
Journal of Computations & Modelling, vol.6, no.3, 2016, 43-85 
ISSN: 1792-7625 (print), 1792-8850 (online) 
Scienpress Ltd, 2016 

 
Automatic K- Expectation Maximization (A K-EM) 

Algorithm for Data Mining Applications 

  Archit Harsh1 and John E. Ball2  

 

 

Abstract 

A non-parametric data clustering technique for achieving efficient data-clustering 

and improving the number of clusters is presented in this paper. K-Means and 

Expectation-Maximization algorithms have been widely deployed in 

data-clustering applications. Result findings in related works revealed that both 

these algorithms have been found to be characterized with shortcomings. K-Means 

does not guarantee convergence and the choice of clusters heavily influenced the 

results. Expectation-Maximization’s premature convergence does not assure the 

optimality of results and as with K-Means, the choice of clusters influence the 

results. To overcome the shortcomings, a fast automatic K-EM algorithm is 

developed which provides optimal number of clusters by employing various 

internal cluster validity metrics, thereby providing efficient and unbiased results. 

1 Electrical and Computer Engineering department, Mississippi State, University,  
  Starkville, MS, 39759. E-mail: archit.harsh89@gmail.com, ah2478@msstate.edu 
2 Electrical and Computer Engineering Department, Mississippi State, University,   
  Starkville, MS, 39759. E-mail: jeball@ece.msstate.edu 
 
  Article Info: Received : August 9, 2016. Revised : September 11, 2016. 
              Published online : October 1, 2016. 
 

                                                 

mailto:archit.harsh89@gmail.com
mailto:ah2478@msstate.edu
mailto:jeball@ece.msstate.edu


44                                   Automatic K- Expectation Maximization …
  

The algorithm is implemented on a wide array of data sets to ensure the accuracy 

of the results and efficiency of the algorithm.  

 

Mathematics Subject Classification: Big Data Clustering; Machine Learning; 

Algorithms 

Keywords: K-Means; Expectation-Maximization; Data Clustering   

 

 

1 Introduction  

Clustering algorithms partition a dataset into several groups such that points in the 

same group are similar to each other and points across groups are different from 

each other [2]. The clustering algorithms are categorized into three main 

categories, namely partition based clustering, nearest-neighbor based clustering, 

and density-based clustering. Among them, the widely known clustering 

techniques include AGNES (Agglomerative Nesting), DIANA (Divisive 

Analysis), CLARA (Clustering Large Applications), PAM (Partitioning around 

medoids), BIRCH (Balanced Iterative Reducing and Clustering using 

Hierarchies), K-Medoids, FCM (Fuzzy C-Means), K-Means and EM 

(Expectation-Maximization) algorithms [1].  The K-Means algorithm [3] is the 

most popular and widely known clustering algorithm because of its simplicity and 

efficiency. Originally developed for and applied to the task of vector quantization, 

K-Means has been used in a wide assortment of applications. Studies have shown 

that it is a good approach to cluster data. However, K-Means does not assure the 

best representation for the data as it uses distances from the centers of clusters to 

determine which sample belongs to which class. It has also been proved that, with 

K-Means, there is no guarantee for optimal clustering, since the convergence 

depends on the number of clusters provided (k) which is often not known in 

advance. Moreover, K-Means is not considered as the best choice of clustering 
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due to its poor convergence and predefined choice of clusters, k. The EM is a 

model-based approach to solving clustering problems. It is an iterative algorithm 

that is used in scenarios where the data is incomplete or contains missing values. 

Unlike partition-based or hard membership algorithms, EM is known to be a 

suitable optimization algorithm for constructing proper statistical models of the 

data. EM is widely used in applications such as computer vision, speech 

processing and pattern recognition etc. EM aims at finding clusters such that 

maximum likelihood of each clusters is obtained.  In EM, each observation 

belongs to each cluster with a certain probability. EM starts with an initial 

estimate for the missing variable and iterates to find the maximum likelihood 

(ML) estimates for these variables. Maximum likelihood methods estimate the 

parameters by values that maximize the sample’s conditional probability for an 

event. EM is conventionally used with mixture models. In EM clustering, the 

number of clusters that are desired is predetermined. It is initialized with values 

for unknown (hidden) variables. Since EM uses maximum likelihood it most 

likely converges to local maxima, around the initial values. Hence, the selection of 

initial values is critical. The proposed approach works in two phases: the first 

phase consists of development of automatic K-Means, which is a non-parametric 

approach, where the optimal number of clusters are chosen based on the internal 

clustering metrics. The initial cluster centers chosen by this approach serves the 

basis for the second phase. The second phase consists of applying the EM 

algorithm. EM takes these centers as its initial variables and iterates to find the 

local maxima. Hence, clusters that are well distributed using K-Means and clusters 

that are compact are obtained using EM. The algorithm is tested using various 

datasets of varying sizes, shapes and dimensions. The results show that the 

proposed approach guarantees convergence and provide optimal clusters with 

reduced time complexity.   
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2 Technical Background 

Clustering is a division of data into groups of similar objects, i.e. objects which 

share similar characteristics with those of the rest within that cluster. Each group, 

called a cluster, consists of objects that are similar to themselves and dissimilar to 

objects of other clusters. From a machine learning perspective, clusters often lead 

to discovery of hidden patterns in the data, aiding in knowledge discovery and 

extraction. The search of clusters is often termed as unsupervised clustering, and 

the resulting system represents a data concept [4]. Clustering is often categorized 

into three different categories: unsupervised, supervised and semi-supervised. 

Unsupervised clustering techniques assume that no prior knowledge of data is 

known in advance. Supervised clustering techniques relies on some sort of prior 

knowledge about the data. In that sense, they are supervised. Semi-supervised 

clustering is a bridge between the unsupervised and supervised clustering. 

Clustering algorithms have been a vital part of statistics [5] and science [6]. The 

classical introduction of these algorithms into pattern recognition framework is 

given in [7]. In the literature, various categories of clustering algorithms have been 

presented and developed. For the reader’s convenience, a classification of these 

algorithms is provided.   

 

 

2.1 Clustering Algorithms 
The clustering algorithms have been widely classified in three different categories: 

1. Hierarchical Methods. 

2. Partitioning Methods. 

3. Density based Methods. 
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Hierarchical clustering build clusters gradually (as crystals are grown). These 

methods are further subdivided into agglomerative and divisive [8, 9] methods. 

Agglomerative methods tends to “chain” the clusters within different clusters. On 

the other hand, divisive clustering tends to divide the clusters into different 

families, thereby creating compact and distinct clusters. Examples of 

agglomerative clustering include SLINK [10], COBWEB [11], CURE [12] and 

CHAMELEON [13]. Partitioning algorithms build clusters directly. In doing so, 

they either try to discover clusters by iteratively relocating points between subsets, 

or try to identify clusters as areas highly populated with data. They are further 

classified into probabilistic clustering (EM [14, 15], SNOB [16], AUTOCLASS 

[17], MCLUST [18]), K-Medoids methods (PAM [9], CLARA [9], CLARANS 

[19]), and K-Means methods (K-Means [20, 21], K-Means++ [42], harmonic 

means [27], fuzzy c means [43, 44]). Such methods concentrate on how well 

points fit into their clusters and tend to build clusters of proper convex shapes.    

Density based clustering algorithms try to discover dense connected components 

of data, which are flexible in terms of their shape and structure. Examples include 

DBSCAN [22, 45], OPTICS [23], GDBSCAN [24], etc.   

In the literature, partition-based clustering techniques have gained reputation and   

popularity based on their simplistic implementation, scalability and applications.   

The K-Means algorithm is by far the most popular clustering tool used in 

scientific and industrial applications. The name originates from representing each 

of K clusters, Cj by the mean cj of its points, called centroid. Various approaches 

have been proposed in the research community to improve and modify this basic 

idea. FCM, K-Means++, harmonic means are among the most important advances 

in K-Means.    

Despite its popularity and simplicity, K-Means approaches suffers from two major   

shortcomings. It requires a user-centric parameter k, number of clusters, in 

advance, which is often not available and heavily influences the results. Because 

of its iterative procedure and random initialization of centers, it can suffer from 
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convergence issues. Since, K-Means tends to provide a local minimum instead of 

a global one, it tends to terminate prematurely, leading to poor convergence in 

specific data sets. In [25], the researchers developed AK-Means based on 

K-Means which is a non-parametric approach and the clusters are optimally 

chosen by the state-of-the art internal cluster validity metrics. In [26], the 

researchers came up with a hybrid K-Means expectation maximization approach. 

The idea put forth was to combine the K-Means and EM algorithm for better 

convergence. However, the researchers only provide the results on only one data 

set which sets a limiting factor for applicability of the approach. In this paper, we 

develop an efficient Automatic K-EM approach which modifies the ideas 

presented in [25] and [26] and attempt to provide wide array of results with 

numerous data sets of varying types, shapes, sizes and dimensions. For evaluation 

of clusters, two widely known internal cluster validity metrics were used: namely 

elbow plots and the Silhouette index, which are discussed in detail in the 

upcoming sections.    

 

 

2.2 Technical Description 
2.2.1 Fast K-Means  

In this paper, we used K-Means based on weighted average instead of normal 

mean, to get new clusters. This approach is faster and more efficient than the 

default Matlab implementation of K-Means which is based on K-Means++. We 

have modified the current Matlab implementation of K means++ by vectorizing 

some of the parameters and setting suitable number of replications and iterations 

for faster processing and efficiency. 

Let 1{ ,...... }px x be a set of P real numbers. The number of iterations is given as r.  

The weighted average (WA) at the rth iteration is given by [27].  

 1 ( )
1,

r r
p pp P

wµ +
=

=∑ x  (1) 
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An initial mean is taken and weight, pw , is obtained for px . In equation (2), pw (r) 

is the weight calculated at the rth iteration. Feature vectors are assigned to each 

cluster point, empty or small clusters are eliminated. Cluster centers are replaced 

with weighted averages and feature vectors are reassigned. This process is 

repeated until the algorithm converges to a local minimum.  

 

2.2.1.1 K-Means performance function 

The K-Means algorithm works by partitioning the data set into k clusters, 

1{ ,.......S }kS S=  by placing each data point in the nearest cluster. It intends to find 

the local optimal set of centers that minimizes the total within cluster variance, 

which is formally defined as K-Means performance function [27], 

 
2

1
( , ) || ||

i

K

KM
k x S

Perf X M
= ∈

= −∑∑ kx m  (2)  

where, the kth center, mk, is the centroid of the kth partition. The double summation 

in (3) can be alternatively expressed as a single summation over all data points, 

adding only the distance to the nearest center expressed by the minimum function   

MIN.  

  

2

1
( , ) {|| || }

N

KM k
i

Perf X M MIN
=

= −∑ ix m
        (3) 

The K-Means algorithm starts with an initial set of clusters and then iterates 

through the following steps: 

1. For each data point, locate the closest center km , and assign the data point to 

the kth cluster.  

2. Re-evaluate all the centers. The kth center becomes the centroid of the kth 

cluster. 
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3. Iterate through steps 1 and 2 until the clusters do not change significantly.  

We will direct our readers to [28, 29] for the detailed proof of the local optimum. 

Also, K-Means is a NP-hard problem, as such no significant work proves that it   

provides global optimum [30].   

For most time, the algorithm reach a stable partition in a finite number of steps for 

finite datasets. The cost per iteration is O(kDN). 

 

2.2.2 Expectation Maximization (EM) clustering algorithm 

The EM algorithm is considered a variant of K-Means which is based on mixture 

models. It is often referred to as an optimization strategy for K-Means as it doesn’t 

require a training phase. The algorithm follows an iterative approach to find the 

parameters of the probability distribution that have the maximum likelihood of its 

attributes. In this work, EM based on Gaussian mixture models (GMM) is used.  

The input parameters for the algorithm are the data set ( x ), the total number of 

clusters (k), the accepted error to converge, also known as tolerance, (e) and the 

maximum number of iterations, itermax. The algorithm starts with an initialization 

phase, where the parameters are initialized and then iterates through the 

expectation   and maximization phase until convergence. For each iteration, the 

algorithm goes through the expectation phase, called the E-step, which estimates 

the probability of each point belonging to that cluster, followed by the 

Maximization phase, which re-estimates the parameter vector of the probability 

distribution of each class. The termination phase constitutes the convergence of 

the parameters. It is to be stated here that the convergence doesn’t necessarily 

imply global optimum as it may be prematurely terminated.  

To avoid this, we performed multiple iterations of the algorithm and took the 

average number of iterations (steps) to converge. This strategy is widely used in 

literature, especially when using partition-based clustering approaches.  
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2.2.2.1 Initialization phase 

Each class j, of k clusters, is constituted by the parameter vector ( )θ , consisting of 

the vector mean ( )μ and the covariance matrix ( )jP , which represents the 

Gaussian probability distribution used to characterize the observed and hidden 

entities of the data set x . 

 (t) ( ), ( ), 1, 2,.....,t t j k= =j jθ μ P  (4) 

At t=0, the algorithm randomly generates the initial mean and covariance matrix. 

The EM algorithm aims to approximate the parameter vector ( )θ of the real 

distribution.  

 

2.2.2.2 E-step 

This step is responsible for estimating the probability of each element belonging to 

a specific cluster (Bayesian rule). Each element of the data is composed by an 

attribute vector ( )kx . The association of the point to the cluster is estimated by the 

maximum likelihood of that point in comparison to other elements of the cluster 

[31].  

 
( ) ( )
( ) ( )

1

|
( | )

|

i j j
j i K

i j j
k

p C p C
p C

p C p C
=

=

∑

x
x

x
 (5) 

where, ( )|i jp Cx is the prior probability with Gaussian distribution and ( )jp C is  

the mixing probability. 
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2.2.2.3 M-step 

This step is responsible for updating the parameters computed in E-step. First, the 

mean ( )jμ of classes j is computed using the mean of all points in function of the 

relevance degree (association) of each point.  
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N

j k k
k

j N

j k
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=

+ =
∑

∑

x x
μ

x
  (6) 

Secondly, the covariance matrix is computed for the next iteration by applying the 

Bayes theorem [46], based on the conditional probabilities of the class occurrence. 

The covariance matrix is given by: 

 

1
( 1)

1

(C | )( ( )) ( ( ))
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k

p t t

p
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∑

∑
∑

x x μ x μ

x
  (7) 

Finally, the probability of occurrence of each class is computed through the mean 

of probabilities in function of the relevance degree of each point from the class. 

 1

1( 1) (C | )
N

j j k
k

p t p
N =

+ = ∑ x
 (8) 

 

2.2.2.4 Steps for implementation of EM 

1. Mean and standard deviation of the data is randomly initialized.  

2. Expectation step. 

3. Maximization step. 

4. Convergence Step. 
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At each iteration, a convergence test is performed which verifies if the difference 

of the attributes vector of an iteration to the previous iteration is smaller than an 

acceptable error tolerance, provided by the user-defined parameter. 

If ( ) ( )( )1t t e+ − <θ θ   

Stop 

else  

call E-step 

end;    (where e is the accepted tolerance and ( )tθ  is the estimate at time t).  

At each step, the algorithm estimates a new attribute with a maximum likelihood, 

no necessarily global, which reduces its complexity. However, depending on the   

dispersion of the data and its volume, the algorithm can also be terminated due to 

the maximum number of iteration defined.  

 

2.2.2.5 Performance function of Expectation Maximization 

The EM algorithm estimates the centers, X, the co-variance matrix, k∑  and the 

mixing probabilities p. The performance function is given by [27, 95] as 

 

( )
1

1

( , , , )

1log exp( ( ) ( ) )
(2 ) det

EM k
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T
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X M p

x m x m
      (9) 

E-step: Estimates the association/likeliness of x belonging to the kth cluster: 

 ( | ) ( )( | )
( | ) ( )

k k
k

k k
x S

p pp
p p

∈

=
∑

x m mm x
x m m

 (10) 

where, p ( | )x m  is the prior probability with Gaussian distribution, and p (m )k  is 

the mixing probability. 

M-step: Updating the membership of each attribute using the fuzzy membership 

function from the E-step, this step updates the new center locations, new 
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covariance matrices, and new mixing probabilities that maximize the performance 

function [27]. 
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3 Proposed Method 
The Automatic K-Expectation Maximization algorithm is divided into two phases: 

The automatic K-Means initialization phase and the EM iterative phase.  

 

 

3.1 First Phase 
3.1.1 Automatic K-Means 

In the initialization phase, the automatic K-Means variation of K- Means is used to 

classify the data into the number of desired clusters by employing three 

well-known internal cluster validity metrics; namely, elbow plots [33], average 

Silhouette index [34] and CH index [35]. The merit for selecting these metrics 

comes from the fact that these indices have been a part of statistical community 

since 1950’s and provide good merit for the choice of optimal clusters. They are 

easy to implement and generally yield desirable clusters.  

The proposed algorithm starts by setting an upper bound on the choice of   

clusters, where k is taken to be 1/2n , where n is the number of data points in the 
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provided data set. This choice is influenced by the fact that usually the number of 

clusters lies between 2 to 1/2n , as reported by Pal and Bezdek in [36].  

Next, it applies a deterministic initialization procedure proposed by the authors in 

[37]. Fast K-Means algorithm is applied on these initial k centroids, and centroid 

of the smallest cluster is removed. It restarts again with the remaining centroids. 

At each iteration, the maximum of the CH cluster validity index [35] of the current 

iteration is stored. The motivating factor for choosing this index comes from the 

fact that it is relatively easy to compute and implement and it generally provides 

robust results in comparison to other cluster validity metrics. Additionally, we also 

implemented two other validity indices as mentioned before, to add more weight 

to the optimal clusters. The process is continued until k=2.  

Finally, the algorithm outputs the number of clusters, the centroids, and the   

corresponding labels. It also provides the mean Silhouette value which   

indicates the suitability of the clusters with respect to the data set. In practice, a 

mean Silhouette value closer to unity indicates good fit.  

 

3.1.2 Internal Cluster Validity metrics 

The motivation for employing internal cluster validity metrics originates from 

underlying principle of the proposed work that “No prior knowledge of data is 

provided in advance. It is essentially an unsupervised clustering approach.”  

Internal cluster validity metrics, as its name suggests, provides the cluster 

validation internally without relying on prior knowledge of the data in opposition 

to the external cluster validity metrics, which rely on prior knowledge of data.  

Some common external validity metrics include entropy, purity, etc. In literature 

[38], it has been proven that the results provided by both these metrics are almost 

identical. In some scenarios, external cluster validity metrics perform better than 

the internal cluster validity metrics. It is quite intuitive as they always rely on prior 

information which make them realistically impossible to implement in practical 

scenarios.  
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In the proposed method, we used three internal cluster validity metrics namely, 

elbow plots, the Silhouette index, and the CH index.  

Elbow plots are visual in nature, meaning the user has to look for an “elbow” in 

the plot. The plot is an indicator of the suitability of clusters where the user   

specify a range of clusters to be examined. The “elbow” indicates the desired   

cluster to be chosen. The elbow method seeks the percentage of variance in the 

data taken to be a function of number of clusters. As stated before, since the users 

specify the range of clusters, more often, the first clusters add a lot of variance 

(more contribution), but at some point the gain drops, giving an angle “elbow” in 

the graph. The elbow indicates the desired number of clusters. 

After the K-Means initialization phase, elbow plot is generated to provide a   

method of validation for the Silhouette index and the CH index. The Silhouette 

index measures the cohesion based on the distance between all the points in the 

same cluster and the separation based on the nearest neighbor distance. In practice, 

a larger average Silhouette index indicates higher clustering accuracy.  

The CH (Carlinski-Harabasz) index is the ratio of between-cluster variance and 

within cluster variance, a.k.a variance ratio criterion (VRC). It takes a range of 

clusters and outputs the estimate the ratio. A higher value indicates good number 

of clusters as it maximizes the between-cluster variance which is desirable.  

 

3.1.3 Objective function of Automatic K-Means 

The proposed approach is a non-parametric clustering approach where the   

number of clusters k is optimally chosen by employing three internal cluster 

validity metrics. The algorithm fundamentally works as a K-Means algorithm   

with an added feature of internal cluster validity metrics implemented internally. 

As mentioned in section 2, the performance function of K-Means is given by   

equation 1.  

Since, the proposed approach is independent on the number of clusters. The cost 

per iteration is O(DN), where, D is the number of dimensions of the data and N is 
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the number of data points in the dataset. As the time-complexity of the proposed 

approach is independent of k, it is expected to run in linear time. To validate the 

run time-complexity, we have provided line plots to convey the same to the 

readers. As expected, the proposed method proceeds linearly with the number of 

dimensions and the number of data- points. This validation is discussed in the 

upcoming sections.  

Finally, we compared the performance of the proposed algorithm with state-of-the   

art clustering techniques viz. K-Medoids, K-Means++ and FCM. The results show 

that the proposed approach is better in terms of time complexity and convergence   

rate and is scalable to higher dimensional datasets. 

 

3.1.4 Pseudo-Code  

 Algorithm 1 Fast Automatic K-Means          

 

1: Load Data set - a = load(data); 

2: Define rows and columns of the data-matrix  

    [n,p]= size(a) 

    where, n=rows and p=cols  

3: Set the cluster upper bound as reported in [36] to be n1/2 

4: for each k, number of clusters, do 

5: Run Fast K-Means clustering 

6: Calculate elbow plots  

7: end for  

8: Initialization phase: 

9: Run Fast K-Means on the range of clusters defined in step 3. 

10: Calculate the CH index, reported in [35]. 

11: while k > 2, do 

12:  Find the minimum index and store the indices in an empty matrix 

13:  Decrement k 
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14:  Perform fast K-Means  

15:  Compute the CH index 

16:  Store the maximum index and the corresponding k value. 

17:  end while 

18:  for k computed from step 16, do 

19: Compute the Silhouette index, reported in [34]. 

20: end for 

21: Plot the clustering results                   

22: Plot the Silhouette index 

23: Print the optimal k value 

24: Print the mean Silhouette index 
     

   

3.2  Second Phase 
The second phase consists of the EM algorithm, which takes the initial centroids   

and clusters provided by the first phase and iteratively runs EM algorithm for   

optimizing results.  

First, the number of clusters and cluster centers are selected from the Automatic 

K-Means algorithm. The algorithm proceeds by computing the maximum 

likelihood estimation for the k clusters and calculate new centers for each of these 

clusters. The algorithm moves through the Expectation and Maximization phases 

in a traditional loop-back fashion. First, it runs the E-step for estimating the input 

parameters and then updates the parameters by running the Maximization step.  

The process is repeated until a user defined tolerance e is reached. 

 

3.2.1 Objective Function of the proposed approach 

Applying the identity transformation/mapping to the performance function of 

Automatic K-Means and EM, the following equations are obtained:  
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where, X is the data-set and M is the centroids. 

The expressions inside the brackets are a result of linear mixing of exponential 

functions. The constant 1
(2 )Dπ

 does not impact the performance function. 

Hence, it does not change the locations of the optima of the function.  

 

3.2.2 Pseudo code 

Algorithm 2: K-EM Algorithm based on GMM        

1: Output Parameters: W, M, and V 

  W = Estimated weights of GM 

  M = Estimated mean vectors of GM 

  V= Estimated covariance matrices of GM 

 2: Input Parameters: X, k, ltol, itermax, plot, Init  

  X = Given Data 

  k = Number of clusters (optimally chosen from algorithm 1) 

  ltol = Tolerance value, denoted as e, in earlier notations 

  itermax = maximum number of allowed iterations 

  plot = 1 for 1-D, 2 for 2-D  

  Init = Structure of initial W, M, V 

 3: Initialize the parameters by running automatic K-Means on the input data 

 4: Perform the Expectation step using the equations listed in 6 and 11 

 5: Obtain the log-likelihood estimate of the input parameters 

 6: Initialize number of iterations  
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 7: While the value of the log likelihood estimate is less than tolerance value &  

         number of iterations is less than or equal to itermax, do 

 8: Perform the Maximization step using the equations listed in  

 9: Loop back and forth between these two steps until convergence 

10: end while 

11: Plot the log-likelihood estimate versus the number of iterations  

12: Plot the Clustering results 

 
 

3.3 Datasets 
3.3.1  Types of Datasets: 

The proposed approach is tested and evaluated on a number of data sets with 

varying size, shape and dimensions. We implemented the algorithm on 20 

different data sets categorized as follows: 

1. Real Data sets: These data sets are available as an open-source on UCI 

repository [39] which is a data-collection website maintained by UCI for 

machine-learning applications. Example data sets include Wine, Breast, Iris and 

yeast. The “Real” data sets are obtained from real world scenarios and 

experiments. They provide a strong validation of the algorithm as they depict 

natural data representation and are widely used in literature.  

2. Synthetic Data sets: These data sets are generated artificially to provide more 

insight about the algorithm and its potential limitations. For the evaluation of this 

algorithm, synthetic data sets of higher dimensions and big data-sizes were 

generated. These data sets validate the scalability and time-complexity of the 

algorithm.  

3. Shape Data sets: These data sets are available on [94]. The shape data sets are 

chosen to evaluate the suitability of the algorithm on different data structures. For 

instance, spherical, cylindrical etc. The motivation for choosing these data sets 

come from the fact that by nature, K-Means does not perform well on non-convex 



Archit Harsh and John E. Ball  61  

structures and more often, fail to converge. The proposed algorithm was tested to 

overcome this limitation and outperforms K-Means.  

4. Higher Dimension Data sets: These data sets are artificially generated to 

validate the scalability of the proposed approach in higher dimensions.  

5. Miscellaneous Data sets: These data sets are a combination of shape, size and 

dimensions.  

For each of these categories, we selected four data sets on which we implemented 

our algorithm and evaluated the performance. The following table lists the type of 

data sets in each category. 

Table 1 Types of Data sets 

Category Data set Data Description 

Real Breast 

This data set contains the records of patients 

suffering from breast-cancer. There are two 

classes: Benign and Malignant. Source: [39] 

Real Iris 

It is a widely-known data set taken from 

fisher’s Iris data. It contains four species of 

Iris, each with three classes. Source: [39] 

Real Wine 
It contains three different classes of wine 

found in North America. Source: [39] 

Real Thyroid 
Thyroid viruses categorized in two classes. 

Source: [39] 

Miscellaneous R15 
The first occurrence of R15 data set is 

found in [49]. 

Miscellaneous 

A1 

A2 

A3 

A data sets were used in a variety of 

clustering tasks. The data sets were first 

implemented in [50]. 

Shape 
S1 

S2 

S Data sets comes under the category of 

shape Data sets, i.e., they consist of varying 
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Category Data set Data Description 

S3 

S4 

shapes with different degree of overlap. 

Source: [48] 

Higher Dimensions Dim32 Gaussian data set with 32 dimensions. 

Higher Dimensions Dim64 Gaussian data set with 64 dimensions. 

Higher Dimensions Dim256 Gaussian data set with 256 dimensions. 

Higher Dimensions Dim1024 Gaussian data set with 1024 dimensions. 

Synthetic Synthetic1 
Synthetic1 is an artificially generated data 

set with one million data points. 

Synthetic Synthetic2 
Synthetic2 is an artificially generated data 

set with two million data points. 

Synthetic Synthetic3 
Synthetic3 is an artificially generated data 

set with three million data points. 

Synthetic Synthetic4 
Synthetic4 is an artificially generated data 

set with four million data points. 

 

 

4 Implementation Details 

4.1 Software Used 
The algorithm is designed and developed in MATLAB. The reason for choosing 

this programming language is fundamentally based on the fact that MATLAB is   

a very powerful tool for efficiently handling large memory requirements involved 

in scientific and engineering problems. Moreover, the majority of the clustering 

algorithms are already a part of this language which makes it relatively easy to 

validate the results and evaluate the performance.  The R programming language 

was also used. R is an open-source language preferred by data-scientists and 

data-analysts as it supports a wide array of clustering tools and efficiently handle 

huge data structures. This language is used to validate the   results initially 

carried out in MATLAB.  
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4.2 System specifications 
The algorithm is tested and developed on Dell Inspiron N5010 computer with 

8GB of RAM and an Intel i5 processor with 2.4 GHz processing speed.  

 

 

5 Results and Discussions 

5.1 Performance Metrics 
To evaluate the performance of the algorithm, we implemented the following 

performance metrics: Number of clusters versus actual clusters, run time 

complexity, convergence and scalability. The chosen metrics validate the 

proposed approach in terms of convergence, scalability, and time-complexity. 

Additionally, we provide a comparative study between the proposed method and 

the state-of-the-art clustering algorithms, specifically K-Means++, K-Medoids, 

and FCM for validation purposes. 

 

5.1.1  Number of clusters versus actual clusters 

This metric validate the algorithm’s accuracy for finding desirable clusters. For   

accomplishing this, we used a wide array of data sets with known number of 

clusters. The choice of these data sets confirm the efficiency of the algorithm as 

the ground-truth is available and known. As it is a non-parametric approach, this   

metric is critical for testing the algorithm. In the following table, we provide the   

results of clustering obtained by our algorithm on different data sets. Additionally, 

we also list the mean Silhouette index value which is a strong indicator for 

goodness of fit of the clusters. Ideally, the value closer to one indicate better 

clustering results. 

As clearly evident from the table, the proposed approach yields perfect results in 

most scenarios. The results are validated by comparing with the ground truth as 
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mentioned in the table. Also, the mean Silhouette value is closer to unity in   

most cases which is a desirable property. We also provide the clustering plots as 

obtained by the algorithm. The plots are generated in MATLAB with different 

color markers suggesting different clusters.  

For better understanding of the results, we provide results for two data sets in each 

category. Among them, we selected one simple (simple structure) data set and one 

highly convoluted data set for clustering. By doing so, we attempt to provide a fair 

understanding of the results to the readers. Additionally, we also provide one such 

scenario where the algorithm fail to perform due to the nature of the data set.  

Table 2 listing the results is on the following page.  

 

 

 Table 2:   Experimental Results of Application of AK-EM on Different Data set 

Data set 
Data 

points 
Category 

Dimension/

Features 

True 

k 

AK-EM 

estimated 

k 

Mean  

Silhouette 

index 

Breast 699 Real 9 2 2 0.7542 

Iris 150 Real 4 3 3 0.7786 

Wine 178 Real 13 3 3 0.7503 

Thyroid 215 Real 5 2 2 0.7773 

R15 600 Miscellaneous 15 15 15 0.9543 

A1 3000 Miscellaneous 20 20 20 0.7892 

A2 5250 Miscellaneous 35 35 35 0.7911 

A3 7500 Miscellaneous 50 50 20 0.7949 

S1 5000 Shape 15 15 15 0.8803 

S2 5000 Shape 15 15 15 0.8009 

S3 5000 Shape 15 15 15 0.6659 

S4 5000 Shape 15 15 15 0.6446 
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Dim32 1024 
Higher 

Dimensions 
32 16 16 0.9962 

Dim64 1024 
Higher 

Dimensions 
64 16 16 0.9985 

Dim256 1024 
Higher 

Dimensions 
256 2 2 0.9991 

Dim1024 1024 
Higher 

Dimensions 
1024 16 16 0.9998 

Synthetic1 1,000,000 Synthetic 5 5 5 0.7887 

Synthetic2 2,000,000 Synthetic 5 5 5 0.7654 

Synthetic3 3,000,000 Synthetic 5 5 5 0.7896 

Synthetic4 4,000,000 Synthetic 5 5 5 0.7994 

 

5.1.1.1 Clustering plots 

1. Wine Data set 

 

The following plot shows the clustering results for the wine data set.                                                                                                                                                     
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Figure 1: Clustering Result for Wine Data set 

As clearly evident from the plots, the proposed algorithm correctly identifies three 

clusters. Additionally, the Silhouette plot validates the results giving three distinct 

clusters. These plots are provided to present a visual understanding of the results 

to the readers.  

 

 
 

2. Iris Data set  
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Figure 2: Clustering Result in Iris Data set 

The aforementioned plot presents the clustering results in Iris Data set. It is quite 

evident that the algorithm correctly determines the three clusters which match 

with the original data description. The Silhouette plot agrees with the results.  

 

 

3. R15 data set 
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Figure 3: Clustering Result in R15 data set 

The aforementioned plot indicates the clustering results in R15 data set. Through 

visual inspection, one can easily witness the nature of the data. The inside ring of 

clusters are correctly identified by the proposed method. However, one can also 

argue that due to the highly convoluted nature of data, the inside rings can be 

merged as a single cluster. The algorithm performs extremely well in this scenario 

giving distinct clusters. The Silhouette plot also confirms the results.  

4. A3 data set 
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Figure 4: Clustering Result in A3 data set 

The given plot provides the clustering results for A3 data set. For this specific 

dataset, the proposed algorithm fails to correctly identify the number of clusters. It 

identifies 20 clusters against the true value of 50. The possible reason for failure is 

that the clusters are highly overlapping and there is no clear distinction between 

them. This result is critical for the readers as it highlights the limitation of the 

proposed method. As previously mentioned, K-Means is inherently build to utilize 

Euclidean distance as the metric, it tends to fail when the clusters are highly 
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constricted. I would also like to state that in such scenarios, all the Partitional 

based clustering techniques tend to fail as they rely heavily on some specific 

objective function, which may perform poorly in highly convoluted data sets.  

The following plots are generated as a result of implementation of the algorithm 

on shape data sets. 

 

5. S1 data set 

 

 

Figure 5: Clustering Result in S1 data set 

In the aforementioned plot, the proposed method is applied to S1 shape data set. It 

correctly identifies the number of clusters, as expected. The Silhouette plot 

validates the results.  

6. S4 data set 
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Figure 6: Clustering Result in S4 data set 

This result is of high importance due to the highly constricted nature of data. My 

proposed algorithm performs well in this data set, correctly identifying 15 clusters. 

The Silhouette plot compliments the results, as can be visually inspected. 

 

 

7. Dim256 data set 
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               Figure 7: Clustering Result in Dim256 data set 

 

This plot provides clustering results for Dim256 data set. This data set has 256 

dimensions/features. The proposed method correctly identifies the desired number 

of clusters, validating its suitability in higher dimensional data sets. Furthermore, 

the Silhouette plot validates the clusters 
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Figure 8: Clustering Result in Dim1024 data set 

As expected, the algorithm correctly yields 16 clusters in 1024 dimensions 

validating the algorithm’s performance in higher dimensions. 

 

 

9. Synthetic 1 data set 
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10.  

 

 

           Figure 9: Clustering Results in Synthetic1 data set 

The above plot shows the clustering plot for synthetic1 data set. The data set 

consists of 1 million data points. The aim of this plot is to provide validation of 

the proposed method in big data sets. The proposed algorithm correctly identifies 

5 clusters. The Silhouette plot also confirms the same. 
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Figure 10: Clustering Result in Synthetic4 data set 

 

This plot is highly critical from the point of clustering as the Silhouette plot 

indicates the maximum index when k = 4. For the same reason, I employed two 

other internal cluster validity metric, namely the CH index and the elbow plot. The 

highest average value of the CH index and Silhouette index is taken and k is 

chosen. The detailed values are listed in table 2.  
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It is to be noted that the cluster validity metrics rely on information of the data and 

hence, no single cluster validity metric can provide sufficient information on the 

desired number of clusters. All of them are data-driven.   

 

5.1.2  Run time complexity 

This metric is implemented to evaluate the time-complexity of the given approach. 

The results are compared with the time-complexity of three state-of-the-art 

algorithms. Our approach performs better than the other algorithms with respect to 

computational and processing time for most scenarios. Due to the random 

initialization phase of all the algorithms, we performed 20 different runs for each 

of the method and calculated the average time complexity. 

Figure 11 provides computational time complexity of the given approach versus 

the number of data points.  

 
Figure 11: Time complexity versus Data Points 
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As expected, the time-complexity of the given approach proceeds nearly linearly 

with the number of data points. The given approach takes a maximum of 2000 

seconds for the data set containing 5,000,000 points.  

 

5.1.3  Comparison with the state-of-the art algorithms 

Figure 12 provides the run time complexity of the given approach in comparison 

with three well-known clustering techniques viz. K-Means++, K- Medoids, and 

FCM.  For the purpose of validation, we provide two separate plots for 

time-complexity versus the number of data-points and dimensionality. These plots 

individually show the dependence on the number of data-points and 

dimensionality. FCM runs in quadratic time, as expected. However, since it is the 

best-case comparison, we additionally provide the true value of k and calculated 

the average time over twenty multiple iterations. 

 

Figure 12: Comparison of average time complexity with state-of-the-art 

algorithms 
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It is quite evident from the plot that the proposed approach outperforms the other 

well-known techniques in terms of run time complexity. Due to the random 

initialization strategy of these algorithms, each algorithm is run multiple times and 

an average time complexity is calculated to provide unbiased results.   

 

5.1.4  Convergence 

As a widely known fact, the partitioning based algorithms suffer from 

convergence   issues as they are based on some sort of statistical parameter like 

mean, centroid, median, etc. which inherently require a regular distribution of data 

and are also inherently designed to be random in nature. Due to these limitations, 

this   performance metric was used to test the convergence of my algorithm. The 

following table lists the convergence vs the number of iterations for each of these   

methods. The proposed approach takes three iterations on an average to converge 

in comparison to the other techniques. 

Table 3: Comparison of convergence with state-of-the-art clustering algorithms 

Algorithms Tested 
Average No. of 

Iterations 

Convergence 

Achieved? 

K-Medoids 6 Yes 

FCM 20 Yes 

K-Means++ 20 No 

A-KEM 3 Yes 

 

5.1.5  Scalability 

We implemented this performance metric to test the scalability of the proposed 

approach. For this purpose, we tested the algorithm on higher dimensional data 

sets. Figure 13 provides the results of scalability. We plotted the time in   

seconds versus the number of dimensions for each of the methods. The proposed 

approach scales well with the dimensions and yield good results.  
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Figure 13: Comparison of Scalability with state-of-the art cluster techniques 
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the state-of- the-art K-Means clustering techniques in most scenarios. The results 

claim that the proposed method is efficient, accurate and is suitable for various 

degrees of data-sets, making it desirable for data mining applications.  
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The proposed approach provides a non-parametric clustering algorithm for 
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proposed approach is based on K-Means, there is a possibility that the algorithm 

might fail to converge under specific conditions imposed by the type of data set.  

Fundamentally, we have implemented an upper bound on the number of clusters 

to be 1/2n  as reported in the literature. It would be interesting to find a tighter 

upper bound to minimize the processing time when considering huge data sets.  

 

 

8 Conclusions 
In this paper, a novel non-parametric clustering technique is presented. The 

proposed method is non-parametric in a sense that it optimally identifies the 

number of cluster employing three internal cluster validity indices. The algorithm 

is tested on a wide   array of data sets in terms of varying shape, size and 

dimensions. The results are also compared with three well-known state-of-the-art 

clustering techniques. The results prove that the proposed method yields good 

results and performs better than the other state-of-the-art techniques in most 

scenarios. The proposed algorithm is proven to run in linear time with a decent 

convergence rate in most tested scenarios. It scales well with higher dimensions 

making it apt for big data applications.  

 

 

9 Future Work 
In future work, it will be of interest to find a tighter upper bound on the number of 

clusters, in order to reduce the number of computational steps of the proposed 

approach. As a potential alternative, it would be interesting to exploit the triangle 

inequality following the method developed by Elkan in [40].  

A possible improvement of the proposed method will consist of trying different 

similarity measures instead of Euclidean distance, which is implemented by 

default. This might aid in enhancing the cluster accuracy. For future work, we will 

also try to implement the algorithm on noisy data sets containing outliers. As the 
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partitioning based techniques are non-robust to outliers, it would be of interest to 

devise a technique which can automatically handle outliers while clustering. In   

[41], we have developed an onion-peeling outlier detection approach which might   

aid in achieving the same. 
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