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Abstract 

  In this paper a nonlinear abstract measure quadratic integro – differential equation 

is studied in Banach Algebra. The existence of solution abstract measure integro – 

differential equations is proved for extremal solutions for Caratheodory as well as 

discontinuous cases of the non-linearity involved in the equations. 
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consider the integro differential equation in short (IGDE) 

( )
( )( )( ) (( )( ) ( )(( )

1

0

tx t
t ,x t , k s,x s ds , a.e. t J

f t ,x t
δ η

ξ

 
  = ∈
 
 

∫g
           (1.1)

 

Where { }0f : J R R× → −  is continuous, 

 g : J R R R & k : J R R and , , : J Jξ δ η× × → × → →  

 The existence of solutions of IGDE (1.1) is proved in Dhage[ ]7  by using a 

new non-linear alternative of Leray – Schauder type developed in same paper. In this 

chapter we apply a nonlinear alternative of Leray – Schauder type involving the 

product of two operators in a Banach algebra under some weaker conditions than 

that given in Dhage and Regan [ ]8  to a quadratic measure differential equation 

related to IGDE (1.1) for proving the existence results. The existence of exterimal 

solutions is also proved using a fixed point theorem of in ordered Banach algebras. 

 In the first section introduction is given in section II we state the abstract 

measureintegro differentiate equation to be discussed in this paper. The section III 

the auxiliary results are given and the existence result is discussed in section 

IV.Finally the existence results for extermal solutions for the integro differential 

equations is discussed in section V. 

   

    

2 Quadratic Integro differential equations 

 Let X be a real Banach algebra with a convenientnorm ⋅ .  

Let x, y X .∈  Then the line segment xy  in X is defined by  

             
( ){ }0 1xy z X z x r y x , r= ∈ = + − ≤ ≤

            (2.1)
 

Let 0x X∈  be a fixed pointand z X∈ . 

Then for any 0x x z,∈  we define the sets xS  and xS  in X by 
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{ }
{ }

1

1
x

x

S rx r

S rx r

= −∞ < ≤ 


= −∞ < ≤              (2.2)

 

Let 1 2x ,x xy∈   be arbitrary. We say 1 2x x< if 
1 2x xS S⊂ , or equivalently 

0 1 0 2x x x x⊂ . In this case we also write 2 1x x>  let M denote the σ -algebra of all 

subsets of X such that ( )X ,M  is a measureable space. Let ( )AC X ,M'  be the 

space of all vector measures (real signed measures) and define a norm ⋅  on 

( )AC X ,M' by 

                             ( )p p X=                         (2.3) 

where p  is a total variation measure of  p and is given by 

                          
( ) ( )

1i
p X sup p Ei , Ei X

∞

=

= ⊂∑
        (2.4)

 

where supremum is taken over all possible partition { }Ei;i N∈  of X. It is known 

that ( )AC X ,M  is a Banach space with respect to the norm ⋅ , given by (2.3). 

For any nonempty subset S of X, let ( )1L S ,Rµ  denote the space of µ -integrable 

real valued functions on S which is equipped with the norm 1Lµ
⋅  given by 

( )1L
S

x d
µ

φ φ µ= ∫  

For ( )1L S ,Rµφ ∈ . Let  ( )1 2p , p AC X ,M∈  and define a multiplication 

composition in ( )AC X ,M  by 

 ( )( ) ( ) ( )1 2 1 2 for all Then we havep p E p E p E E M .∗ = ∈  
 

Lemma 2.1 ( )AC X ,M  is a Banach algebra.  

Proof. Let ( )1 2p , p AC X ,M∈  be two elements. Let { }1 2 nE ,E .....E .....σ =  be a 

disjoint partition of X. Then by (2.3) – (2.4), 
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( )

( )( )

( ) ( )

( ) ( )

( ) ( )

1 2 1 2

1 2
1

1 1 2 2
1

1 1 2 2
1 1

1 1 2 2
1 1

1 2

i

i

i i

i i

p p p p X

sup p p Ei

sup p E p E

sup p E p E

sup supp E p E

p p

σ

σ

σ

σ σ

∞

=

∞

=

∞ ∞

= =

∞ ∞

= =

=

= ∗

=

   
≤    

   
   

=    
   

=

∑

∑

∑ ∑

∑ ∑

 

Hence ( )AC X ,M  is a Banach algebra. 

Let µ  be a σ finite measure on X, and let ( )p AC X ,M∈ . We say p is a 

absolutely continuous with respect to the measures µ  if ( ) 0Eµ =  implies 

( ) 0p E =  for some E M∈ . In this case we also write p .µ<<  

 Let 0x X∈  be fixed and let 0M  denote the σ -algebra on 0Sx  let z X∈  

be such that 0z x>  and let zM  denote the σ -algebra of all sets containing M. 

and the sets of the form 0Sx,x x z.∈  Given a ( )p AC X ,M∈  with p µ<< , 

consider the abstract measure integro - differential equation (AMIGDE) of the form 

( )
( )( )( ( )( ) ( )( )(( ) [ ] 0 (2.5)

x
x t

Sx
x

p Sd x, p S , k t , p S d , a.e. on x z
d f x, p S

δ η µ µ
µ ξ

 
  =  
 

∫g

and 

( ) ( ) 0 (2.6)p E q E , E M= ∈

                               

 

where q is a given known vector measure, ( ) ( )
( )( )
x

x

x

p S
S

f x, p S
λ =  is a singed 

measure suchthatλ µ<< , d
d
λ
µ

 is a Radon  Nikodym derivative of λ  with respect 

to µ ,  
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{ }0xf : S R R ,× → − z: S R R R× × →g and the map 

( )(( ) ( )( )( )x t

Sx

x x, p S , k k , p S dδ η µ→ ∫g  

is µ -integrable for each ( )zp AC X ,M∈ . 

Definition 2.1 Given an initial real number q  on 0M , a vector 

( ) ( )0z zp AC S ,M , z x∈ >  is said to be a solution of AMIGDE (2.5) – (2.6), if 

 i) ( ) ( ) 0p E q E , E M= ∈  

 ii) p µ<< on 0x z , & 

 iii) satisfies ( ) [ ]2 5. a.e. µ  on 0x z  

 

Remark 2.1 The AMIGDE (2.5) (2.6) is equivalent to the abstract measure integral 

equation (in short AMIE). 

( ) ( )(( ) ( )( ) ( )( )( )(1

0 (2.7)

x x
Sx

E

z

p E f x, p E x, p S , k t , p S d ,

if E M , E x z

ξ δ η µ
  =     

∈ ⊂

∫ ∫g

 

( ) ( ) 0 (2.8)p E q E if E M= ∈

 

 

A solution p of abstract measure AMIGDE (5.2.5) – (5.2.6) in 0x z  will be denoted 

by ( )0p Sx ,q . 

Note that the above equations includes the abstract measure differential equation 

considered in Dhage and Bellale [ ]6  as a special case. The see this, define 

( ) 1f x, y =  for all 0x x z∈ & y R∈  then AMIGD (2.5) – (2.6) reduces to 

( )(( ) ( )( )( ) [ ] ( )( )
( ) ( ) ( )

0

0

2 9

2 10

x t
Sx

dp x, p S , k t , p S d a.e. on x z .
d
p E q E , E M .

δ η µ µ
µ
=

= ∈

∫g
 

Thus our AMIGDE (2.5) – (2.6) is more general and we claim that it is a new to the 
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literature on measure differential equations. 

Now we shall prove the existence theorem. 

 

 

3 Auxiliary Results 

 Let X be a Banach space andlet T : X Y→ . T is called compact if ( )T x is a 

compact subset of X. T is called totally bounded if for any bounded subset S of X, T 

(S) is a totally bounded subset of X. T is called completely continuous if T is 

continuous and totally bounded on X. Every compact operator is totally bounded, 

but the converse may not be true, however two notions are equivalent on a bounded 

subset of X. 

 An operator T : X Y→  is called D – Lipschitz if these exists a continuous 

and non-decreasing function : R Rψ + +→  such that  

( ) (3.1)Tx Ty x yψ− ≤ −   

for all x, y X ,∈ where ( )0 0ψ = . The function ψ  is called a D – function of T on 

X. In particular if ( ) 0r r, ,ψ =∝ ∝>  T is called a Lipschitz with the Lipschitz 

constants ∝  further if 1∝< ,  then T is called a contraction with contraction 

constant ∝ . Again if ( )r rψ < for 0r > , then T is called a non-linear contraction 

on X with D – function ψ . 

 

Theorem 3.1 Let U andU  denote respectively the open and closed bounded subset 

of a Banach algebra X such that 0 U∈  let A,B:U X→  be two operators such 

that 

 i) A is D – Lipschitz 

 ii) B is completely continuous and 

 iii) ( ) 0M r r, rφ < > where ( )M B U= . 
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  Then either 

 a) The equation Ax Bx x=  has a solution in U , as 

 b) These is a point u d U∈  such that u Au Buλ=  for some 0 1λ< < ,  

 where U∂ is a boundary of U in X. 

 

Corollary 3.1 Let ( ) ( )0 0r rB & B  denote respectively the open and closed balls in 

a Banach algebra centred at origin 0 of radius r for some real number 0r > . Let 

( )0rA,B: B X→  be two operators such that 

 i) A is Lipschitz with Lipschitzcontent α . 

 ii) B is compact and continuous, and 

 iii) 1Mα < , where ( )( )0rM B B=  then either 

a) The operator equation Ax Bx x=  has a solution x in X with x r≤  or 

b) These is an u X∈  with u r=  such that AuBu uλ =  for some 0 1λ< < . 

We define an order relation ≤  in ( )z zAC S ,M  with the help of the cone  K in 

( )z zAC S ,M  given by 

    
( ) ( ){ }0 (3.2)z z zk p AC S ,M p E for all E M= ∈ ≥ ∈  

Thus for any ( )1 2 zp , p AC Sz,M∈  are have 1 2p p≤ if  and only if  

2 1 (3.3)p p k− ∈   

or equivalently 

( ) ( ) ( )1 2 1 2 3 4p p p E p E ........ .≤ ⇔ ≤ for all zE M∈ . 

Obviously the cone K is positive in ( )z zAC S ,M . To see this,let 1 2p p K∈ .  

Then ( )1 0p E ≥ and ( )2 0p E ≥  for all zE M∈ . By multiplication composition 

( ) ( ) ( )1 2 1 2 0p p E p E p E∗ = ≥  for all 1 2p p k ,∗ ∈ and so K is a positive come in 

( )z zAC S ,M . 
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The following lemma follow immediately from the definition of the positive cone K 

in ( )z zAC S ,M  

Lemma 3.1 Dhage[3] if 1 2 1 2u ,u ,v ,v K∈  are such that 1 1u v< & 2 2u v< , then 

1 2 1 2u u v v≤ . 

 

Lemma 3.2 The cone K is normalin ( )z zAC S ,M . 

Proof. To prove it is enough to show that norm ⋅  is semi monotone on K.Let 

1 2p , p K∈  be such that 1 2p p≤ on zM . Then we have  

( ) ( )1 20 p E p E≤ ≤  

 For all zE M∈ . 

 Now for a countable partition 

{ }
( )

( )

( )

( )

2

1 1

1
1

2
1

2

2

of one hasn

z

i

i

z

E :n N S ,

p p S

sup p Ei

sup p Ei

p S

p

σ

σ

∞

=

∞

=

= ∈

=

=

≤

=

=

∑

∑
 

As a result ⋅  is semi monotone on k andconsequently the cone K is normal in 

( )z zAC S ,M . The proof of the lemma is complete. 

An operator T : X X→  is called positive if the range ( )r T  of T is contained in 

the cone K in X. 

 

Theorem 3.2 Dhage [ ]4 . Let [ ]u,v  be an order interval in the real Banach algebra 

X and let [ ] [ ]A,B : u,v u,v→  be positive and non-decreasing operators such that 
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 i) A is Lipschitz with a Lipschitzconstant α , 

 ii) B is compact & continuous, and 

 iii) The elements u,v X∈ with u v≤ . 

  Satisfy u AuBu and AvBv v≤ ≤ . 

Further if the cone K is normal, then the operator AxBx x=  has a least and a 

greatest positive solution in [ ]u,v , whenever 1Mα < , where 

[ ]( ) [ ]{ }M B u,v sup Bx : x u,v= = ∈ .  

 

Theorem 3.3 Dhage [ ]4  let k be a positive cone in a real Banach algebra X  

and let A,B : K K→  be non-decreasing operators such that 

 i) A is Lipschitz with the Lipschitz constant ∝  

 ii) B is bounded, and 

 iii) There exist elements u,v k∈  such that u v≤  satisfying 

u AuBu≤ and AvBv v≤ . 

Further, if the cone k is normal then the operator equation AxBx x=  has a least 

and greatest positive solution in [ ]u,v , whenever 1M∝ <  where 

[ ]( ) [ ]{ }M B u,v sup Bx : x u,v= = ∈
 

 

 

4 Existence Result 
 We need the following definition. 
 

Definition 4.1 A functions z: S R R Rβ × × →  is called Caratheodory if 

i) ( )1 2x x, y , yβ→  is µ -measurable for each 1 2y , y R∈ and 

ii) The function ( ) ( )1 2 1 2y , y x, y , yβ→  is continuous almost everywhere [ ]µ  

on 0x z . 
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A Caratheodary function β  on zS R R× ×  is called 1Lµ Caratheodary if 

iii) For each real number 0r >  there exists a functions ( )1
r z th L S Rµ∈  such that  

  ( ) ( ) [ ]1 2 0rx, y , y h x a.e. on x zβ µ≤  

  For all 1 2y , y R∈ with 1 2y r & y r≤ ≤ . 

 A function : R Rψ + +→  is called sub multiplicative if ( ) ( )r rψ λ λψ≤  for 

all real number 0λ > . Let ψ  denote the class of function : R Rψ + +→  satisfying 

the following properties: 

 i) ψ  is continuous 

 ii) ψ  is non-decreasingand 

 iii) ψ issub multiplicative 

A member ψ Ψ∈  is called a D – function on R+ . These do exist D – function, in 

fact, the function : R Rψ + +→  defined by ( ) rψ λ λ= , 0λ >  is a D – function on 

R+  we consider the following set of assumptions: 

( )0A for any 0z x> , the σ -algebra zM  is compact with respect to the topology 

generated by the Pseudometric d defined on zM  by 

( ) ( )1 2 1 2 1 2 zD E ,E E E , E E Mµ= ∆ ∈  

( )1A  The function ( )x f x,o→  is bounded with ( )
zx SFo sup f x,o∈=  

( )2A  The function is continuous and these exists a bounded function z: S Rα +→  

with bound α  such that 

 ( ) ( ) ( ) [ ]1 2 1 2 0f x, y f x, y x y y , a.e. ,x x zα µ− ≤ − ∈  

   For all 1 2y , y R∈  

( )0H  q is continuous on zM  with respect to the pseudo-metric d defined in ( )1A . 

( )1H  The function ( )( )( }xx k x, p S η→  is µ -integrable& satisfies 
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( ( ) [ ] 0k t , y x y , a.e. on x zγ µ≤  For all y R∈  

( )2H  The function ( )1 2g x, y , y  is Caratheodary 

( )3H  There exists a function ( )1
zL S ,Rµφ +∈  such that ( ) [ ]0x a.e.φ µ>  

on 0x z and  D – function [ ] ( )0 0: , ,ψ ∞ → ∞  such that 

( ) ( ) ( ) [ ]1 2 1 2 0x, y , y n y y a.e. on x zφ ψ µ≤ +g  

   For all 1 2y , y R∈  

We frequently use the following estimate of the function g in the subsequent part of 

the paper. For any ( )z zp AC S ,M∈ , one has 

( )( ) ( )( )( )( )
( ) ( )( ( )( )( )( )
( ) ( )( ) ( ) ( )( )( )
( ) ( )( )
( ) ( )
( )( ) ( )

1

11

x t
Sx

x t
Sx

zz Sz

Sz

L

L

x, p S , k t , p S d

x p S k t , p S d

x p S x p S d

x p x p d

x p p

x p

µ

µ

δ η µ

φ ψ δ η µ

φ ψ δ γ η µ

φ ψ γ µ

φ ψ γ

φ γ ψ

≤ +

≤ +

≤ +

≤ +

≤ +

∫

∫

∫

∫

g

 

Theorem 4.1 Suppose that the assumptions ( ) ( ) ( ) ( )0 2 1 3A A & H H− −  holds. 

Suppose that there exists a real number 0r >  such that 

( ) ( )

( ) ( )
( )

1 1

1 1

0 1
4 1

1 1

L L

L L

F q r
r .

q r

µ µ

µ µ

φ γ ψ

α φ γ ψ

 + +  >
 − + +  

 

 where ( ) ( )1 11 1
L L

q r
µ µ

α φ γ ψ + + <  
 

& ( )0
z

supF f x,o
x S

=
∈

. Then the AMIGDE (2.5) – (2.6) has a solution on 0x z . 
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Proof :- Consider on open ball ( )0rB  in ( )z zAC S ,M centered at the origin 0and 

of radius r. Where r satisfies the inequalities in (5.4.1). Define two operators. 

( ) ( )0 z zA,B:Br AC S ,M→  

 by 

( ) ( )(( ) ( )
0

0

1
4 2

z

if E M
Ap E .

f x, p E if E M E x zξ

∈= ∈ ⊂
 

 & 

( )
( )
( ( )( ) ( )( )( ) ( )

0

0

4 3
x t

Sx
E

z

q E if E M
Bp E .x, p S , k t , p S d d

if E M ,E x z

δ η µ µ

 ∈
= 


∈ ⊂

∫ ∫g  

We show that the operators A and B satisfy all the condition of Corollary 3.1 on 

( )0Br . 

Step – I  First, we show that A is a Lipschitz on ( )0Br . Let ( )1 2 0p , p Br∈  be 

arbitrary, then by assumption ( )2A , 

( ) ( ) ( )( ) ( )( )((
( ) ( )( ) ( )( )

( )

1 2 1 2

1 2

1 2

Ap E Ap E f x, p E f x, p E

x p E p E

x p p E

ξ ξ

α ξ ξ

α

− = −

≤ −

≤ −

 

for all zE M∈ . Hence by definition of the norm in ( )z zAC S ,M  one has  

1 2 1 2Ap Ap p pα− ≤ −  

For all ( )1 2 z zp , p AC S ,M∈ . As a result. A is a Lipschitz operator ( )0Br  with the 

Lipschitzconstant α . 

Step – IIWe show that B is continuous on ( )0Br . Let { }np  be sequence of vector 

measure in ( )0Br converging to a vector measure. Then by dominated convergence 

theorem, 
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( ) ( )( ) ( )( )( )(
( )( ) ( )( )( )(

( )

x tn nE Sx

x t
E Sx

lim limBp E x, p S , k t , p S d
h h

x, p S , t , p S d d

Bp E

δ η µ

δ η µ µ

=
→∞ →∞

=

=

∫ ∫

∫ ∫

g

g  

for all 0zE M , E x z∈ ⊂ . Similarly if 0E M∈  then 

( ) ( ) ( )n
lim Bp E q E Bp E

n
= =

→∞
and so B is a continuous operator on ( )0Br . 

Step – III Next, we show that B is a totally bounded operator on ( )0Br . Let { }np  

be a sequence an ( )0Br . Then  we have np r≤  for all n N∈ . We show that 

the set { }nBp :n N∈  is uniformly bounded andequicontinuous set in ( )z zAC S ,M . 

In this step, we first show that { }nBp  is uniformly bounded. 

Let zE M∈ . Then there exists two subsets 0F M∈ & 0zG M , G x z∈ ⊂  such that  

E F G & F G φ= ∪ ∧ =  

Hence , 

( )( ) ( ) ( )( ) ( )( )((
( )( ) ( )

( )( ) ( )

( )(

1

1

1 1

1

1

1

x
x tn n nG S

nLG

nLE

nL L

Bp E q F x, p S , k t , p S d d

q x p d

q x p d

q p

µ

µ

µ µ

σ δ η µ µ

φ γ ψ µ

φ γ ψ µ

φ γ ψ

≤ +

≤ + +

≤ + +

= + +

∫ ∫

∫

∫

g

 

 For all zE M∈ . 

from (3.3) it follows that 

( ) ( ) ( ) ( )

( ) ( )

1 1

1 1

1
1

1

n n z n L L
i

L L

supBp Bp S Bp Ei q p

q r

µ µ

µ

φ γ ψ
σ

φ γ ψ

∞

=

= = = + +

= + +

∑
 

For all n N∈ . Hence the sequence { }nBp  is uniformly bonded in ( )( )0B Br  
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Step – IV Next we show that { }nBp : n N∈  is equicontinuous set in ( )z zAC S ,M . 

Let 1 2 zE ,E M∈ , then there exist  

1 2 0 1 2 1 0z ,F ,F M & G ,G M G x z∈ ∈ ⊂  

and 2 0G x z⊂  such that 1 1 1E F G= ∪ with ( )1 1F G φ∩ = and 2 2 2E F G= ∪  with 

2 2F G φ∩ = . 

We know the identities 

( ) ( )
( ) ( )

( )1 1 2 1 2

2 2 1 1 2

4 4
G G G G G

.
G G G G G

= − ∪ ∩ 


= − ∪ ∩ 
 

There fore, we have 

( ) ( ) ( ) ( )

( )( ) ( )( )( )( )
( )( ) ( )( )( )( )

1 2

2 1

1 2 1 2n n

x tn nG G Sx

x tn nG G Sx

Bp E Bp E q E q F

x, p S , k t , p S d d

x, p S , k t , p S d d

δ η µ µ

δ η µ µ

−

−

− ≤ −

+

+

∫ ∫

∫ ∫

g

g

 

Since g is Caratheodory and satisfies ( )3H  

 We have that 

( ) ( ) ( ) ( )

( )(( ) ( )( )( )
( ) ( ) ( )( ) ( )

1 2

1
1 2

1 2 1 2

1 2 1

x

n n

tn nG G S

nLG G

Bp E Bp E q F q F

x, p S , k t , p S d d

q F q F x p d
µ

δ η µ µ

φ γ ψ µ

∆

∆

− ≤ −

+

≤ − + +

∫ ∫

∫

g  

Assume that ( ) ( )1 2 1 2 0d E ,E E Eµ= ∆ → . 

Then we have 1 2E E→ . As a result 1 2F F→ and ( )1 2 0G Gµ ∆ → . As q is 

continuous on compact zM , it is uniformly continuous and so 

( ) ( ) ( ) ( ) ( )( ) ( )1
1 2

1 2 2 1 2

1 2

1 0n nLG G
Bp E Bp E q F q F x p d

as E E
µ

φ γ ψ µ
∆

− ≤ − + + →

→

∫  

This shows that { }nBp :n N∈  is a equicontinuous set in ( )z zAC S M . Now an 
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application of the Arzela – Ascolli theorem yields that B is a totally bounded 

operator on ( )0Br . Now B is continuous and totally bounded operator on ( )0Br , 

it is completely continuous operator on ( )0Br . 

Step V Finally we show that hypothesis (iii) of Corollary 3.1. The Lipschitz constant 

of A is α . Here the number M in the hypothesis (iii) is given by 

( )( )
( ){ }

( ) ( ){ } ( )

0

0

0 4 5z

M B Br

sup Bp : p Br

sup Bp S : p Br .

=

= ∈

= ∈

 

Now let zE M∈ . Then there are sets 0F M∈ and 0zG M , G x z∈ ⊂  such that 

E F G and F G φ= ∪ ∩ =  

From the definition of B is follows that 

( ) ( ) ( )( ) ( )( )(( )
x

x t
G S

Bp E q F x, p S , k t , p S d dδ η µ µ= + ∫ ∫g  

Therefore, 

( ) ( ) ( )( ) ( )( )( )(
( )( ) ( )

( )( ) ( )

( ) ( )

1

1
0

1 1

1

1

1

x
x t

G S

LG

Lx z

L L

Bp E q F x, p S , k t , p S d d

q x p d

q x p d

q p

µ

µ

µ µ

δ η µ µ

φ γ ψ µ

φ γ ψ µ

φ γ ψ

≤ +

≤ + +

≤ + +

= + +

∫ ∫

∫

∫

g

 

Hence from (4.6) it follows that  

( ) ( )1 11
gmL L

Bp q p
µ

φ γ ψ≤ + +  

For all ( )0p Br∈ . As a result are have 
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( )( ) ( ) ( )

( ) ( )

1 1

1 1

0 1

Now 1

1

L L

L L

M B Br q p

M q r

µ µ

µ µ

φ γ ψ

α α φ γ ψ

= ≤ + +

 ≤ ⋅ + +  
<

 

and so, hypothesis (iii) of corollary 3.1 is satisfied. 

Now an application of corollary 3.1 yields that either the operator Ax Bx x=  has a 

solution, or there exist ( )z zu AC S ,M∈  such that u r=  satisfying u AxBxλ=  

for some 0 1λ< < . We show that this letter assertion does not hold. Assume the 

contrary. Then we have 

( )
( )( ) ( )( ) ( )( )( )(( )

( )
0

0

x
x t

S

z

f x,u G x,u S , k t ,u S d d ,

u E if E M , E x z.
q E , if E M

λ δ η µ µ

λ

   =  ∈ ⊂
 ∈

∫ ∫g
 

For some 0 1λ< < . 

If zE M∈ , then these sets 0F M∈ and 0G Mz, G x z∈ ⊂  such that 

E F G and F G φ= ∪ ∩ = . Then we have 

 ( ) ( ) ( )u E Au E , Bu Eλ=  

( )( ) ( ) ( )( ) ( )( )((( )
( )( ) ( ) ( ) ( )( ) ( )( )( )(( )

( ) ( ) ( ) ( )( )( )((
0

0

x t
G Sx

x t
G Sx

x t
G Sx

f x,u G q F x,u S , k t ,u S d

f x,u G f x, q F x,u S d , k t ,u S d

f x, q F x,u S , k t ,u S d d

λ δ η µ

λ δ µ η µ

λ δ η µ µ

 = + 

 = − + 

 + + 
 

∫ ∫

∫ ∫

∫ ∫

g

g

g

 

Hence  
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( ) ( ) ( )(( )
( ) ( )( ) ( )( )( )(
( ) ( ) ( )( ) ( )( )( )(
( ) ( )( ) ( )( ) ( )( )
( ) ( )( ) ( )

( ) ( )

1

1

0

1 1

0

0

0

1 0

0

1

1

1

x

x

x t
G S

x t
G S

LG

L
x z

L L

u E x,u G f x,

. q F x,u S d , k t ,u S d d

f x, q F x,u S , k t ,u S d d

x u G F q x u d

u E F q x u d

u F q u

µ

µ

µ µ

δ µ η µ µ

δ η µ µ

λ α φ γ ψ µ

α φ γ ψ µ

α φ γ ψ

≤ + −

 + 
 

 + + 
 

≤ + + +

 
   ≤ + + +   

 
  ≤ + + +    

∫ ∫

∫ ∫

∫

∫

g

g

 

which further implies that 

( ) ( ) ( ) ( )

( ) ( ))
( )

1 1 1 1

1 1

1 1

0

0

1 1

1

1 1

gmL L L L

L L

L L

u u q u F q u

F q u

q u

µ µ µ

µ µ

µ µ

α φ γ ψ φ γ ψ

φ γ ψ

α φ γ ψ

    ≤ + + + + +        
 + +≤
 − + +  

 

 Substituting u r=  in the above inequality yields 

( ) ( ))
( )

1 1

1 1

0 1
(4.6)

1 1

L L

L L

F q r
r

q r

µ µ

µ µ

φ ψ γ

α φ ψ γ

 + +≤
 − + +  

 

Which is a contradiction to the first inequality in (4.4). In consequence, the operator 

equation ( ) ( ) ( )p E Ap E Bp E=  has a solution ( )0u Sx ,q  in ( )z zAC S ,M with 

u r≤ . This further implies that the AMIGDE (2.5) – (2.6) has a solution on 0x z . 

This completes the proof. 

 

 

5 Existence of Extremal Solutions 

 In this section we shall prove the existence of a minimal and a maximal 
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solutions for the AMIGDE (2.5) – (2.6) on 0x z  under Carathedory as well as 

discontinuous case of non-lineality g involved in it. 

 

 

5.1 Carathedory Case  

We need following definitions 

 

Definition 5.1 A vector measure ( )z zu AC S ,M∈  is called a lower solution of the 

AMIGDE (2.5) – (2.6) if 

( )
( )(( ) ( )(( ) ( )( )( ) [ ]

( ) ( )

0

0

x

x
x t

S
x

u Sd x,u S , k t ,u S d a.e. on x z
d f x,u S

& u E q E , E M

δ η µ µ
µ ξ

 
 ≤  
 

≤ ∈

∫g
 

Similarly a vector measure ( )z zv AC S ,M∈  is called an upper solution to 

AMIGDE (2.5) – (2.6) if 

( )
( )(( ) ( )(( ) ( )( )( ) [ ]

( ) ( )

0

0

x

x
x t

S
x

v Sd x,v S , k t ,v S d a.e. on x z
d f x,v S

and v E q E , E M

δ η µ µ
µ ξ

 
 ≥  
 

≥ ∈

∫g
 

A vector measure ( )z zp A S ,M∈  is a solution to AMIGDE (2.5) – (2.6) it is upper 

as well as lower solution to AMIGDE (2.5) – (2.6) on 0x z . 

 

Definition 5.2 A solution MP  is called as maximal solution to AMIGDE (2.5) – 

(2.6) if for any other solution ( )0p Sx ,q  for the AMIGDE (2.5) – (2.6)  we have 

that  

( ) ( )M zp E p E , E M≤ ∀ ∈  
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Similarly a minimal solution ( )0mp Sx ,q  of AIGDE (2.5) – (2.6) is defined on 0x z . 

We consider the following assumptions : 

 ( )0C   f & g define the functions  

{ }0 00F : x z R R and g : x z R R R+ +× → − + × →  

( )1C   The functions ( ) ( ) ( )1 1 1 2f x, y ,k x, y and g x, y , y  are non-decreasing 

in 1 2y , y  for each 0x x z∈ . 

( )2C   The AMIGDE (2.6) – (2.6) has a lower solution u and an upper 

solution v such that u v≤ on zM . 

 ( )3C  The function ( )1 2x, y , yg  is 1Lµ  Caratheodary. 

 

Theorem 5.1 Suppose that the assumptions  

 ( ) ( ) ( ) ( ) ( ) ( )0 2 0 2 0 3A A , B B , & C C− − − holds. Further suppose that 

( )1 1 (5.1)r L
q h

µ
α + <  

where r u v= + . Then the AMIGDE (2.5) - (2.6) has a minimal and maximal 

solution defined on 0x z . 

 

Proof. AMIGDE (2.5) - (2.6) is equivalent to the abstract measures integral equation 

( ) ( )5 7 2 8. & . . Define the operators ( ) ( )z z z zA,B : AC S ,M AC S ,M→  by 

(4.2)and(4.3) respectively. Then the AMIGDE (2.5) – (2.6) is equivalent to the 

operator equation 

( ) ( ) ( ) (5.2)zp E Ap E Bp E , E M= ∈  

We shall show that the operator A and B satisfy all the conditions of theorem 3.2 on 

( )z zAC S ,M  since µ  is a positive measure, from assumption ( )0C  if follows 

that A and B on positive operators on ( )z zAC S ,M . To show this let 
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( )1 2 z zp , p AC S ,M∈  be such that 1 2p p≤ on zM . From ( )2C  it follows that 

( ) ( )( ) ( )( ) ( )1 1 2 2Ap E f x, p E f x, p E Ap E= ≤ =  

For all 0zE M , E x z∈ ⊂ and ( ) ( )1 21Ap E Ap E= =  

For 0E M⊂ . Hence A is non-decreasing on ( )z zAC S ,M  

Similarly, we have 

( ) ( )( ) ( )( )( ) )(
( )( ) ( )( )( ) )(
( )

1 1

2 2

2

x t
E Sx

x t
E Sx

Bp E x, p S , k t , p S d d

x, p S , k t , p S d d

Bp E

δ η µ µ

δ η µ µ

=

=

=

∫ ∫

∫ ∫

g

g  

For all 0zE M , E x z∈ ⊂  

Again if 0E M∈ , then 

( ) ( ) ( )1 2Bp E q E Bp E= =  

Therefore the operator B is also non-decreasing on ( )z zAC S ,M . Now it can be 

shown that as the proof of theorem 3.1 that A is Lipschitz operator on [ ]u,v  with 

the Lipschitz constant α . Since the cone K is normal in X, the order interval 

[ ]u,v  is norm-bounded. 

Hence there is a real number 0r >  such that x u v r≤ + =  for all [ ]x u,v∈ . As 

g is 1L
µ

Caratheodary, there is a function ( )1 zhr :L S ,R
µ

+  such that 

( ) ( )1 2g x, y , y hr x≤  on 0x z  for all 1 2y , y R∈ . Now proceeding with the 

arguments as in the proof of theorem 4.1 with 

( ) [ ] ( ) ( )0Br u,v , u hr xγ= = and ( ) 1rψ = , it can be proved that B is compact and 

continuous operator on [ ]u,v . Since u is lower solution of AMIGDE (2.5) – (2.6) 

we have  
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( ) ( )( ) ( )( ) ( )( )( )

( ) ( )

0

0

x

x t

E S

z

u E f x,u E x,u S , k t ,u S d d

E M , E x z
and

u E q E , if E M

δ η µ µ
 
≤      

∈ ⊂

≤ ∈

∫ ∫g

 

From the above inequality in the gives  

( ) ( ) ( ) zu E Au E Bu E , if E M≤ ∈  

and so u AuBu≤ . Similarly, since ( )z zv AC S ,M∈  is an upper solution of 

AMIGDE (2.5) – (2.6) it can be proved that ( ) ( ) ( )Av E Bv E v E≤  for all 

zE M∈ and consequently AvBv v≤ on zM . Thus hypothesis (iii) of theorem 3.2 

is satisfied. Now definition of norm, it follows that 

[ ]( )
[ ]{ }

( ) [ ]{ }

[ ] ( )
1

z

p
i

M B u,v

sup Bp : p u,v

sup Bp S : p u,v

sup sup B Ei
p u,v σ

∞

=

=

= ∈

= ∈

 
=  ∈  

∑

 

For any partition { }Ei:i Nσ = ∈  of zS  such that 

1z iS Ei, Ei Ej , i , j Nφ∞
== ∪ ∩ = ∀ ∈  

Let 0zE M , E x z∈ ∩ . Then, for any [ ]p u,v∈  one has 

( ) ( )( ) ( )( )( ) )(
( )

( ) 1

1

1

x
x t

S
i Ei

Ei
i

LE

supBp E x,v S , t ,v S d d

sup hr x d

hr u d hr
µ

δ η µ µ
σ

µ
σ

µ

∞

=

∞

=

≤

≤

= =

∑ ∫ ∫

∑∫

∫

g

 

Therefore for any zE M∈ , there are sets 0E M∈ and 0G x z∈  such that 

E F G, F G φ= ∪ ∩ = . 
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Hence, we obtain 

[ ]( ) 1
gmL

M B u,v q hr= ≤ +  

As ( )1 1
L

M q hr
µ

α α≤ + < . Thus the operator A and B satisfy all the conditions 

of theorem 3.2 and so an application of it yields that the operator equation 

ApBp p=  has a maximal and a minimal solution in [ ]u,v . Thus further implies 

that AMIGDE (2.5) – (2.6) has a maximal & a minimal solution on 0x z . This 

completes the proof. 

 

 

5.2 Discontinuous Case  

 In the following we obtain an existence result for external solution for the 

AMIGDE (2.5) – (2.6) when the nonlinearityg is a discontinuous function in all its 

three variables. 

We consider the following assumptions : 

 ( )4C  The function 0h: x z R+→  defined by 

( ) ( )( ) ( )( )( )( )
x

x t
S

h x x,v S , k t ,v S dδ η µ= ∫g  

 is µ -integrableon 0x z . 

 

Remark 5.1 Assume that the hypothesis ( ) ( )2 3andC C  hold. Then 

( )( ) ( )( )( )( ) ( )
x

x x
S

g x,v S , k t ,v S d h xσ η µ ≤∫  

All [ ]p u,v∈ . 

Theorem 5.2 Suppose that the assumptions ( ) ( ) ( ) ( )0 2 0 2A A , B B− −  and 

( ) ( ) ( )0 2 4C C , C−  hold. Further suppose that 
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( )1 1 (5.3)
L

q h
µ

α + <  

Then the AMIGDE (2.5) – (2.6) has a minimal and a maximal solution defined on 

0x z  

Proof. The proof is similar to Theorem 5.2 with appropriate modifications. Here, the 

function h plays the role of rh [ ]u,v . Now the desired conclusion follows by an 

application of theorem 5.3.Notice that we do not need any type of continuity of the 

nonlinear function g in above theorem 5.2 for guaranteeing the existence of extermal 

solutions for the AMIGDE (2.5) - (2.6) on 0x z  instead we assumed the 

monotonicity condition on it. 

 

 

References 
[1] S. S. Bellale, Hybrid fixed point theorem for abstract measure 

integro-differential equations, World academy of science, engineering and 

technology, 73, (2013), 782-785. 

[2] B. C. Dhage, On abstract measure integro – differential equations, J. Math. Phy. 

Sci., 20, (1986), 367 – 380. 

[3] B. C. Dhage, On system of abstract measure integro – differential inequalities 

and applications, Bull. Inst. Math. Acad. Sinica., 18, (1989), 65 – 75. 

[4] B. C. Dhage, Periodic boundary value problems of first order Caratheodory and 

discontinuous differential equations, Nonlinear Funct. Anal & Appl., 13(2), 

(2008), 323 – 352. 

[5] B. C. Dhage, D. N. Chate and S. K. Ntouyas, Abstract measure differential 

equations, Dynamic Systems & Appl., 13, (2004), 105 – 108. 

[6] B. C. Dhage and S. S. Bellale, Abstract measure integro – differential equations, 

Global Jour. Math. Anal. 1 (1-2) (2007), 91–108. 

[7] B. C. Dhage and S. S. Bellale, Existence theorem for perturbd abstract masure 



122                     On Quadratic Abstract Measure Integro-Differential Equations                                                 

  
differential equations, Nonlinear Analysis, 71(2009),e319-e328. 

[8] B. C. Dhage and D. O. Regan, A fixed point theorem in Banach algebras with 

applications to nonlinear integral equation, Functional Diff. Equations, 7(3-4), 

(2000), 259 – 267. 

[9] J. Dugundji and A. Granas, Fixed point Theory, Monograhie Math. PNW, 

Warsaw, 1982. 

[10] S. Hekkila and V. Lakshikantham, Monotone Iterative Technique for 

Discontinuous Nonlinear Differential Equations, Marcel Dekker Inc., New York 

1994. 

[11] S. R. Joshi, A system of abstract measure delay differential equations, J. 

Math.Phy. Sci. 13 (1979), 497 – 506. 

[12] R. R. Sharma, An abstract measure differential equation, Proc. Amer. Math. 

Soc., 32, (1972), 503 – 510. 

[13] Sidheshwar S. Bellale, Dhages’s Fixed point theorem foact measure 

integro-diffrential equations, Proceding of The 15th international conference of 

international academy of physical sciences, (Dec 9-13, 2012). 

[14] G. R. Shendge and S. R. Joshi, Abstract measure differential  inequalities and 

application, Acta. Math. Hung., 41, (1983), 53 - 54. 

[15] S. Leela, Stability of measure differential equations, Pacific J. Math., 52(2), 

(1974), 489-498. 

  

 

 

 


