force strengths condition, attrition coefficients and reinforcement 

schedule are specified. The attrition rates are estimated difficult (see [7]). 

Lanchester’s model was first developed as a description of air combat, in which 

each side was essentially composed of a single type of combat element. Force 

strength was then considered a simple matter of counting the number of aircraft in 
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a side. Modern applications of Lanchester’s ideas to land combat run into the 

problem that each side consists of a number of types of combat element (infantry, 

artillery, tanks etc) each of which interacts differently with each of the opposing 

sides’ combat types. The development of heterogeneous combat models is a 

central issue in most current military combat simulations. It is important to 

remember that Lanchester’s equations are not a model of combat, only a model for 

combat attrition. The equations alone, therefore, cannot be expected to capture 

other effects such as the movement of engaged forces. This is frequently forgotten. 

There have been numerous attempts to compare historical combat data with the 

behaviour expected from Lanchester’s equations, including the work of Helmbold 

and Hartley (see [14], [15], [16]). Hartley also includes a comprehensive review of 

the effort to validate combat attrition laws using historical analysis. A work by the 

author has also investigated the ability of Lanchester’s equations to describe 

patterns observed in the casualty statistics using Hartley’s database of historical 

battles. This includes an examination of the inclusion of a fractal model of spatial 

dispersion on casualty values and the distribution of casualties when Lanchester’s 

equations are modeled as stochastic processes. 

According to the simplest Lanchester type models, various assumptions are 

usually made (see [10] for details). However, these are not the only conditions, 

under which these attrition laws can be obtained. For example, it has been shown 

by Brackney (see [5]), that when the area held is varied so that the density of the 

forces in the area remains constant, attrition rates of the square-law type also 

result. Helmbold claimed that “victory in battle is primarily determined by factors 

other than numerical superiority, and challenges the ability of any model of 

combat which concentrates almost exclusively on numerical force size to yield a 

practically useful predictor of victory in battle” (see [16]). Willard reached similar 

conclusions and raised an additional theory on attrition rates (see [29]). The 

relevance of differential equations to modern warfare is a subject of much 

controversy (see [2]). This can be explained by the fact that Lanchester’s 
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equations do not contain any information about the spatial distribution of armies 

or their movement. Location matters greatly in the evolution and state of a 

struggle, whether some entity is fighting a war, defining its marketing campaign or 

its vaccinations programs. The capacity of modeling different spatial settings in a 

consistent and stable manner is crucial at the time of adopting an army strategy, 

since it allows the modeler to take into account local battles and disaggregated 

allocation of resources, but at the same time to keep in mind the global strategy 

(see [13], [30]). 

 

 

2  Lanchester-type equations with area fire 

During World War I, Frederick W. Lanchester, a British engineer in the Royal 

Air Force, developed his theory, based on aircraft engagements, to explain why 

concentration of forces was useful in modern warfare (see [22], [23]). In 1916, he 

published a series of differential equations today known as Lanchester's power 

laws [26]. These equations were analyzed concurrently and independently by 

Osipov, who published a series of articles where he gives a remarkable analysis of 

the Lanchester’s square law (see [17]). Suppose that Red army and Blue army 

engage each other in combat. Both sides use area fire and target acquisition times 

remain constant, independent of the force levels (a special case is when they are 

negligible). In any case, both sides tend to use a constant density defense. These 

two heterogeneous forces have a density of weapons units 𝛭 = 𝛭(𝑡) and 

𝛫 = 𝛫(𝑡), respectively, as a function of time 𝑡 ≥ 0. Therefore, attrition is 

proportional to the product of army populations 

  𝑑𝛫(𝑡)
𝑑𝑡

= −𝜇𝛭(𝑡)𝛫(𝑡),  𝑑𝛭(𝑡)
𝑑𝑡

= −𝜅𝛭(𝑡)𝛫(𝑡),       (2.1) 

where 𝜅 and 𝜇 correspond to the attrition rates of the armies 𝛫(𝑡) and 𝛭(𝑡), 

respectively, while they frame the efficiency of the firepower of the two armies 
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and they are particularly assumed as constant and positive numbers. Concerning 

the area of fire equations (2.1), we obtain Lanchester’s linear law 

 

     𝛫0−𝛫(𝑡)
𝛭0−𝛭(𝑡) = 𝜇

𝜅
,         (2.2) 

for all 𝑡 ≥ 0, where 𝛫(0) = 𝛫0 > 0 and 𝛭(0) = 𝛭0 > 0 constitute the initial 

conditions. Differential equations (2.1) follow the principle of mass action, as in 

the right part of the equations someone can find the product of the two involved 

armies 𝛫(𝑡) and 𝛭(𝑡). In case the outcome is typically a stalemate and there isn’t 

any winner, then 𝛫(𝑡) = 𝛭(𝑡) = 0 and we have the stalemate condition 

   𝛥1 = 𝜅𝛫0 − 𝜇𝛭0 = −𝜇 �𝛭0 −
𝜅
𝜇
𝛫0� = 0.       (2.3) 

The equilibrium conditions between the two armies are: 

(i) If �𝛭0 −
𝜅
𝜇
𝛫0� > 0, i.e. if 𝛥1 < 0, then the army of Red will dominate and for 

𝑡 → +∞ we eventually have 𝛭(𝑡) → �𝛭0 −
𝜅
𝜇
𝛫0� and 𝛫(𝑡) → 0. 

(ii) If �𝛭0 −
𝜅
𝜇
𝛫0� < 0, i.e. if 𝛥1 > 0, then the army of Blue will dominate and 

for 𝑡 → +∞ we have 𝛭(𝑡) → 0 and 𝛫(𝑡) → �𝛫0 −
𝜇
𝜅
𝛭0�. 

(iii) If �𝛭0 −
𝜅
𝜇
𝛫0� = 0, then there wouldn’t be any survivor and the outcome is a 

stalemate and the general solution is 𝛭(𝑡) = 1
𝜇𝑡+ 1

𝛭0

, and 𝛫(𝑡) = 1
𝜅𝑡+ 𝜅

𝜇𝛭0

. 

 

 

3  Lanchester-type equations with aimed fire 

The deterministic Lanchester-type equations with aimed fire are 

  𝑑𝛫(𝑡)
𝑑𝑡

= −𝜇𝛭(𝑡),  𝑑𝛭(𝑡)
𝑑𝑡

= −𝜅𝛫(𝑡),       (3.1) 
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where 𝜅 and 𝜇 are the attrition rates of the armies 𝛫(𝑡) and 𝛭(𝑡), respectively, 

assumed as constant and positive numbers, since their values aren’t a priori 

known. The autonomous system of differential equations (3.1) can be written as 

    𝑑𝑋(𝑡)
𝑑𝑡

= 𝛩𝑋(𝑡),       (3.2a) 

where 

  𝑋(𝑡) = [𝛫(𝑡),𝛭(𝑡)]𝛵  and  𝛩 = � 0 −𝜇
−𝜅 0 �,    (3.2b) 

where 𝛩 is the total attrition coefficient, with 𝑑𝑒𝑡𝛩 = −𝜅𝜇. Based on equations 

(3.1) we have Lanchester’s square law 

     𝛫02−𝛫2(𝑡)
𝛭0
2−𝛭2(𝑡) = 𝜇

𝜅
,         (3.3) 

for all 𝑡 ≥ 0, where 𝛫(0) = 𝛫0 > 0 and 𝛭(0) = 𝛭0 > 0 are the initial 

conditions. The term √𝜅𝜇, representing, in particular, the positive eigenvalue of 

the total attrition coefficient 𝛩, defines battle intensity, since the terms �𝜇 𝜅⁄  and 

�𝜅 𝜇⁄  define relative effectiveness. Lanchester claimed that the system (3.1) 

describes real battles (see [27]). Despite the simplicity of Lanchester’s model 

(3.1), the strategy of decision-making in a battlefield turns to be a complex 

procedure (see [31]). The origin (0,0) is a saddle point. If 𝑡 = 𝑡𝑓 is the time that 

combat ends and one (or both) side(s) is annihilated (see [9]), then the possible 

outcomes can be: (a) the army 𝛫(𝑡) becomes the winner if 𝛫�𝑡𝑓� > 0 and 

𝛭�𝑡𝑓� = 0, (b) the army 𝛭(𝑡) is the winner of the battle if 𝛭�𝑡𝑓� > 0 and 

𝛫�𝑡𝑓� = 0, (c) a draw with no survivors occurs if 𝛭�𝑡𝑓� = 0 and 𝛫�𝑡𝑓� = 0. In 

case (c), from (3.3) there is the stalemate condition 

    𝛥1 = 𝜅𝛫02 − 𝜇𝛭0
2 = 0.        (3.4) 

Generally, a number of analysts have not been faithful to the compelling logic of 

the battlefield that Lanchester represented in mathematical form (see [20], [26]). 
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4  Deitchman's model 

Several studies have proposed that Lanchester's models of human combat may 

describe conflicts among social animals, including vertebrates and insects (see [4], 

[15], [19], [20], [31]). Many social animals fight in groups, incurring substantial 

mortality (see [1], [6]). Supposing that two heterogeneous forces have a density of 

weapons units 𝛭 = 𝛭(𝑡) and 𝛫 = 𝛫(𝑡), respectively, as a function of time 𝑡 ≥ 0 

and are engaging each other in combat. Army 𝛭(𝑡) uses area or direct fire, while 

target acquisition times are constant, acting independently of the force levels (a 

special case is when they are negligible). Both sides use a constant density 

defense. The army 𝛫(𝑡) uses direct fire and causes casualties in the opponent's 

military force, which is proportional to the number of remaining weapons units of 

the army 𝛭(𝑡). Army 𝛭(𝑡) is a tactical homogenous force, since army 𝛫(𝑡) is a 

guerilla force. Deitchman proposed the following model 

  𝑑𝛫(𝑡)
𝑑𝑡

= −𝜇𝛭(𝑡)𝛫(𝑡),   𝑑𝛭(𝑡)
𝑑𝑡

= −𝜅𝛫(𝑡),      (4.1) 

with 𝛫(0) = 𝛫0 and 𝛭(0) = 𝛭0 (see [9]).  

The attrition rates 𝜇 and 𝜅 of the armies 𝛫(𝑡) and 𝛭(𝑡), respectively, frame the 

efficiency of the firepower of the two armies and are especially assumed as 

constant and positive numbers. From equations (3.1): 

    𝛭2(𝑡) − 2𝜅
𝜇
𝛫(𝑡) = 𝛭0

2 − 2𝜅
𝜇
𝛫0,      (4.2) 

for all 𝑡 ≥ 0. 

 

 

5  General formulation 

A generalized form of Lanchester’s equations is represented in the following 

schema 
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  𝑑𝛫(𝑡)
𝑑𝑡

= −𝜇𝛭𝜇1(𝑡)𝛫𝜅1(𝑡), 𝑑𝛭(𝑡)
𝑑𝑡

= −𝜅𝛭𝜇2(𝑡)𝛫𝜅2(𝑡),      (5.1) 

where 𝜅, 𝜇 > 0 are the attrition coefficients, 𝛫(0) = 𝛫0 > 0 and 𝛭(0) = 𝛭0 > 0 

the initial conditions, since 𝜇1, 𝜇2, 𝜅1 and 𝜅2 are stoichiometric coefficients (see 

[4], [11], [12], [14]). Although Lanchester’s models have been used in several 

physical procedures, the attempts made to fit them with historical data have 

resulted in a mixed success (see [21]).  

For example, if we have the values 𝜇1 = 𝜇2 = 𝜅1 = 𝜅2 = 1, then we obtain 

Lanchester’s model (2.1) with area fire.  

If we have the values 𝜇1 = 𝜅2 = 1 and 𝜇2 = 𝜅1 = 0, then we obtain Lanchester’s 

model (3.1) with aimed fire. If we have the values 𝜇1 = 𝜅1 = 𝜅2 = 1 and 𝜇2 = 0, 

then we obtain Deitchman’s model (4.1). If 

   𝜆𝜅 = 𝜅2 − 𝜅1   and  𝜆𝜇 = 𝜇1 − 𝜇2,       (5.2) 

where 𝜆𝜅 and 𝜆𝜇 are the net predation benefit parameters of the two armies, then 

    𝛫1+𝜆𝜅−𝛫0
1+𝜆𝜅

𝛭1+𝜆𝜇−𝛭0
1+𝜆𝜇 = 𝜇

𝜅
�1+𝜆𝜅
1+𝜆𝜇

�.        (5.3) 

If 𝜆𝜅 = 𝜆𝜇 = 0, then we obtain the Lanchester’s linear law (2.2), since for 

𝜆𝜅 = 𝜆𝜇 = 1 we obtain the Lanchester’s square law (3.3). In case that the battle 

comes to a stalemate and there is no a winner, then 𝛫(𝑡) = 𝛭(𝑡) = 0 and we 

obtain the following stalemate condition 

   𝛥2 = 𝜅𝛫0
1+𝜆𝜅 − �1+𝜆𝜅

1+𝜆𝜇
� 𝜇𝛭0

1+𝜆𝜇 = 0.        (5.4) 

If 𝛥2 > 0, then 𝛫(𝑡) wins, since if 𝛥2 < 0, then 𝑀(𝑡) wins (see [12]). Hartley 

suggested that 𝜇1 = 𝜅2 = 0.75 and 𝜇2 = 𝜅1 = 0.4 (see [16]). 
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6  A model of warfare 

Supposing that three tactical engagements of heterogeneous forces have a 

density of weapons units 𝐴 = 𝐴(𝑡), 𝐵 = 𝐵(𝑡) and 𝐶 = 𝐶(𝑡), respectively, as a 

function of time 𝑡 ≥ 0 and are engaging each other in combat. These armies use 

aimed fire and target acquisition times are constant, acting independently of the 

force levels (a special case is when they are negligible). Both sides use a constant 

density defense. Therefore, we suppose that each army’s rate of loss is 

proportional to the concentration of the other two armies. Then, the following 

autonomous system of differential equations is proposed 

    𝑑𝐴
𝑑𝑡

= −𝑏𝐵 − 𝑐𝐶,    (6.0.1a) 

    𝑑𝐵
𝑑𝑡

= −𝑎𝐴 − 𝑐𝐶,    (6.0.1b) 

    𝑑𝐶
𝑑𝑡

= −𝑎𝐴 − 𝑏𝐵,    (6.0.1c) 

 

where 𝐴 = 𝐴(𝑡), 𝐵 = 𝐵(𝑡) and 𝐶 = 𝐶(𝑡) represent the concentrations of the 

enemy troops and 𝑎, 𝑏 and 𝑐 correspond to the attrition rates of the armies 𝐴, 𝐵 

and 𝐶, respectively, assumed as constant and positive numbers. The initial 

conditions are: 𝐴(0) = 𝐴0 > 0, 𝐵(0) = 𝐵0 > 0, 𝐶(0) = 𝐶0 > 0. We can write 

system (6.0.1) as follows 

     𝑑𝑋
𝑑𝑡

= 𝛩𝑋,    (6.0.2) 

where 𝑋 = [𝐴,𝐵,𝐶]𝛵 is the concentration vector of the three weapons units and 

𝛩 = 𝛩(𝑎, 𝑏, 𝑐) = �
0 −𝑏 −𝑐
−𝑎 0 −𝑐
−𝑎 −𝑏 0

�, 

is the total attrition coefficient. Also, it is: 𝑑𝑒𝑡𝛩 = −2𝑎𝑏𝑐 < 0 and 𝑡𝑟𝛩 = 0. The 

eigenvalues 𝜆𝑖, 𝑖 = 1, 2, 3, can be calculated by the characteristic equation 
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   𝜆3 − (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)𝜆 + 2𝑎𝑏𝑐 = 0.   (6.0.3) 

Via Vieta’s formula, there is for equation (6.0.3): (𝜆1 + 𝜆2 + 𝜆3) = 0 and 

𝜆1𝜆2𝜆3 = −2𝑎𝑏𝑐 = |𝛩|. In phase portrait, the origin (𝐴,𝐵,𝐶) = (0,0,0) is the 

only equilibrium point of the system (6.0.1) and the Jacobian matrix 𝐽(𝐴,𝐵,𝐶) is 

𝐽(𝐴,𝐵,𝐶) = �
0 −𝑏 −𝑐
−𝑎 0 −𝑐
−𝑎 −𝑏 0

� = 𝛩. 

The Jacobian matrix 𝐽 in origin is 𝐽(0,0,0) = 𝛩, since 𝐽 and 𝛩 have the same 

eigenvalues. 

 

 

6.1 Equal attrition rates: 𝒂 = 𝒃 = 𝒄 

Suppose that the three armies 𝐴, 𝐵 and 𝐶 have equal attrition rates, that 

presupposes that they are tactical engagements of homogeneous forces. For the 

case 𝑎 = 𝑏 = 𝑐, system (6.0.1) is attributed the form (6.0.2), with 𝛩 = 𝛩(𝑎,𝑎, 𝑎), 

since the characteristic equation of 𝛩 is (𝜆 + 2𝑎)(𝜆 − 𝑎)2 = 0. The matrix 𝛩 has 

the following eigenvalues: 𝜆1 = −2𝑎 < 0, with algebraic multiplicity 1, and 

𝜆2 = 𝑎 > 0 with algebraic multiplicity 2. If 𝑢1 is the corresponding eigenvector of 

the eigenvalue 𝜆1 = −2𝑎, then 𝑢1 = [1,1,1]𝛵. Similarly, for the eigenvalue 

𝜆2 = 𝑎 we have the following eigenvectors:   𝑢21 = [−1,1,0]𝛵 and    𝑢22 =

[−1,0,1]𝛵. The general solution of the system is 

   𝑋(𝑡) = 𝑐1𝑒𝜆1𝑡𝑢1 + 𝑐2𝑒𝜆2𝑡𝑢21 + 𝑐3𝑒𝜆2𝑡𝑢22,    (6.1.1) 

with 𝑐1, 𝑐2 and 𝑐3 arbitrary coefficients, which can be calculated from the initial 

conditions 𝐴(0) = 𝐴0, 𝐵(0) = 𝐵0 and 𝐶(0) = 𝐶0. Then, we have 
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⎩
⎪
⎨

⎪
⎧ 𝑐1 = 1

3
(𝐴0 + 𝐵0 + 𝐶0)

𝑐2 = 1
3

(2𝐵0 − 𝐴0 − 𝐶0)

𝑐3 = 1
3

(2𝐶0 − 𝐴0 − 𝐵0)

�.     (6.1.2) 

If we consider 

𝑧(𝑡) = 𝐴(𝑡) + 𝐵(𝑡) + 𝐶(𝑡) = 3𝑐1𝑒−2𝑎𝑡, 

where 𝑧 = 𝑧(𝑡) is the total concentration of the three armies, then: 

lim𝑡→+∞ 𝑧(𝑡) = 0, 

which means that noone will survive at the end of the battle. We can get the 

following system 

   𝑑𝐴
𝑑𝐶

= 𝐵+𝐶
𝐴+𝐵

,   𝑑𝐵
𝑑𝐶

= 𝐴+𝐶
𝐴+𝐵

,     (6.1.3) 

and if we add the two equations of the system (6.1.3) 

    𝑑
𝑑𝐶

(𝐴 + 𝐵) = 1 + 2𝐶
(𝐴+𝐵).   (6.1.4a) 

A cyclic rotation of the symbols 𝐴, 𝐵 and 𝐶 gives 

  𝑑
𝑑𝐶

(𝐵 + 𝐶) = 1 + 2𝐴
(𝐵+𝐶), 

𝑑
𝑑𝐶

(𝐶 + 𝐴) = 1 + 2𝐵
(𝐶+𝐴). (6.1.4b) 

If we solve the differential equations (6.1.4), we get 

    

⎩
⎪
⎨

⎪
⎧
𝐴0+𝐵0+𝐶0
𝐴+𝐵+𝐶

= � 𝐴+𝐵−2𝐶
𝐴0+𝐵0−2𝐶0

�
2

𝐴0+𝐵0+𝐶0
𝐴+𝐵+𝐶

= � 𝐵+𝐶−2𝐴
𝐵0+𝐶0−2𝐴0

�
2

𝐴0+𝐵0+𝐶0
𝐴+𝐵+𝐶

= � 𝐶+𝐴−2𝐵
𝐶0+𝐴0−2𝐵0

�
2

�.     (6.1.5) 

If we asume: 𝐴 = 𝐵 = 𝐶 = 0, and from (6.1.5) arises that 

𝐴0 + 𝐵0 = 2𝐶0,  𝐵0 + 𝐶0 = 2𝐴0,  𝐶0 + 𝐴0 = 2𝐵0. 

Then, we have the following three stalemate conditions 
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    �
𝛥1 = 𝐴0 + 𝐵0 − 2𝐶0
𝛥2 = 𝐵0 + 𝐶0 − 2𝐴0
𝛥3 = 𝐶0 + 𝐴0 − 2𝐵0

�.     (6.1.6) 

Based on (6.1.6), if a battle is held between three forces, with equal attrition rates, 

then the winner is determined only by the initial concentrations. According to 

(6.1.5), if we are generally aware of the array between the three initial 

concentrations (for example, if 𝐴0 > 𝐵0 > 𝐶0), then the same array of the 

concentrations replies for 𝑡 ≥ 0 (𝐴 > 𝐵 > 𝐶, respectively). (6.1.6) arises the 

following properties: 

(i) If two of the coefficients 𝛥𝑖 (𝑖 = 1, 2, 3) are equivalent to zero, then the third 

coefficient is also zero. That means: 𝐴 = 𝐵 = 𝐶 = 0 for 𝑡 → ∞. 

(ii) If two of the coefficients 𝛥𝑖 (𝑖 = 1, 2, 3) are nonpositive numbers, then the 

third coefficient is a positive. 

(iii) If two of the coefficients 𝛥𝑖 (𝑖 = 1, 2, 3) are positive numbers, then the third 

coefficient is a nonpositive. 

(iv) If one of the coefficients 𝛥𝑖 (𝑖 = 1, 2, 3) is zero and the second coefficient is a 

positive (or nonposotive) number, then the third coefficient is a nonpositive (or 

positive, respectively) number. 

 

 

6.2 Two equal attrition rates: 𝒂 ≠ 𝒃 = 𝒄 

Supposing that the armies 𝐵 and 𝐶 have the same attrition rate (they are 

tactical engagements of homogeneous forces), the linear system (6.0.1) possesses 

the form (6.0.2), with 𝛩 = 𝛩(𝑎, 𝑏, 𝑏) and 𝑑𝑒𝑡𝛩 = −2𝑎𝑏2, since the characteritic 

equation (6.0.3) is 

    𝜆3 − 𝑏(𝑏 + 2𝑎)𝜆 + 2𝑎𝑏2 = 0.    (6.2.1) 
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The matrix 𝛩 has the three distinguished real eigenvalues: 𝜆1 = 𝑏 > 0, 𝜆2 =

−√𝑏
2
�√8𝑎 + 𝑏 + √𝑏� < 0 and 𝜆3 = √𝑏

2
�√8𝑎 + 𝑏 − √𝑏� > 0. Conclusively, the 

general solution is 

   𝑋(𝑡) = 𝑐1𝑒𝜆1𝑡𝑢1 + 𝑐2𝑒𝜆2𝑡𝑢2 + 𝑐3𝑒𝜆3𝑡𝑢3,     (6.2.2) 

where 

𝑢1 = [0,−1,1]𝑇,  𝑢2 = �𝜆3
𝑎

, 1,1�
𝑇
,  𝑢3 = �𝜆2

𝑎
, 1,1�

𝑇
, 

and 𝑐1, 𝑐2 and 𝑐3 arbitrary constants, which can be determined from the initial 

conditions 𝐴(0) = 𝐴0, 𝐵(0) = 𝐵0 and 𝐶(0) = 𝐶0. So, we get 

    

⎩
⎪
⎨

⎪
⎧ 𝑐1 = 1

2
(𝐶0 − 𝐵0)

𝑐2 = 1
(𝜆2−𝜆3) �

𝜆2
2

(𝐵0 + 𝐶0) − 𝑎𝐴0�

𝑐3 = 1
(𝜆2−𝜆3) �𝑎𝐴0 −

𝜆3
2

(𝐵0 + 𝐶0)�

�.    (6.2.3) 

Based on the equations of (6.0.2) we have 

   𝑑𝐵
𝑑𝐴

= 𝑎𝐴+𝑏𝐶
𝑏(𝐵+𝐶),    𝑑𝐶

𝑑𝐴
= 𝑎𝐴+𝑏𝐵

𝑏(𝐵+𝐶)    (6.2.4) 

and if we decide to add the two equations of the system (6.2.3) we get 

    𝑑
𝑑𝐴

(𝐵 + 𝐶) = 1 + 2𝑎
𝑏

𝐴
(𝐵+𝐶).     (6.2.5) 

From (6.2.5) we have the following stalemate condition 

   � 𝐵+𝐶−𝑧1𝐴
𝐵0+𝐶0−𝑧1𝐴0

�
𝑧1

= �𝐵0+𝐶0+𝑧2𝐴0
𝐵+𝐶+𝑧2𝐴

�
𝑧2

,     (6.2.6) 

where 

𝑧1 = 1
2
��1 + 8𝑎

𝑏
+ 1� > 0  and  𝑧2 = 1

2
��1 + 8𝑎

𝑏
− 1� > 0. 
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