Journal of Computations & Modelling, vol.5, no.4, 2015, 75-95 ISSN: 1792-7625 (print), 1792-8850 (online) Scienpress Ltd, 2015

The Method to improve Forecasting Accuracy by Using Neural Network with An Application to the Stock Market Price Data

Yuki Higuchi¹, Yuta Tsuchida² and Kazuhiro Takeyasu³

Abstract

In industry, making a correct forecasting is a very important matter. If the correct forecasting is not executed, there arise a lot of stocks and/or it also causes lack of goods. Time series analysis, neural networks and other methods are applied to this problem. In this paper, neural network is applied and Multilayer perceptron Algorithm is newly developed. The method is applied to the stock market price data of glass and quarrying companies. When there is a big change of the data, the neural networks cannot learn the past data properly, therefore we have devised a new method to cope with this. Repeating the data into plural section, smooth change is established and we could make a neural network learn more smoothly. Thus, we have obtained good results. The result

E-mail: y-higuch@kjo.setsunan.ac.jp

¹ Faculty of Business Administration, Setsunan University.

² Graduate School of Engineering, Osaka Prefecture University. E-mail: soil.y.paddy@gmail.com

³ College of Business Administration, Tokoha University. E-mail: takeyasu@fj.tokoha-u.ac.jp

Article Info: *Received* : July 12, 2015. *Revised* : August 9, 2015. *Published online* : December 10, 2015.

is compared with the method we have developed before. We have obtained the good results.

Mathematics Subject Classification: 82C32

Keywords: forecasting; neural networks; time series analysis; stock market price

1 Introduction

In industry, how to make a correct forecasting such as sales forecasting is a very important issue. If the correct forecasting is not executed, there arise a lot of stocks and/or it also causes lack of goods. Time series analysis, neural networks and other methods are applied to this problem. There are some related researches made on this. Reviewing past researches, Kimura et al. (1993)[1] applied neural networks to demand forecasting and adaptive forecasting method was proposed. Baba et al. (2000) [2] combined neural networks and the temporal difference learning method to construct an intelligent decision support system for dealing stocks. Takeyasu et al. (2009)[3] devised a new trend removing method and imbedded a theoretical solution of exponential smoothing constant. As a whole, it can be said that an application to sales forecasting is rather a few. In this paper, neural network is applied and Multilayer perceptron Algorithm is newly developed. The method is applied to the stock market price data of glass and quarrying companies. When there is a big change of the data, the neural networks cannot learn the past data properly, therefore we have devised a new method to cope with this. Repeating the data into plural section, smooth change is established and we could make a neural network learn more smoothly. Thus, we have obtained good results. The result is compared with the method we have developed before (Takeyasu et al. (2012)[4]).

The rest of the paper is organized as follows. In section 2, the method for

neural networks is stated. An application method to the time series is introduced in section 3. In section 4, a new method is proposed to handle the rapidly changing data. Numerical example is stated in section 5. Past experimental data are stated and compared in section 6, which is followed by the remarks of section 7.

2 The Method for Neural Networks [5]

In this section, outline of multilayered neural networks and learning method are stated. In figure 1, multilayered neural network model is exhibited. It shows that it consist of input layer, hidden layer and output layer of feed forward type. Neurons are put on hidden layer and output layer. Neurons receive plural input and make one output.

Now, suppose that input layer have input signals x_i (i = 1, 2, ..., l), hidden layer has m neurons and output layer has n neurons. Output of hidden layer y_j (j = 1, 2, ..., m) is calculated as follows. Here $x_0 = -1$ is a threshold of hidden layer.

$$y_j = f\left(\sum_{i=0}^l v_{ij} x_i\right) \tag{1}$$

$$f(x) = \frac{1}{1 + \exp(-x)}$$
(2)

When v_{ij} is a weighting parameter from input layer to hidden layer and (2) is a sigmoid function. $y_0 = -1$ is a threshold of output layer and has the same value in all patterns. The value of the neuron of output layer, $z_k (k = 1, 2, ..., n)$ which is a final output of network, is expressed as follows.

$$z_k = f\left(\sum_{j=0}^m w_{jk} y_j\right) \tag{3}$$

When w_{jk} is a weighting parameter of Hidden layer through Output layer, Learning

is executed such that v, w is updated by minimizing the square of "output – supervisor signal" Evaluation function is shown as follows.

$$E = \frac{1}{2} \sum_{k=0}^{n} (d_k - z_k)^2$$
(4)

where d_k is a supervisor signal. Error signal is calculated as follows.

$$e_k = d_k - z_k \tag{5}$$

 Δw_{ik} (Output layer) is calculated as follows.

$$\delta_k = e_k z_k (1 - z_k) \tag{6}$$

$$\Delta \mathbf{w}_{jk} = \eta y_j \delta_k \tag{7}$$

Therefore, weighting coefficient is updated as follows.

$$w_{jk}^{\text{new}} = w_{jk}^{\text{old}} + \Delta w_{jk}$$
(8)

where η is a learning rate.

 Δv_{ij} (Hidden layer) is calculated as follows.

$$\gamma_j = y_j (1 - y_j) \sum_{k=1}^n w_{jk}^{\text{new}} \delta_k$$
(9)

$$\Delta v_{ij} = \eta x_i \gamma_j \tag{10}$$

 v_{ij} is updated as follows.

$$v_{ij}^{\text{new}} = v_{ij}^{\text{old}} + \Delta v_{ij} \tag{11}$$

Figure 1: Multilayered neural network

3 An Application Method to the Time Series

Now we apply neural networks to the forecasting of time series. Suppose there are M months' time series data. We use them as follows: Latter half N months' data for test, the first half (M - N) months' data for learning.

3.1 Normalization

Data should be normalized because output is controlled by sigmoid function. We use time series this time, therefore data is normalized in the range [0:1]. We obtained max, min from 1 through (M - N) months, which is a learning data period. We cannot grasp the test data range as the time of learning. Therefore estimated values max, min are calculated as follows,

$$\widehat{\max} = \max \cdot \mu_{\max} \tag{12}$$

$$\widehat{\min} = \frac{\min}{\mu_{\min}}$$
(13)

Where μ_{max} , μ_{min} are margin parameters. Set a_k as time series data, then a_k is normalized as follows.

$$X_k = \frac{a_k - \widehat{\min}}{\widehat{\max} - \widehat{\min}}$$
(14)

3.2 Forecasting Method

Forecasting is executed as follows.

$$\hat{X}_{k} = F(X_{(k-l)}, X_{(k-l+1)}, \dots, X_{(k-l+i)}, \dots, X_{(k-1)})$$
(15)

Where F(x) is a neural network and X_k is a *k*th month's data (input signal). The number of learning patterns is (M - N) - l. We vary l as l = 1, 2, ..., (M - N)/2. The relation of learning data and supervisor data is shown as Figure 2. In this figure, input data is shown by the broken line when X_8 is targeted for learning under l = 4. Learning is executed recursively so as to minimize the square of $\hat{X}_k - X_k$, where \hat{X}_k is an output.

$$\left(\hat{X}_k - X_k\right)^2 \to \varepsilon \tag{16}$$

This time, ε is not set as a stopping condition of iteration, but predetermined *s* steps are adopted for the stopping condition. Forecasted data \hat{a}_k is reversely converted to Eq.(17) from Eq.(14) as follows.

$$\hat{a}_k = \hat{X}_k \left(\widehat{\max} - \widehat{\min} \right) + \widehat{\min} \tag{17}$$

3.3 Forecasting Accuracy

Forecasting accuracy is measured by the following "Forecasting Accuracy Ratio (FAR)".

$$FAR = \left\{ 1 - \frac{\sum_{k=M-N}^{N} |a_k - \hat{a}_k|}{\sum_{k=M-N}^{N} a_k} \right\} \cdot 100$$
(18)

Figure 2: Choose the input data and supervisor for neural network (ex: l=4, k=8)

4 A Newly Proposed Method

We have found that the mere application of neural networks does not bear good results when there is a big change of the data. Therefore we have devised a new method to cope with this. Repeating the data into plural sections, we aim to make a neural network learn more smoothly. The concept of the change of data sampling is exhibited in Figure 3. Data is repeated τ times and after the learning, the value is taken average by τ in order to fit for the initial condition.

Figure 3: Change the time sampling (ex: $\tau = 4$)

5 Numerical Example

5.1 Used Data

The stock market price data of glass and quarrying companies for 3 cases from January 2008 to December 2010 are analyzed. Here M = 36. First of all, graphical charts of these time series data are exhibited in Figure 4, 5 and 6. Latter half data N = 12 are the data for test and the first half 24 data are the data for learning. μ_{max} and μ_{min} are set as follows.

$$\mu_{\rm max} = 1.1 \tag{19}$$

$$\mu_{\min} = 1.5 \tag{20}$$

Each maximum, minimum and estimated maximum, minimum data are exhibited in Table 1.

	1 to 36 months	Estimated	
-	Maximum		
-	Minimum		
OHARA .	2740	3014	
	993	903	
NGK	1851	2036	
INSULATORS	698	635	
NGK SPARK	1935	2129	
PLUG	696	633	

Table 1: The maximum value and the minimum value

5.2 Condition of Experiment

Condition of the neural network's experiment is exhibited in Table 2. Experiment is executed for 12 patterns (l = 1, 2, ..., 12) and the Forecasting

Accuracy Ratio is calculated based on the results.

Name	Parameter	Value
The number of neurons in hidden layer	т	4
The number of output	n	1
The learning rate	η	0.035
Learning steps	S	4000

Table 2: The experiment of neural network

Figure 4: Data of OHARA INC.

Figure 5: Data of NGK INSULATORS LTD.

Figure 6: Data of NGK SPARK PLUG CO., LTD.

5.3 Experimental Results for τ =1 and τ =4

Now, we show the experimental results executed by the method stated in 3.2. The Forecasting Accuracy Ratio is exhibited in Table 3 and 4.

l	OHARA	NGK INSULATORS	NGK SPARK PLUG
1	89.22	93.83	92.06
2	88.74	93.93	90.85
3	86.25	93.74	90.66
4	89.35	94.01	90.57
5	90.08	93.60	90.78
6	87.89	92.73	90.27
7	85.98	90.95	88.65
8	82.87	89.69	84.24
9	83.15	88.45	79.91
10	84.91	89.11	77.34
11	86.90	89.74	77.22
12	88.13	90.64	80.95

Table 3: The result for Neural network $[\tau = 1]$

Minimum score among 12 cases is written in bold for each case. In all cases, the case $\tau = 4$ is better than those of $\tau = 1$. Forecasting results for the minimum case of l are exhibited in Figures 7 through 9.

l	OHARA	NGK INSULATORS	NGK SPARK PLUG
1	96.62	97.29	97.16
2	96.06	96.71	97.68
3	94.46	97.37	97.28
4	95.48	97.17	97.06
5	95.82	96.82	96.94
6	93.43	96.01	97.19
7	90.83	96.17	95.39
8	89.99	95.6	90.86
9	88.08	94.57	86.4
10	90.32	96.14	77.53
11	90.59	95.74	76.83
12	87.36	92.1	77.49

Table 4: The result for Neural network $[\tau = 4]$

Figure 7: The result of OHARA INC. ($\tau = 1, l = 5$) and ($\tau = 4, l = 1$)

Figure 8: The result of NGK INSULATORS LTD. ($\tau = 1, l = 4$) and ($\tau = 4, l = 3$)

Figure 9: The result of NGK SPARK PLUG CO., LTD. ($\tau = 1, l = 1$) and ($\tau = 4, l = 2$)

6 Past Experimental Data and Its Comparison

6.1 Outline of the Method

Focusing that the equation of exponential smoothing method(ESM) is equivalent to (1,1) order ARMA model equation, a new method of estimation of smoothing constant in exponential smoothing method is proposed before by us which satisfies minimum variance of forecasting error. Generally, smoothing constant is selected arbitrary. But in this paper, we utilize above stated theoretical solution. Firstly, we make estimation of ARMA model parameter and then estimate smoothing constants. Thus theoretical solution is derived in a simple way and it may be utilized in various fields. Furthermore, combining the trend removing method with this method, we aim to improve forecasting accuracy. An approach to this method is executed in the following method. Trend removing by the combination of linear and 2nd order non-linear function and 3rd order non-linear function is executed to the stock market price data of glass and quarrying companies. Genetic Algorithm is utilized to search optimal weights for the weighting parameters of linear and non-linear function. For the comparison, monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non monthly trend removing data.

6.2 Theoretical Solution of Smoothing Constant in ESM

In ESM, forecasting at time t - 1 is stated in the following equation.

$$\hat{a}_{t+1} = \hat{a}_t + \alpha (a_t - \hat{a}_t) \tag{21}$$

$$=\alpha a_t + (1-\alpha)\hat{a}_t \tag{22}$$

Here,

 \hat{a}_{t+1} : forecasting at t+1

 a_t : realized value at t

 α : smoothing constant (0 < α < 1)

(22) is re-stated as

$$\hat{a}_{t+1} = \sum_{l=0}^{\infty} \alpha (1-\alpha)^l \, a_{t-1} \tag{23}$$

By the way, we consider the following (1,1) order ARMA model.

$$a_t - a_{t-1} = h_t - \beta h_{t-1} \tag{24}$$

Generally, (p,q) order ARMA model is stated as

$$a_{t} + \sum_{i=1}^{p} \kappa_{i} a_{t-i} = h_{t} + \sum_{j=1}^{q} \lambda_{j} h_{t-j}$$
(25)

Here,

 $\{a_t\}$: Sample process of Stationary Ergodic Gaussian Process t = 1, 2, ..., N, ...

 $\{h_t\}$: Gaussian White Noise with 0 mean σ_h^2 variance MA process in (25) is supposed to satisfy convertibility condition.

Finally we get

$$\lambda_{1} = \frac{1 - \sqrt{1 - 4\rho_{1}^{2}}}{2\rho_{1}}$$

$$\alpha = \frac{1 + 2\rho_{1} - \sqrt{1 - 4\rho_{1}^{2}}}{2\rho_{1}}$$
(26)

where ρ_1 is an autocorrelation function of 1st order lag. This α is a theoretical solution of smoothing constant in ESM (in detail, see [3]).

6.3 Trend Removal Method

As ESM is a one of a linear model, forecasting accuracy for the time series with non-linear trend is not necessarily good. How to remove trend for the time series with non-linear trend is a big issue in improving forecasting accuracy. In this paper, we devise to remove this non-linear trend by utilizing non-linear function. As a trend removal method, we describe linear and non-linear function, and the combination of these.

[1] Linear function

We set

$$r = b_{11}u + b_{12} \tag{27}$$

as a linear function, where u is a variable, for example, time and r is a variable, for example, shipping amount, b_{11} and b_{12} are parameters which are estimated by using least square method.

[2] Non-linear function

We set:

$$r = b_{21}u^2 + b_{22}u + b_{23} \tag{28}$$

$$r = b_{31}u^3 + b_{32}u^2 + b_{33}u + b_{34}$$
⁽²⁹⁾

as a 2nd and a 3rd order non-linear function. (b_{21}, b_{22}, b_{23}) and $(b_{31}, b_{32}, b_{33}, b_{34})$ are also parameters for a 2nd and a 3rd order non-linear functions which are estimated by using least square method.

[3] The combination of linear and non-linear function

We set

$$r = \alpha_{1} (b_{11}u + b_{12}) + \alpha_{2} (b_{21}u^{2} + b_{22}u + b_{23}) + \alpha_{3} (b_{31}u^{3} + b_{32}u^{2} + b_{33}u + b_{34}) 0 \le \alpha_{1} \le 1 , 0 \le \alpha_{2} \le 1 , 0 \le \alpha_{3} \le 1 \alpha_{1} + \alpha_{2} + \alpha_{3} = 1$$
(30)

(30)

(31)

as the combination of linear and 2^{nd} order non-linear and 3^{rd} order non-linear function. Trend is removed by dividing the data by (30). The optimal weighting parameters α_1 , α_2 , α_3 are determined by utilizing Genetic Algorithm.

6.4 Monthly Ratio

For example, if there is the monthly data of L years as stated bellow:

$$\left\{x_{\theta\phi}\right\}(\theta=1,\ldots L)\;(\phi=1,\ldots,12),$$

where, $x \in R$ in which θ means month and ϕ means year and $x_{\theta\phi}$ is a data of θ -th year, ϕ -th month. Then, monthly ratio $\tilde{x}_{\phi}(\phi = 1, ..., 12)$ is calculated as follows.

$$\tilde{x}_{\phi} = \frac{\frac{1}{L} \sum_{\theta=1}^{L} x_{\theta\phi}}{\frac{1}{L} \cdot \frac{1}{12} \sum_{\theta=1}^{L} \sum_{\phi=1}^{L} x_{\theta\phi}}$$
(32)

Monthly trend is removed by dividing the data by (32). Numerical examples both of monthly trend removal case and non-removal case are discussed later.

6.5 Forecasting Results

Forecasting results are exhibited in Figure 10 through 12. Forecasting Accuracy Ratio is exhibited in Table 5.

6.6 Remarks

In all cases, that monthly ratio was not used had a better forecasting accuracy. OHARA had a good result in the combination of linear, 2^{nd} and 3^{rd} order non-linear function model. NGK INSUKATORS had a good result in the combination of linear and 3^{rd} order non-linear function model. NGK SPARK PLUG case selected the only 3^{rd} function model as the best one.

The minimum variance of forecasting error of GA coincides with those of the calculation of all considerable cases and it shows the theoretical solution. Although it is a rather simple problem for GA, we can confirm the effectiveness of GA approach. Further study for complex problems should be examined hereafter.

	Monthly Ratio	
-	Used	Not used
OHARA	89.39	91.98
NGK INSULATORS	90.76	94.71
NGK SPARK PLUG	91.81	92.99

Table 5: Forecasting Accuracy Ratio

Figure 10: Forecasting Result of OHARA INC.

Figure 11: Forecasting Result of NGK INSULATORS LTD.

Figure 12: Forecasting Result of NGK SPARK PLUG CO., LTD.

7 Remarks

Now, we compare with both results. In Table 6, both results are stated and compared. Their comparison is shown in Figures 13, 14 and 15. In all cases, this newly proposed method had a better forecasting accuracy than the previously proposed method.

ruble of comparison of the bounded	Table 6:	Comp	arison	of the	both	results
------------------------------------	----------	------	--------	--------	------	---------

	Forecasting Accuracy Ratio		
	Conventional Method	Conventional Method	
	91.98	96.62	
UHARA	(Monthly Ratio Not Used)	$(\tau = 4, l = 1)$	
NGK INSULATORS	94.71	97.37	
	(Monthly Ratio Not Used)	$(\tau = 4, l = 3)$	
NGK SPARK PLUG	92.99	97.68	
	(Monthly Ratio Not Used)	$(\tau = 4, l = 2)$	

Figure 13: The result of OHARA INC.: monthly ratio is Not used and ($\tau = 4, l = 1$)

Figure 14: The result of NGK INSULATORS LTD.: monthly ratio is Not used and ($\tau = 4, l = 3$)

Figure 15: The result of SPARK PLUG CO., LTD.: monthly ratio is Not used and $(\tau = 4, l = 2)$

8 Conclusion

In industry, making a correct forecasting is a very important matter. If the correct forecasting is not executed, there arise a lot of stocks and/or it also causes lack of goods. Time series analysis, neural networks and other methods are applied to this problem. In this paper, neural network is applied and Multilayer perceptron Algorithm is newly developed. The method is applied to the stock market price data of glass and quarrying companies. When there is a big change of the data, the neural networks cannot learn the past data properly, therefore we have devised a new method to cope with this. Repeating the data into plural section, smooth change is established and we could make a neural network learn more smoothly. Thus, we have obtained good results. The result is compared with the method we have developed before. We have obtained the good results. In the numerical example, all cases had a better forecasting accuracy than the method proposed before. Various cases should be examined hereafter.

References

- Aritoshi Kimura, Ikuo Arizono and Hiroshi Ohta, An Application of Layered neural networks to demand forecasting, *Japan Industrial Management Association*, 44(5), (1993), 401-407.
- [2] N. Baba and H. Suto, Utilization of artificial neural networks and the TD-learning method for constructing intelligent decision support systems, *European Journal of Operational Research*, **122**, (2000), 501-508.
- [3] Kazuhiro Takeyasu, Keiko Imura and Yuki Higuchi, Estimation of Smoothing Constant of Minimum Variance And Its Application to Shipping Data With Trend Removal Method, *Industrial Engineering and Management Systems*, 8(4), (2009), 257-263.
- [4] Junpei Yamana, Yuki Higuchi and Kazuhiro Takeyasu, A Hybrid Method to Improve Forecasting Accuracy Utilizing Genetic Algorithm, *The Twelfth Asia Pacific Industrial Engineering and Management Systems, Conference*, (October 14-17, 2011), Beijing, China.
- [5] Edgar Sanchez-Sinencio, Clifford Lau, editors, Artificial neural networks: Paradigms, applications, and hardware implementations, *IEEE* press, Piscataway, N.J, (1992).