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Abstract 

This paper presents exponential type ratio and product estimators for finite 

population mean of the study variable in presence of non-response when the 

population mean of the auxiliary variable is unknown. The expressions for Mean 

Square Error of the proposed estimators have been obtained to the first degree of 

approximation. These estimators are compared for their precision with 

Hansen-Hurwitz [2] unbiased estimator and Khare and Srivastava [5] estimators. 

An empirical study is also carried out to judge the merits of the suggested 

estimators. 
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1  Introduction 
In practice almost all surveys suffer from non-response. The problem of 

non-response often happens due to the refusal of the subject, absenteeism and 

sometimes due to the lack of information. The pioneering work of Hansen and 

Hurwitz [2], assumed that a sub-sample of initial non-respondents is re-contacted 

with a more expensive method, suggesting the first attempt by mail questionnaire 

and the second attempt by a personal interview. In estimating population 

parameters such as the mean, total or ratio, sample survey experts sometimes use 

auxiliary information to improve precision of the estimates. Sodipo and Obisesan 

[10] have considered the problem of estimating the population mean in the 

presence of non-response, in sample survey with full response of an auxiliary 

character x. Other authors such as Cochran [1], Rao [8], Khare and Srivastava [5, 

6], Okafor and Lee [7], Khare and Sinha [4], Tabasum and Khan [12, 13] and 

Khare et al [3] have studied the problem of non-response under double (two-phase) 

sampling. 

Let in a finite population { }NUUUU ,...,, 21=  of size N , a large first phase

sample of size n′  is selected by simple random sampling without replacement 

(SRSWOR). A smaller second phase sample of size n  is selected from n′  by 

SRSWOR.  Non-response occurs on the second phase sample of size n  in 

which 1n  units respond and 2n units do not. From the 2n non-respondents, by 

SRSWOR a sample of 1;2 >= kknm  units are selected where k   is the 

inverse sampling rate at the second phase sample of size n . Here we assume that 

the response is obtained for all the m units. This method of double sampling can 

be applied in a household survey where the household size is used as an auxiliary 

variable for the estimation of family expenditure. Information can be obtained 

completely on the family size, while there may be some non-response on the 

household expenditure. The whole population is divided into two classes, one 

consists of 1N  units, which would respond on the first attempt at the second 
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phase and the other consists of ( )12 NNN −=  units, which would not respond on 

the first attempt at the second phase of sampling but will respond on the second 

attempt. Hansen and Hurwitz [2] suggested an unbiased estimator for population 

mean Y of the study variable y , is defined by 

                      mywywy 2211
* +=                           (1) 

The variance of unbiased estimator *y  is given by 
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It is well known that in estimating the population mean, sample survey 

experts sometimes use auxiliary information to improve the precision of the 

estimates. Let x  denote an auxiliary variable with population mean 
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unbiased estimator of population mean X  as 
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The variance of *x  is given by   
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The objective of this paper is to propose exponential estimators for population 

mean using auxiliary character in the presence of non-response under double 

sampling. The properties of the suggested estimators are given under a large 

sample approximation. An empirical study is carried out to demonstrate the 

performance of the suggested estimators over others. 

 

    

2  Proposed Ratio and Product Estimators 
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second phase sample) be the sample mean estimator of population means X , Y  

respectively. Then the double sampling version of the ratio Rdy  and product 

Pdy  estimators of population mean Y  are respectively given by 
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Singh and Vishwakarma [9] suggested the exponential ratio and product 
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estimators for population mean Y  as 
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Khare and Srivastava [5] proposed the conventional ratio and product estimators 

in the presence of non-response two phase sampling as 
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Case II:  non- response is both on study and auxiliary variables 

                  * *
*IIRd

xy y
x
′

=                                    (7) 

and 

                  
*

* *
IIPd

xy y
x

=
′

                                   (8) 

To the first degree of approximation, the Mean Square Error (MSE) of the 

estimators *
IRdy  , *

IPdy  , *
IIRdy  and *

IIPdy  are given by   
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where, XYR = . Motivated by Singh and Vishwakarma [9], we propose 

exponential ratio and product estimators for population mean Y  using auxiliary 

character in the presence of non-response as 

Case I:  non- response is only on study variable 
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Case II:  non- response is both on study and auxiliary variables 
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Remark: There are many ways to utilize the available information on estimation 

stage in terms of the formulation of suitable estimators. Motivated with this 

argument, we have used the information on auxiliary variable under 

Hansen-Hurwitz techniques which results precise the estimation procedure and the 

subsequent estimators given in Eq. (15) and Eq. (16).   

It is easily observed that *
ReIy , *

PeIy , *
ReIIy and *

PeIIy  are biased estimators, 

but the bias being of the order 1−n , can be assumed negligible in large samples. It 

is assumed that the sample size n is large enough so that the biases of these 

estimators are negligible and the Mean Square Errors (MSEs) of all biased 

estimators are obtained up to the terms of order 1−n .  
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3  Mean Square Error (MSE) of the Proposed Estimators 

To obtain the MSE of the proposed estimators *
ReIy , *

PeIy , *
ReIIy and *

PeIIy  , 

we assume ( )0
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sampling scheme,  
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where, yxρ and )2(yxρ  are respectively the correlation coefficients of response 

and non-response groups between study variable y  and auxiliary variable x . 

We can reasonably assume that the sample sizes are large enough to make 0e , 

1e , 2e  and 11 <<′e . Now we have 
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Expanding the right hand sides of equations Eqs. (18), (19), (20) and (21), 

multiplying out and neglecting the terms of e’s involving degree greater than or 

equal to two, we get 
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Squaring both sides of equations Eqs. (22), (23), (24) and (25), taking expectations 

and using the results in Eq. (17), we get the MSEs of *
ReIy , *
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ReIIy and 
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4  Efficiency Comparisons 

It is well known that under SRSWOR sampling scheme, we have              

     ( ) ( ) ( ) 2
)2(

22* 1
yy S

Nn
kNS

Nn
nNyV −

+
−

=                             (30) 

From Eqs. (9) to (12), (26) to (29), and (30), we have  

(i) * *
Re( ) ( )IMSE y V y< if 

           1
4

y
yx

x

C
C

ρ >                                           (31)   

(ii) * *
e( ) ( )I PMSE y V y< if 

         1
4

y
yx

x

C
C

ρ < −                                            (32)                                                                              

(iii) * *
Re( ) ( )IIMSE y V y< if                                                              

           
2

2
2
(2) (2) (2) (2)

4 ( 1)
4 ( )

x yx y x

x yx y x

RS S S N k n
RS S S n n N

ρ
ρ
− ′−

< −
′− −

                   (33) 

(iv) * *
e( ) ( )II PMSE y V y< if 



Gajendra K. Vishwakarma and Ravendra Singh   145  

           
2

2
2
(2) (2) (2) (2)

4 ( 1)
4 ( )

x yx y x

x yx y x

RS S S N k n
RS S S n n N

ρ
ρ
+ ′−

< −
′+ −

                   (34) 

(v) * *
Re( ) ( )I I RdMSE y MSE y< if 

           
2

2

4
4

2
x yx y x

x yx y x

RS S S
RS S S

ρ
ρ

−
<

−
                                   (35) 

(vi) * *
e( ) ( )I P I PdMSE y MSE y< if 

           
2

2

4
4

2
x yx y x

x yx y x

RS S S
RS S S

ρ
ρ

+
<

+
                                   (36) 

(vii) * *
Re( ) ( )II II RdMSE y MSE y< if 

           
2

2
2
(2) (2) (2) (2)

3 4 ( 1)
3 4 ( )

x yx y x

x yx y x

RS S S N k n
RS S S n n N

ρ
ρ
− ′−

< −
′− −

                  (37) 

(viii) * *( ) ( )II Pe II PdMSE y MSE y< if 

           
2

2
2
(2) (2) (2) (2)

3 4 ( 1)
3 4 ( )

x yx y x

x yx y x

RS S S N k n
RS S S n n N

ρ
ρ
+ ′−

< −
′+ −

                  (38) 

 

 

5  Empirical Study 
To illustrate the properties of the proposed estimators of the population mean 

Y , we consider a real data set considered by Srivastava [11]. The description of 

the population is given below. 

A list of seventy villages in a Tehsil of India along with their population in 

1981 and cultivated area (in acres) in the same year is taken into consideration. 

Here the cultivated area (in acres) is taken as main study character and the 

population of village is taken as auxiliary character. The values of the parameters 
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are as follows: 

2 2 2

y (2) (2)

(2)

981.29, Y 597.29,  X 1755.53,  X 1100.24, 70, W 0.20,
n 40, n 25, S 613.66, 1406.13,    241.11, 631.51,

0.778, 0.445
x y x

yx yx

Y N
S S S

ρ ρ

= = = = = =
′ = = = = = =

= =

 

 
Table 1: Percentage Relative Efficiencies (PREs) of different estimators of  

Y  with respect to *y  

 
Value of k 

Estimators 
*y  *

I Rdy  *
II Rdy  *

ReIy  *
eII Ry  

2 100.00 124.37 118.79 148.37 149.62 

3 100.00 123.03 113.01 145.22 147.54 

4 100.00 121.82 108.19 142.46 145.68 

5 100.00 120.74 104.11 140.01 144.02 
 
 
 
     

Figure 1: Percentage Relative Efficiencies (PREs) of different estimators 
of Y  with respect to *y  under case I  

. 
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Figure 2: Percentage Relative Efficiencies (PREs) of different estimators 

of Y  with respect to *y  under case II 
 

 

6  Conclusion 
Table 1 exhibits that 

(i) For the given population data set, the PREs of various estimators decreases as 

the value of k increases.  

(ii) The proposed estimators *
ReIy  and *

eII Ry  for the two cases of non-response 

shows the maximum gain in efficiency as compared to the Hansen-Hurwitz [2] 

unbiased estimator and Khare and Srivastava [5] estimators.  

Figures 1 and 2, the graphical representations of PREs for both the cases I (non- 

response is only on study variable) and II (non- response is both on study and 

auxiliary variables) respectively are also shown the improvement in percentage 

relative efficiencies of the proposed estimators as compared to the 

Hansen-Hurwitz [2] unbiased estimator and Khare and Srivastava [5] estimators. 
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