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Abstract

The aim of this paper is to propose a new class of lifetime distributions

called the Lindley power series (LPS). The distribution properties including

survival function, hazard and reverse hazard functions, limiting behavior of

the pdf and hazard function, quantile function, moments, distribution of order

statistics, mean deviations, Lorenz and Bonferroni curves and Fisher informa-

tion are presented. The method of maximum likelihood estimation is used to

estimate the model parameters of this new class of distributions. The special

cases of the LPS distribution including Lindley binomial (LB), Lindley geo-

metric (LG), Lindley Poisson (LP) and Lindley logarithmic (LL) distributions

are presented. The Lindley logarithmic (LL) distribution is discussed in detail.

A Monte Carlo simulation study is presented to exhibit the performance and

accuracy of maximum likelihood estimates of the LL model parameters. Some

real data examples are discussed to illustrate the usefulness and applicability

of the LL distribution.
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1 Introduction

The modeling of lifetime data has become popular in the area of survival analy-

sis. In survival analysis, we study the lifetime of biological organisms or mechan-

ical systems. In recent years, many distributions have been introduced to model

these types of data. The basic concept behind introducing these distributions is that

the lifetime of a system withN number of components and a positive continuous

random variable,Xi, which denotes the lifetime of theith component, can be rep-

resented by a non-negative random variableZ=min(X1, X2, . . . , XN) if the com-

ponents are in a series orZ=max(X1, X2, . . . , XN) if the components are parallel.

Some of the well-known lifetime distributions include the exponential geometric

(EG) distribution by Adamidis and Loukas [1], exponential Poisson (EP) distribu-

tion by Kus [10], exponential logarithmic (EL) distribution by Tahmasbi and Rezaei

[22], Weibull geometric (WG) distribution by Barreto-Souza et al. [2] and Weibull

Poisson (WP) distribution by Lu and Shi [12].

Lindley [11] introduced a mixture of exponential and length-biased exponential

distributions to illustrate the difference between fiducial and posterior distributions.

This mixture is called the Lindley (L) distribution. Ghitany et al. [6] examined

and studied the properties and applications of the Lindley distribution in the context

of reliability analysis. The cumulative distribution function (cdf) of the Lindley

distribution is given by

GL(x; β) = 1−
(

1 + β + βx

β + 1

)
e−βx, x > 0, β > 0, (1)

and

gL(x; β) =
β2

β + 1
(1 + x)e−βx, x > 0, β > 0, (2)

respectively.

The survival function and hazard function of the Lindley distribution are given

by

SL(x; β) = GL(x; β) = 1−GL(x; β) =

(
1 + β + βx

β + 1

)
e−βx, (3)

and

hL(x; β) =
gL(x; β)

GL(x; β)
=

β2(1 + x)

(1 + β + βx)
, (4)
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respectively, wherex > 0, α > 0, β > 0.

Using the transformationY = X
1
α , Ghitany et al. [5] derived the power Lindley

(PL) distribution and its properties.

Warahena-Liyanage and Pararai [23] studied the properties of the exponenti-

ated Power Lindley (EPL) distribution which modeled lifetime data better than the

Lindley and power Lindley distributions.

Another generalization of EPL distribution called the exponentiated power Lind-

ley Poisson (EPLP) distribution which is obtained by compounding the zero-inflated

Poisson distribution and the EPL distribution was derived and studied by Pararai et

al. [17].

Noack [16] proposed and studied the power series class of distributions. This

class of distributions includes binomial, geometric, logarithmic and Poisson distri-

butions as special cases. However, these distributions may not be useful when a

random variable takes the value of zero with high probability i.e. zero-inflated. In

such situations, it is more appropriate to consider the distribution which is truncated

at zero. More details on these distributions can be found in the context of univariate

discrete distributions by Johnson et al. [8].

In recent years, some authors have used the power series class of distributions to

develop new distributions. Many of these new distributions have been constructed

as a mixture of some well known distributions and the power series class of distri-

butions. Some of the power series distributions include the Weibull-power series

(WPS) distributions by Morais and Barreto-Souza [15], generalized exponential-

power series (GEPS) distributions by Mahmoudi and Jafari [13], Kumaraswamy-

power series (KPS) distributions by Bidram and Nekouhou [3], and Linear failure

rate-power series distributions by Mahamoudi and Jafari [14].

We provide three motivations for the new Lindley power series (LPS) class of

distributions, which can be applied in some interesting situations as follows:

(i) Due to the stochastic representationZ=min(X1, X2, . . . , XN) the LPS class

of distributions can arise in many industrial applications and biological or-

ganisms.

(ii) The LPS class of distributions can be used to model appropriately the time to

the first failure of a system of identical components that are in a series.

(iii) The LPS class of distributions exhibit some interesting behaviors with non-

monotonic failure rates such as bathtub, upside bathtub and increasing- decreasing-
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increasing failure rates which are more likely to be encountered in real life

situations.

The paper is organized as follows: In section 2, we present some basic informa-

tion on the Lindley distribution and the power series family of distributions. The

general model of the LPS class of distributions is defined and its properties includ-

ing hazard and reverse hazard functions, limiting behavior of the pdf and hazard

function, quantile function, moments, distribution of order statistics, mean devi-

ations, Lorenz and Bonferroni curves and Fisher information are presented. The

method of maximum likelihood estimation is used to estimate the model parame-

ters of this new class of distributions. In section 3, we introduce the special cases

of the LPS distribution including Lindley binomial (LB) distribution, Lindley geo-

metric (LG) distribution, Lindley Poisson (LP) distribution and Lindley logarithmic

(LL) distribution. The Lindley logarithmic (LL) distribution will be explored in

detail in section 4. The properties of the LL distribution such as survival func-

tion, hazard and reverse hazard functions, quantile function, moments, distribution

of order statistics, mean deviations, Lorenz and Bonferroni curves, reliability and

entropy measures are also presented. In section 5, we introduce some algorithms

for generating random data from LL distribution. A Monte Carlo simulation study

is also presented to exhibit the performance and accuracy of maximum likelihood

estimates of the LL model parameters. We present some real data examples in sec-

tion 6 to illustrate the usefulness and applicability of the LL distribution. Section 7

contains the conclusions and suggestions for further study.

2 The General Class and Properties

Let X1, X2, . . . , XN be independent and identically distributed (iid) random

variables from the Lindley (L) distribution whose cumulative distribution function

(cdf) and probability density function (pdf) are given by equations (1) and (2), re-

spectively.

ConsiderN to be a discrete random variable from a power series distribution

(truncated at zero) and whose pdf is given by

P (N = n) =
anλ

n

C(λ)
, n = 1, 2, 3, . . . , (5)
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whereC(λ) =
∞∑

n=1

anλ
n andan depends onn andλ > 0. C(λ) is finite and its first,

second and third derivatives with respect toλ are defined and given byC ′(.), C ′′(.)

andC ′′′(.), respectively. The power series family of distributions includes bino-

mial, Poisson, geometric and logarithmic distributions as defined in Johnson et al.

[8]. Table 1 represents some useful quantities includingan, C(λ), C(λ)−1, C ′(λ),

C ′′(λ), andC ′′′(λ) for the Poisson, geometric, logarithmic and binomial (withm

being the number of replicas) distributions.

Table 1: Useful quantities for some power series distributions

Distribution C(λ) C ′(λ) C ′′(λ) C ′′′(λ) C−1(λ) an Parameter Space

Poisson eλ − 1 eλ eλ eλ log(1 + λ) (n!)−1 (0,∞)

Geometric λ(1− λ)−1 (1− λ)−2 2(1− λ)−3 6(1− λ)−4 λ(1 + λ)−1 1 (0, 1)

Logarithmic − log(1− λ) (1− λ)−1 (1− λ)−2 2(1− λ)−3 1− e−λ n−1 (0, 1)

Binomial (1 + λ)m − 1
m

(1 + λ)1−m

m(m− 1)

(1 + λ)2−m

m(m− 1)(m− 2)

(1 + λ)3−m
(λ + 1)1/m − 1

(
m
n

)
(0,∞)

Let X(1) = min(X1, X2, . . . , XN). The conditional cdf ofX(1) | N = n is given

by

GX(1)|N=n(x) = 1− [G(x)]n = 1−
(

1 + β + βx

β + 1

)n

e−βnx, x > 0, (6)

whereG(.) is the survival function in Equation (3). The cdf of the new LPS class

of distributions is the marginal cdf ofX(1) which is given by

FLPS(x; β, λ) = 1−
C
[
λ
(

1+β+βx
β+1

)
e−βx

]
C(λ)

, (7)

wherex > 0, β > 0 andλ > 0.

2.1 Density function

The pdf of a random variableX from a LPS class of distributions whose cdf is

in (7) is given by
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fLPS(x; β, λ) = λβ2(β + 1)−1(1 + x)e−βx
C ′
[
λ
(

1+β+βx
β+1

)
e−βx

]
C(λ)

, (8)

wherex > 0, β > 0, andλ > 0.

The following propositions discuss the limiting behavior and some other char-

acteristics of the LPS distribution.

Proposition 2.1. The Lindley distribution is a limiting distribution of the LPS

distribution whenλ → 0+.

Proof. Applying C(λ) =
∞∑

n=1

anλ
n in (7), we obtain

lim
λ→0+

FLPS(x) = 1− lim
λ→0+

∞∑
n=1

an

[
λ
(

1+β+βx
β+1

)
e−βx

]n
∑∞

n=1 anλn
.

By using L’Hôpital’s rule, we obtain

lim
λ→0+

FLPS(x) = 1− lim
λ→0+

a1

(
1+β+βx

β+1

)
e−βx +

∞∑
n=2

nanλ
n−1
(

1+β+βx
β+1

)n

e−nβx

a1 +
∑∞

n=2 nanλn−1

= 1−
(

1 + β + βx

β + 1

)
e−βx.

Proposition 2.2. The density function of LPS class can be expressed as a linear

combination of the density ofX(1) =min(X1, X2, . . . , Xn).

Proof. SinceC ′(λ) =
∞∑

n=1

nanλ
n−1, we have

fLPS(x) =
∞∑

n=1

P (N = n)gX(1)
(x; n),

wheregX(1)
(x; n) is the probability pdf ofX(1) =min(X1, X2, . . . , Xn) given by

gX(1)
(x; n) =

nβ2

(β + 1)n
(1 + β + βx)n−1(1 + x)e−nβx. (9)
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Proposition 2.3. For the pdf of the LPS distribution, we have

lim
x→0+

fLPS(x) =
λβ2C ′(λ)

(β + 1)C(λ)
,

and

lim
x→∞

fLPS(x) = 0.

2.2 Reverse hazard and hazard functions

The reverse hazard function and the hazard function of the LPS distribution,

respectively, are given by

τLPS(x; β, λ) = λβ2(β + 1)−1(1 + x)e−βx
C ′
[
λ
(

1+β+βx
β+1

)
e−βx

]
C(λ)− C

[
λ
(

1+β+βx
β+1

)
e−βx

] ,
(10)

and

hLPS(x; β, λ) = λβ2(β + 1)−1(1 + x)e−βx
C ′
[
λ
(

1+β+βx
β+1

)
e−βx

]
C
[
λ
(

1+β+βx
β+1

)
e−βx

] ,

(11)

wherex > 0, β > 0 andλ > 0.

The following Proposition gives the limiting behavior of the hazard function of

the LPS distribution in (11).

Proposition 2.4. For the hazard function of the LPS distribution, we have

lim
x→0+

hLPS(x) =
λβ2C ′(λ)

(β + 1)C(λ)
,

and

lim
x→∞

hLPS(x) = ∞.
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2.3 Quantile function

In this section, the quantile function of the LPS distribution will be derived. The

quantile function,Q(p), defined byFLPS(Q(p)) = p is the root of the equation,

1−
C
[
λ
(

1+β+βQ(p)
β+1

)
e−βQ(p)

]
C(λ)

= p, where0 < p < 1.

Let Z(p) = −1− β − βQ(p), then we have

1−
C
[
λ
(

Z(p)
β+1

)
eZ(p)+β+1)

]
C(λ)

= p.

That is,

Z(p)eZ(p) = −(β + 1)C−1((1− p)C(λ))

λeβ+1

whereC−1(.) is the inverse function ofC(.) Then solution forZ(p) is

Z(p) = W

[
−(β + 1)C−1((1− p)C(λ))

λeβ+1

]
,

for 0 < p < 1, whereW (.) is the negative branch of the LambertW function. See

Corless et.al [4] for history, theory and applications of the LambertW function.

Consequently, the quantile function of the LPS distribution is given by

Q(p) = −1− 1

β
− 1

β
W

[
−(β + 1)C−1((1− p)C(λ))

λeβ+1

]
, where0 < p < 1.

(12)

2.4 Moments and related measures

In this section, moments and related measures such as coefficient of variation,

skewness and kurtosis of the LPS distribution are presented. In order to find the

moments, the following Lemma is proved.
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Lemma 2.5. Let

L1(β, n, p) =

∞∫
0

xp(1 + x)(1 + β + βx)n−1e−nβxdx,

then

L1(β, n, p) =
n−1∑
i=0

i+1∑
j=0

(
n− 1

i

)(
i + 1

j

)
Γ(j + p + 1)

nj+p+1βp+j−i+1
.

Proof. Using the series expansion for|z| < 1 anda > 0,

(1− z)a−1 =
∞∑
i=0

(
a− 1

i

)
(−1)izi. (13)

Usingz = β(1 + x), we have,

L1(β, n, p) =

∞∫
0

xp(1 + x)(1 + β(1 + x))n−1e−nβxdx

=
n−1∑
i=0

i+1∑
j=0

(
n− 1

i

)(
i + 1

j

)
βi

∞∫
0

xj+pe−nβxdx.

Consequently,

L1(β, n, p) =
n−1∑
i=0

i+1∑
j=0

(
n− 1

i

)(
i + 1

j

)
Γ(j + p + 1)

nj+p+1βp+j−i+1
. (14)

The rth moment of a random variableX from the LPS distribution, sayµ′r, is

given by

µ′r = E(Xr) =

∞∫
0

xrfLPS(x)dx.
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Using the fact in Proposition (2.2), we have

E(Xr) =
∞∑

n=1

P (N = n)E(Xr
(1)) =

∞∑
n=1

P (N = n)

∞∫
0

xrgX(1)
(x; n)dx

=
∞∑

n=1

P (N = n)
nβ2

(β + 1)n

∞∫
0

xr(1 + x)(1 + β + βx)n−1e−nβxdx.

Using Lemma (2.5), it follows that

E(Xr) =
∞∑

n=1

P (N = n)
nβ2L1(β, n, r)

(β + 1)n
.

Consequently, therth moment of the LPS distribution is given by

µ′r = E(Xr) =
∞∑

n=1

anλ
n

C(λ)

nβ2L1(β, n, r)

(β + 1)n
. (15)

The mean (µ), variance(σ2), coefficient of variation (CV), coefficient of skew-

ness (CS), and coefficient of kurtosis (CK) are given by

µ = E(X) =
∞∑

n=1

anλ
n

C(λ)

nβ2L1(β, n, 1)

(β + 1)n
, (16)

σ2 = µ′2 − µ2, (17)

CV =
σ

µ
=

√
µ′2 − µ2

µ
=

√
µ′2
µ2
− 1, (18)

CS =
E [(X − µ)3]

[E(X − µ)2]3/2
=

µ′3 − 3µµ′2 + 2µ3

(µ′2 − µ2)3/2
, (19)

and

CK =
E [(X − µ)4]

[E(X − µ)2]2
=

µ′4 − 4µµ′3 + 6µ2µ′2 − 3µ4

(µ′2 − µ2)2
. (20)
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2.5 Conditional moments

For lifetime models, it is useful to study the conditional moments which are

defined asE(Xr | X > x). The following Lemma is introduced to evaluate condi-

tional moments.

Lemma 2.6. Let

L2(β, n, p, t) =

∞∫
t

xp(1 + x)(1 + β + βx)n−1e−nβxdx,

then

L2(β, n, p, t) =
n−1∑
i=0

i+1∑
j=0

(
n− 1

i

)(
i + 1

j

)
Γ(j + p + 1, nβt)

nj+p+1βp+j−i+1
.

Proof. Applying the series expansion in Equation (13) withz = β(1+x) we obtain,

L2(β, n, p, t) =

∞∫
0

xp(1 + x)(1 + β(1 + x))n−1e−nβxdx

=
n−1∑
i=0

i+1∑
j=0

(
n− 1

i

)(
i + 1

j

)
βi

∞∫
t

xj+pe−nβxdx.

Consequently,

L2(β, n, p, t) =
n−1∑
i=0

i+1∑
j=0

(
n− 1

i

)(
i + 1

j

)
Γ(j + p + 1, nβt)

nj+p+1βp+j−i+1
. (21)

Using Proposition (2.2) and Lemma (2.6), the rth conditional moment of the

LPS distribution is given by

E(Xr | X > x) =
∞∑

n=1

P (N = n)
nβ2

(β + 1)n

L2(β, n, r, x)

1− FLPS(x)

=
∞∑

n=1

anλ
n

C
(
λ
(

1+β+βx
β+1

)
e−βx

) nβ2L2(β, n, r, x)

(β + 1)n
. (22)
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2.6 Moment generating function

The moment generating function (MGF) of the LPS distribution is defined by

MX(t) = E(etX).

By considering the fact in Proposition (2.2), we obtain

MX(t) =
∞∑

n=1

P (N = n)MX(1)
(t) =

∞∑
n=1

P (N = n)

∞∫
0

etxgX1(x; n)dx. (23)

Using the series expansionetx =
∞∑

k=0

tkxk

k!
and Lemma (2.5) in Equation (23), the

moment generating function (MGF) of the LPS distribution is given by

MX(t) =
∞∑

n=1

∞∑
k=0

anλ
n

C(λ)

nβ2tkL1(β, n, k)

(β + 1)nk!
. (24)

2.7 Distribution of order statistics

Let X1, X2, . . . , Xn be a random sample from the LPS distribution and suppose

X1:n < X2:n < . . . < Xn:n denote the corresponding order statistics. The pdf of the

kth order statistic is given by

fk:n(x)
n!

(k − 1)!(n− k)!
f(x)[F (x)]k−1[1− F (x)]n−k, (25)

whereF (.) andf(.) are the cdf and pdf of LPS distributions given in equations (7)

and (8), respectively. Using the series expansion in Equation (13), we can re-write

Equation (25) as follows:

fk:n(x) =
n!

(k − 1)!(n− k)!

n−k∑
l=0

(
n− k

l

)
(−1)lf(x)[F (x)]k+l−1. (26)

Note that,

f(x)[F (x)]k+l−1 =
1

k + l

d

dx
[F (x)]k+l.
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The corresponding cdf offk:n(x), denoted byFk:n(x) can be obtained as

Fk:n(x) =
n!

(k − 1)!(n− k)!

n−k∑
l=0

(
n−k

l

)
(−1)l

k + l
[F (x)]k+l

=
n!

(k − 1)!(n− k)!

n−k∑
l=0

(
n−k

l

)
(−1)l

k + l

1−
C
(
λ
(

1+β+βx
β+1

)
e−βx

)
C(λ)

k+l

=
n!

(k − 1)!(n− k)!

n−k∑
l=0

(
n−k

l

)
(−1)l

k + l
FG(x; β, λ, k + l),

whereG follows an exponentiated LPS (ELPS) distribution with parametersβ, λ

and k + l. Thus, the cdf of thekth order statistic can be expressed as a linear

combination of the cdf of the ELPS distribution with parametersβ, λ andk + l.

2.8 Mean deviations

In this section, the mean deviation about the mean and the mean deviation about

the median of the LPS distribution are presented. The amount of scatter in a pop-

ulation can be measured by the totality of deviations from the mean and median.

The mean deviation about the mean, sayD(µ), and the mean deviation about the

median, sayD(M), are defined as

D(µ) =

∞∫
0

| x− µ | fLPS(x)dx, D(M) =

∞∫
0

| x−M | fLPS(x)dx,

respectively, whereµ = E(X) andM = Median(X) = F−1(1/2) is the median

of FLPS. The measuresD(µ) and D(M) can be evaluated using the following

relationships:

D(µ) = 2µFLPS(µ)− 2µ + 2

∞∫
µ

xfLPS(x), (27)

and

D(M) = −µ + 2

∞∫
M

xfLPS(x). (28)
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Using Lemma (2.6), we obtain

D(µ) = 2µFLPS(µ)− 2µ + 2
∞∑

n=1

anλ
n

C(λ)

nβ2L2(β, n, 1, µ)

(β + 1)n
,

and

D(M) = −µ + 2
∞∑

n=1

anλ
n

C(λ)

nβ2L2(β, n, 1, M)

(β + 1)n
.

2.9 Lorenz and Bonferroni curves

In this section, the Lorenz and Bonferroni curves for the LPS distribution are

presented. The Lorenz and Bonferroni curves have a number of applications in

different fields such as medicine, income and poverty, reliability and insurance.

The Lorenz and Bonferroni curves are given by

L(FLPS(x)) =

x∫
0

tfLPS(t)dt

E(X)
, and B(FLPS(x)) =

L(FLPS(x))

FLPS(X)
,

or

L(p) =
1

µ

q∫
0

xfLPS(x)dx, and B(p) =
1

pµ

q∫
0

xfLPS(x)dx, (29)

respectively, whereq = F−1
LPS(p). Applying Lemma (2.6) in (29), we obtain

L(p) =
1

µ

(
µ−

∞∑
n=1

anλ
n

C(λ)

nβ2L2(β, n, 1, q)

(β + 1)n

)
, (30)

and

B(p) =
1

pµ

[
µ−

∞∑
n=1

anλ
n

C(λ)

nβ2L2(β, n, 1, q)

(β + 1)n

]
. (31)
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2.10 Maximum likelihood estimation

In this section, the maximum likelihood method used in estimating the parame-

tersβ andλ is presented. Letx1, x2, . . . , xn ben observations of a random sample

from LPS distribution andΘ = (β, λ)T be the unknown parameter vector. From

Equation (8), the log-likelihood function of LPS distribution is given by

ln(β, λ) = n log(λ) + 2n log(β)− n log(β + 1)− n log(C(λ)) +
n∑

i=1

log(1 + xi)

−β

n∑
i=1

xi +
n∑

i=1

log

{
C ′
[
λ

(
1 + β + βxi

β + 1

)
e−βxi

]}
. (32)

The associated score function isUn(Θ) =
(

∂ln
∂β

, ∂ln
∂λ

)T

, where∂ln
∂β

and ∂ln
∂λ

are the

partial derivatives of the log-likelihood function given by

∂ln
∂β

=
2n

β
− n

β + 1
−

n∑
i=1

xi −
n∑

i=1

λxie
−βxi [(1 + β + βxi)(β + 1)− 1]

(β + 1)2

×
C ′′
[
λ
(

1+β+βxi

β+1

)
e−βxi

]
C ′
[
λ
(

1+β+βxi

β+1

)
e−βxi

] , (33)

and

∂ln
∂λ

=
n

λ
− nC ′(λ)

C(λ)
+

n∑
i=1

(1 + β + βxi)e
−βxi

β + 1

C ′′
[
λ
(

1+β+βxi

β+1

)
e−βxi

]
C ′
[
λ
(

1+β+βxi

β+1

)
e−βxi

] , (34)

respectively. The maximum likelihood estimates ofΘ can be obtained by solving

the non-linear systemUn(Θ) = 0. Since the equations (33) and (34) are not in

closed form, the solutions can be found by using a numerical method such as the

Newton-Raphson procedure.

2.11 Fisher information matrix and asymptotic confidence in-

tervals

In this section, we present a measure for the amount of information. This in-

formation can be used for interval estimation and hypothesis testing for the model
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parametersβ andλ.

LetX be a random variable with the LPS pdffLPS(·; Θ), whereΘ = (θ1, θ2)
T =

(β, λ)T . The Fisher information matrix (FIM) is the2 × 2 symmetric matrix given

by

I(Θ) =

[
Iββ Iβλ

Iλβ Iλλ

]
,

where elementsIij(Θ) = −EΘ

[
∂2 log(fLPS(X;Θ))

∂θi∂θj

]
. The elements of the FIM can be

obtained by considering the second order partial derivatives of (32). These elements

can be numerically obtained by MATLAB or MAPLE software. The total FIM

In(Θ) can be approximated by

Jn(Θ̂) ≈
[
− ∂2 log L

∂θi∂θj

∣∣∣∣
Θ=Θ̂

]
2×2

(35)

For real data, the matrix given in Equation (35) is obtained after the convergence

of the Newton-Raphson procedure in MATLAB or R software. LetΘ̂ = (β̂, λ̂)

be the maximum likelihood estimate ofΘ = (β, λ). Under the usual regularity

conditions and that the parameters are in the interior of the parameter space, but not

on the boundary, we have:
√

n(Θ̂−Θ)
d−→ N2(0, I

−1(Θ)), whereI(Θ)

is the expected Fisher information matrix. The asymptotic behavior is still valid

if I(Θ) is replaced by the observed information matrix evaluated atΘ̂, that isJ(Θ̂).

The multivariate normal distribution with mean vector0 = (0, 0)T and covariance

matrix I−1(Θ) can be used to construct confidence intervals for the model parame-

ters. The approximate100(1− η)% two-sided confidence intervals forβ andλ are

given by

β̂ ± Zη/2

√
I−1
ββ (Θ̂), and λ̂± Zη/2

√
I−1
λλ (Θ̂),

respectively, whereI−1
ββ (Θ̂), andI−1

λλ (Θ̂) are diagonal elements ofI−1
n (Θ̂) = (nIΘ̂))−1

andZη/2 is the upper(η/2)th percentile of a standard normal distribution.

3 Special Cases of LPS Class of Distributions

In this section, we study some special cases of the LPS class of distributions
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including Lindley binomial (LB) distribution, Lindley geometric (LG) distribution,

Lindley Poisson (LP) distribution, and Lindley logarithmic (LL) distribution. The

LG and LP distributions were introduced and studied as two separate studies by

Zakerzadeh and Mahmoudi [24], and Gui et al. [7], respectively. We present an

overview of the LB, LG and LP distributions as special cases of the LPS class and

discuss the LL distribution in detail in the following sections.

3.1 Lindley binomial distribution

The binomial distribution (truncated at zero) is a special case of the class of

power series distributions withan =
(

m
n

)
andC(λ) = (1 + λ)m − 1, wherem(n 6

m) is the number of replicas. From Equation (7), the cdf of the Lindley binomial

(LB) distribution is given by

FLB(x; β, λ, m) = 1−

[
1 + λ

(
1+β+βx

β+1

)
e−βx

]m
− 1

(1 + λ)m − 1
, x > 0, β > 0, λ > 0,

(36)

wherem is a positive integer.

The associated pdf is given by

fLB(x; β, λ, m) =
mλβ2(1 + x)e−βx

[
1 + λ

(
1+β+βx

β+1

)
e−βx

]m−1

(β + 1)[(1 + λ)m − 1]
, (37)

wherex > 0, β > 0, λ > 0, andm is a positive integer.

3.2 Lindley geometric distribution

The Lindley geometric (LG) distribution was introduced and studied by Zak-

erzadeh and Mahmoudi [24]. The cdf and pdf of the LG distribution are presented

to show that it is a special case of LPS class. Using Equation (7) withan = 1 and

C(λ) = λ(1− λ)−1, the cdf of the LG distribution is given by

FLG(x; β, λ) =
1−

(
1+β+βx

β+1

)
e−βx

1− λ
(

1+β+βx
β+1

)
e−βx

, x > 0, β > 0, 0 < λ < 1. (38)
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The pdf of the LG distribution is given by

fLG(x; β, λ) =
β2(1− λ)(1 + x)e−βx

(β + 1)
[
1− λ

(
1+β+βx

β+1

)
e−βx

]2 , x > 0, β > 0, 0 < λ < 1.

(39)

The LG distribution was fitted to two real data sets. The first data set consists

of waiting times (in minutes) before service of 100 bank customers. The second

data set consisted of vinyl chloride data obtained from clean upgradient monitoring

wells in mg/L. For each data set the LG distribution proved to be superior to all the

other models it was compared to.

3.3 Lindley Poisson distribution

The Lindley Poisson (LP) distribution was introduced and studied by Gui et al.

[7]. Using the stochastic representationX(n) = max(X1, X2, . . . , XN), Pararai et

al. [17] introduced the exponentiated power Lindley Poisson (EPLP) distribution

for which the LP distribution is a submodel. The cdf and pdf of the LP distribution

are presented to show that it is a special case of LPS class. Using Equation (7) with

an = 1/n! andC(λ) = eλ − 1, whereλ > 0, the cdf of the LP distribution is given

by

FLP (x; β, λ) =
eλ − eλ( 1+β+βx

β+1 )e−βx

eλ − 1
, x > 0, β > 0, λ > 0. (40)

The LP distribution was fitted to two real data sets. The first data set consisted

of time intervals of the successive earthquakes taken from University of Bosphoros,

Kandilli Observatory and Earthquake Research Institute-National Earthquake Mon-

itoring Center. The second data set consists of survival times of guinea pigs injected

with different doses of tubercle bacilli. For each data set the LP distribution proved

to be superior to all the other models it was compared to.

The corresponding pdf is given by

fLP (x; β, λ) =
λβ2(1 + x)eλ( 1+β+βx

β+1 )e−βx−βx

(β + 1)(eλ − 1)
, x > 0, β > 0, λ > 0. (41)
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4 Lindley Logarithmic Distribution

In this section, the Lindley logarithmic (LL) distribution is introduced as a spe-

cial case of LPS class of distributions and will be studied in detail. The properties of

the LL distribution are derived from the properties of the general class. The entropy

measures and the reliability of the LL distribution are also presented.

4.1 The model

The LL distribution is defined by using the cdf of LPS distribution given in

Equation (7) withan = 1/n, andC(λ) = − log(1− λ), where0 < λ < 1. The cdf

and pdf of LL distribution are given by

FLL(x; β, λ) = 1−
log
(
1− λ

(
1+β+βx

β+1

)
e−βx

)
log(1− λ)

, (42)

and

fLL(x; β, λ) =
λβ2(1 + x)e−βx

(β + 1) log(1− λ)
[
λ
(

1+β+βx
β+1

)
e−βx − 1

] , (43)

respectively, wherex > 0, β > 0, 0 < λ < 1. Figure 1 represents the plots for the

pdf of the LL distribution for several combinations of the parametersβ andλ. The

plots indicate that the LL distribution can be decreasing or right skewed. The LL

distribution has a positive asymmetry.

Figure 1: Plots of the pdf for different values ofβ andλ
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4.2 Quantile function

By substitutingC−1(λ) = 1 − e−λ in Equation (12), the quantile function for

the LL distribution is given as

Xq = −1− 1

β
− 1

β
W

(
−(β + 1)(1− e(1−p) log(1−λ))

λeβ+1

)
, 0 < p < 1, (44)

whereW (.) is the negative branch of the LambertW function.

4.3 Reverse hazard and hazard functions

The reverse hazard function and hazard function of the LL distribution are re-

spectively given as follows:

from Equation (10)

τLL(x; β, λ) = λβ2(β +1)−1(1+x)e−βx

[
1− λ

(
1+β+βx

β+1

)
e−βx

]−1

log
[
1− λ

(
1+β+βx

β+1

)
e−βx

]
− log(1− λ)

,

(45)

and from Equation (11)

hLL(x; β, λ) = λβ2(β + 1)−1(1 + x)e−βx

[
λ
(

1+β+βx
β+1

)
e−βx − 1

]−1

log
(
1− λ

(
1+β+βx

β+1

)
e−βx

) , (46)

wherex > 0, β > 0 and0 < λ < 1. Plots of the hazard function of the LL dis-

tribution for several combinations of the parametersβ andλ are given in Figure

2. The plots for the hazard function of LL distribution exhibit different shapes in-

cluding monotonically increasing, monotonically decreasing, bathtub, upside down

bathtub and increasing-decreasing-increasing shapes. These interesting shapes of

the hazard function imply that LL distribution is suitable for monotonic and non-

monotonic hazard behaviors which are more likely to be encountered in real life

situations.
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Figure 2: Plots of the hazard function for different values ofβ andλ

4.4 Moments, conditional moments and moment generating func-

tion

The rth moment of a random variableX from the LL distribution, sayµ′r is

given by

µ′r = E(Xr) = −
∞∑

n=1

λnβ2L1(β, n, r)

log(1− λ)(β + 1)n
. (47)

Table 2 lists the first six moments, standard deviation (SD), coefficient of variation

(CV), coefficient of skewness (CS) and coefficient of kurtosis (CK) of the LL dis-

tribution for some selected values of the parametersβ andλ. These values can be

determined numerically using R and MATLAB. See appendix.

From Equation (2.5) and Equation (24), therth conditional moment and the
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Table 2: Moments of the LL distribution for some selected values of parametersβ
andλ

µ′s β = 1.5, λ = 0.2 β = 2.5, λ = 0.8 β = 3.0, λ = 0.1 β = 5.0, λ = 0.95 β = 0.9, λ = 0.9

µ′1 0.88532 0.34703 0.40608 0.11284 0.99769
µ′2 1.47751 0.28771 0.32071 0.04024 2.39911
µ′3 3.56137 0.37932 0.37171 0.02469 9.11713
µ′4 11.14074 0.67679 0.56450 0.02106 46.57626
µ′5 42.68053 1.50879 1.05659 0.02273 295.69180
µ′6 193.08020 4.01367 2.34584 0.02949 2230.43400
SD 0.83290 0.40900 0.39472 0.16586 1.18479
CV 0.94079 1.17856 0.97202 1.46994 1.18754
CS 1.77394 2.38785 1.86890 3.05540 2.35858
CK 7.55190 11.24393 8.09289 16.52638 10.93549

moment generating function (mgf) of the LL distribution are respectively given by

E(Xr | X > x) = −
∞∑

n=1

λnβ2L2(β, n, r, x)

log
[
1− λ

(
1+β+βx

β+1

)
e−βx

]
(β + 1)n

, (48)

and

MX(t) = −
∞∑

n=1

∞∑
k=0

λnβ2tkL1(β, n, k)

log(1− λ)(β + 1)nk!
. (49)

4.5 Distribution of order statistics

By substituting the pdf and cdf of the LL distribution into Equation (26) and the

series expansion in (13), the pdf of thekth order statistic is given by

fk:n(x) =
n!

(k − 1)!(n− k)!

n−k∑
l=0

k+l−1∑
m=0

(
n− k

l

)(
k + l − 1

m

)
(−1)l+mλβ2(1 + x)e−βx

(β + 1)[log(1− λ)]m+1

×
[
λ

(
1 + β + βx

β + 1

)
e−βx − 1

]−1 [
log

{
1− λ

(
1 + β + βx

β + 1

)
e−βx

}]m

.

The corresponding cdf offk:n(x), denoted byFk:n(x) can be obtained by using



Gayan Warahena-Liyanage and Mavis Pararai 57

Equation (27) and it is given by

Fk:n(x) =
n!

(k − 1)!(n− k)!

n−k∑
l=0

(
n−k

l

)
(−1)l

k + l

1−
log
{

1− λ
(

1+β+βx
β+1

)
e−βx

}
log(1− λ)

k+l

=
n!

(k − 1)!(n− k)!

n−k∑
l=0

(
n−k

l

)
(−1)l

k + l
FG(x; β, λ, k + l),

whereG follows an exponentiated Lindley logarithmic (ELL) distribution with pa-

rametersβ, λ andk + l. Thus, the cdf of thekth order statistic can be expressed

as a linear combination of the cdf of the ELL distribution with parametersβ, λ and

k + l.

4.6 Measures of uncertainty

In this section, the measures of uncertainty including Shannon [20],[21] entropy

and Ŕenyi [19] entropy of the LL distribution are presented. The concept of entropy

plays an important role in information theory. The entropy of a random variable is

defined using its probability distribution and can be considered as a good measure

of randomness or uncertainty.

4.6.1 Shannon entropy

The Shannon entropy of the LL distribution is defined byH[fLL] =

E[− log(fLL(X; β, λ))]. Thus, we have

H[fLL] = E

[
− log

{
−λβ2(1 + X)e−βX

(β + 1) log(1− λ)

(
1− λ

(
1 + β + βX

β + 1

)
e−βX

)−1
}]

= − log

(
−λβ2

(β + 1) log(1− λ)

)
− E[log(1 + X)] + βE[X]

+E

[
log

{
1− λ

(
1 + β + βX

β + 1

)
e−βX

}]
. (50)

We evaluateE[log(1 + X)], E[X], andE
[
log
(
1− λ

(
1+β+βX

β+1

)
e−βX

)]
sepa-
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rately . Consider the series expansion

log(1 + z) =
∞∑

q=1

(−1)q+1zq

q
for | z |< 1. (51)

Using the series expansion in Equation (51) withz = X and Equation (47), we have

E[log(1 + X)] =
∞∑

q=1

(−1)q+1

q
E[Xq] =

∞∑
q=1

∞∑
n=1

(−1)q+1λnβ2L1(β, n, q)

q log(1− λ)(β + 1)n
. (52)

From Equation (47), we have

E[X] =
∞∑

n=1

λnβ2L1(β, n, 1)

log(1− λ)(β + 1)n
. (53)

ConsiderE
[
log
(
1− λ

(
1+β+βX

β+1

)
e−βX

)]
and letV =

[
1− λ

(
1+β+βX

β+1

)
e−βX

]
.

Note thatlog(V ) = log[1 + (V − 1)]. Using Equation (51) withz = (V − 1), we

obtain

log(V ) =
∞∑

p=1

(−1)p+1(V − 1)p

p
= −

∞∑
p=1

(1− V )p

p
.

Using the series expansion in Equation (13), we have

E[log(V )] =
∞∑

p=1

p∑
r=0

(
p

r

)
(−1)r+1E[V r]

p

=
∞∑

p=1

p∑
r=0

(
p

r

)
(−1)r+1

p
E

[(
1− λ

(
1 + β + βX

β + 1

)
e−βX

)r]

=
∞∑

p=1

p∑
r=0

r∑
s=0

s∑
t=0

t∑
u=0

(
p

r

)(
r

s

)(
s

t

)(
t

u

)
(−1)r+s+1λsβt

p(β + 1)s
E
[
Xue−βsX

]
.

(55)

Note thatE
[
Xue−βsX

]
=

∞∑
v=0

(−1)vβvsvE[Xv+u]
v!

. Thus, we have

E[log(V )] =
∞∑

p=1

p∑
r=0

r∑
s=0

s∑
t=0

t∑
u=0

∞∑
v=0

(
p

r

)(
r

s

)(
s

t

)(
t

u

)
(−1)r+s+v+1λssvβt+v

pv!(β + 1)s
E[Xu+v].
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Using Equation (47), we obtain

E[log(V )] =
∞∑

p=1

p∑
r=0

r∑
s=0

s∑
t=0

t∑
u=0

∞∑
v=0

∞∑
n=1

(
p

r

)(
r

s

)(
s

t

)(
t

u

)
×(−1)r+s+v+1λs+nsvβt+v+2L1(β, n, u + v)

pv! log(1− λ)(β + 1)s+n
. (56)

Substituting equations (52), (53), and (56) in Equation (50), we have

H[fLL] = − log

(
−λβ2

(β + 1) log(1− λ)

)
−

∞∑
q=1

∞∑
n=1

(−1)q+1λnβ2L1(β, n, q)

q log(1− λ)(β + 1)n

+
∞∑

n=1

λnβ3L1(β, n, 1)

log(1− λ)(β + 1)n
+

∞∑
p=1

p∑
r=0

r∑
s=0

s∑
t=0

t∑
u=0

∞∑
v=0

∞∑
n=1

(
p

r

)(
r

s

)(
s

t

)(
t

u

)
×(−1)r+s+v+1λs+nsvβt+v+2L1(β, n, u + v)

pv! log(1− λ)(β + 1)s+n
. (57)

4.6.2 Ŕenyi entropy

Rényi entropy is an extension of Shannon entropy. Rényi entropy is defined to

be

IR(v) =
1

1− v
log

 ∞∫
0

f v
LL(x; β, λ)dx

 ; v 6= 1, v > 0. (58)

Note that Ŕenyi entropy tends to Shannon entropy asv → 1.

IR(v) =
1

1− v
log

 ∞∫
0

[
−λβ2(1 + x)e−βx

(β + 1) log(1− λ)

{
1− λ

(
1 + β + βx

β + 1

)
e−βx

}−1
]v

dx


=

1

1− v
log

{[
−λβ2

(β + 1) log(1− λ)

]v
∞∫

0

(1 + x)ve−βvx

×
[
1− λ

(
1 + β + βx

β + 1

)
e−βx

]−v

dx

}
.
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Consider the evaluation of the integral part, that is

∞∫
0

(1 + x)ve−βvx

[
1− λ

(
1 + β + βx

β + 1

)
e−βx

]−v

dx.

Consider the series expansion

(1− z)−v =
∞∑

k=0

(
k + v − 1

k

)
zk, (59)

where| z |< 1 andk > 0. Applying series expansions in equations (51) and (13)

we obtain

∞∫
0

(1 + x)ve−βvx

[
1− λ

(
1 + β + βx

β + 1

)
e−βx

]−v

dx

=
∞∑

k=0

k∑
l=0

∞∑
m=0

(
k + v − 1

k

)(
k

l

)(
l + v

m

)
λkβl

(β + 1)k

∞∫
0

xme−β(k+v)xdx.

Consider the evaluation of the integral part
∞∫
0

xme−β(k+v)xdx. Let u = β(k +

v)x, thenx = u/(β(k + v)) anddx = du/(β(k + v)). Using the definition of the

complete gamma function, we obtain

∞∫
0

xme−β(k+v)xdx =
1

βm+1(k + v)m+1

∞∫
0

ume−udu
Γ(m + 1)

βm+1(k + v)m+1
.

We thus have

∞∫
0

(1 + x)ve−βvx

[
1− λ

(
1 + β + βx

β + 1

)
e−βx

]−v

dx

=
∞∑

k=0

k∑
l=0

∞∑
m=0

(
k + v − 1

k

)(
k

l

)(
l + v

m

)
λk

βm−l+1(β + 1)k(k + v)m+1
.
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Consequently,

IR(v) =
1

1− v
log

[ ∞∑
k=0

k∑
l=0

∞∑
m=0

(
k + v − 1

k

)(
k

l

)(
l + v

m

)
× −λv+kβl+2v−m−1Γ(m + 1)

log(1− λ)(β + 1)k+v(k + v)m+1

]
. (60)

4.7 Reliability

The reliability of a component which has a random strengthX1 that is sub-

jected to a random stressX2 can be measured by the stress-strength parameter

R = P (X1 > X2). If (X2 > X1). When the stress applied to it exceeds the

strength, this results in the component failing. Reliability is widely applicable in

areas where the lifetime of a component is of importance.

Let X1 LL(x; β1, λ1) andX2 LL(x; β2, λ2) be independent random variables.

Then the stress-strength parameter is defined as

R = P (X1 > X2) =

∞∫
0

fX1(x; β1, λ1)FX2(x; β2, λ2)dx

= 1−
∞∫

0

λ1β
2
1(1 + x)e−β1x log

(
1− λ2

(
1+β2+β2x

β2+1

)
e−β2x

)
(β1 + 1) log(1− λ1) log(1− λ2)

×
[
λ1

(
1 + β1 + β1x

β1 + 1

)
e−β1x − 1

]−1

dx,

We will consider the evaluations oflog
[
1− λ2

(
1+β2+β2x

β2+1

)
e−β2x

]
and[

λ1

(
1+β1+β1x

β1+1

)
e−β1x − 1

]−1

, separately. Following a similar procedure that we

used to derive Equation (55), we obtain

log

[
1− λ2

(
1 + β2 + β2x

β2 + 1

)
e−β2x

]
=

∞∑
p=1

p∑
r=0

r∑
s=0

s∑
t=0

(
p

r

)(
r

s

)(
s

t

)
×(−1)r+s+1λs

2β
t
2

p(β2 + 1)s
(1 + x)te−β2sx.

(61)
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Using series expansions in (59) and (13), we have

[
λ1

(
1 + β1 + β1x

β1 + 1

)
e−β1x − 1

]−1

= −
∞∑

k=0

k∑
l=0

λk
1β

l
1

(β1 + 1)k
(1 + x)le−β1kx. (62)

By substituting equations (61) and (62) in Equation (61), we obtain

R = 1− λ1β
2
1(β1 + 1)−1

log(1− λ1) log(1− λ2)

∞∑
p=1

p∑
r=0

r∑
s=0

s∑
t=0

∞∑
k=0

k∑
l=0

t+l+1∑
q=0

(
p

r

)(
r

s

)(
s

t

)

×
(

t + l + 1

q

)
(−1)r+sλk

1β
l
1λ

s
2β

t
2

p(β2 + 1)s(β1 + 1)k

∞∫
0

xqe−β1(k+1)xe−β2sxdx.

Note that,e−β2sx =
∞∑

w=0

(−1)wβw
2 swxw

w!
. Thus,

R = 1− λ1β
2
1(β1 + 1)−1

log(1− λ1) log(1− λ2)

∞∑
p=1

p∑
r=0

r∑
s=0

s∑
t=0

∞∑
k=0

k∑
l=0

t+l+1∑
q=0

∞∑
w=0

(
p

r

)(
r

s

)(
s

t

)

×
(

t + l + 1

q

)
(−1)r+s+wλk

1β
l
1λ

s
2β

t+w
2 sw

pw!(β2 + 1)s(β1 + 1)k

∞∫
0

xq+we−β1(k+1)xdx.

Consider the evaluation of the integral part
∞∫
0

xq+we−β1(k+1)xdx.Let u = β1(k +

1)x, thenx = u/(β1(k + 1)) anddx = du/(β1(k + 1)). Using the definition of the

complete gamma function, we get

∞∫
0

xq+we−β1(k+1)xdx =
Γ(q + w + 1)

[β1(k + 1)]q+w+1
.

Consequently,

R = 1− λ1β
2
1(β1 + 1)−1

log(1− λ1) log(1− λ2)

∞∑
p=1

p∑
r=0

r∑
s=0

s∑
t=0

∞∑
k=0

k∑
l=0

t+l+1∑
q=0

∞∑
w=0

(
p

r

)(
r

s

)(
s

t

)
×
(

t + l + 1

q

)
(−1)r+s+wλk

1β
l
1λ

s
2β

t+w
2 swΓ(q + w + 1)

pw!(β2 + 1)s(β1 + 1)k[β1(k + 1)]q+w+1
.
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4.8 Mean deviations, Lorenz and Bonfferoni curves

In this section, the mean deviations, Lorenz and Bonferroni curves of the LL

distribution are presented.

The mean deviation about the mean,D(µ) and the mean deviation about the

median,D(M) of the LL distribution are respectively given as follows:

From Equation (27),

D(µ) = 2µFLPS(µ)− 2µ− 2
∞∑

n=1

λnβ2L2(β, n, 1, µ)

log(1− λ)(β + 1)n
, (63)

and from Equation (28),

D(M) = −µ− 2
∞∑

n=1

λnβ2L2(β, n, 1, M)

log(1− λ)(β + 1)n
, (64)

whereµ = E(X) andM = Median(X) = F−1
LL (1/2).

The Lorenz and Bonferroni curves for the LL distribution are respectively given

as follows:

From Equation (30),

L(p) =
1

µ

(
µ +

∞∑
n=1

λnβ2L2(β, n, 1, q)

log(1− λ)(β + 1)n

)
, (65)

and from Equation (31),

B(p) =
1

pµ

(
µ +

∞∑
n=1

λnβ2L2(β, n, 1, q)

log(1− λ)(β + 1)n

)
, (66)

whereq = F−1
LL (p).

4.9 Maximum likelihood estimation

Let x1, x2, . . . , xn ben observations of a random sample from LL distribution

andΘ = (β, λ)T be the unknown parameter vector. From equation (43), the log-
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likelihood function of LL distribution is given by

ln(β, λ) = n log(λ) + 2n log(β)− n log(β + 1)− n log[− log(1− λ)]

+
n∑

i=1

log(1 + xi)− β

n∑
i=1

xi −
n∑

i=1

log [V (xi)] , (67)

whereV (xi) =
[
1− λ

(
1+β+βxi

β+1

)
e−βxi

]
.

The partial derivatives ofV (xi) with respect to the parametersβ andλ are given by

∂V (xi)

∂β
= λxe−βxi

[(
1 + β + βxi

β + 1

)
− 1

(β + 1)2

]
, (68)

and
∂V (xi)

∂λ
= −

(
1 + β + βxi

β + 1

)
e−βxi . (69)

The associated score function isUn(Θ) =
(

∂ln
∂β

, ∂ln
∂λ

)T

, where∂ln
∂β

and ∂ln
∂λ

are

the partial derivatives of the log-likelihood function given by

∂ln
∂β

=
2n

β
− n

β + 1
−

n∑
i=1

xi −
n∑

i=1

∂V (xi)/∂β

V (xi)
, (70)

and
∂ln
∂λ

=
n

λ
− n

(1− λ) log(1− λ)
−

n∑
i=1

∂V (xi)/∂λ

V (xi)
, (71)

respectively, where∂V (xi)
∂β

and ∂V (xi)
∂λ

are given in equations (68) and (69), respec-

tively.

The maximum likelihood estimates ofΘ can be obtained by solving the non-

linear systemUn(Θ) = 0. Since the equations (70) and (71) are not in closed

form, the solutions can be found by using a numerical method such as the Newton-

Raphson procedure. The Fisher information matrix (FIM) of LL distribution is the

2× 2 symmetric matrix given by

I(Θ) =

[
Iββ Iβλ

Iλβ Iλλ

]
,

where elementsIij(Θ) = −EΘ

[
∂2 log(fLL(X;Θ))

∂θi∂θj

]
. The elements of the FIM can be

obtained by considering the second order partial derivatives of (67). The second
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order partial derivatives of (67) with respect to the parametersβ andλ are given by

∂2ln
∂β2

=
−2n

β2
+

n

(β + 1)2
−

n∑
i=1

{
V (xi)[∂

2V (xi)/∂β2]− [∂V (xi)/∂β]2

[V (xi)]2

}
, (72)

∂2ln
∂β∂λ

=
∂2ln
∂λ∂β

= xe−βxi

[(
1 + β + βxi

β + 1

)
− 1

(β + 1)2

]
, (73)

and
∂2ln
∂λ2

=
−n

λ2
− n

[(1− λ) log(1− λ)]2
+

n∑
i=1

[
∂V (xi)/∂λ

V (xi)

]2

, (74)

where∂2V (xi)
∂β2 = λxe−βx

[
2x

(β+1)2
− x(1+β+βx)

β+1
+ 2

(β+1)3

]
, ∂V (xi)

∂β
and ∂V (xi)

∂λ
are given

in equations (68) and (69), respectively. These elements can be numerically ob-

tained by MATLAB or MAPLE software.

5 Generation Algorithms and Monte Carlo Simula-

tion Study

In this section, the algorithms for generating random data from LL distribution

are given. A simulation study was also conducted to check the performance and

accuracy of maximum likelihood estimates of the LL model parameters.

5.1 Generation algorithms

In this subsection, we present two different algorithms that can be used to gen-

erate random data from LL distribution.

(a) The first algorithm is developed by taking the mixture form of the Lindley (L)

distribution. The density function of the Lindley distribution can be defined

as a two-component mixture of an exponential distribution with scaleβ, and

a gamma distribution with shape 2 and scaleβ, using a mixing proportion
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p = β/(β + 1). That is,

fL(x) =
β2

β + 1
(1 + x)e−βx

= pf1(x) + (1− p)f2(x),

wherep = β/(β + 1), f1(x) = βe−βx andf2(x) = β2xe−βx for β > 0 and

x > 0.

Algorithm I (Mixture form of the Lindley distribution)

1. GenerateLi ∼ logarithmic (λ), i = 1, . . . , n.

2. GenerateUi,j ∼ Uniform (0, 1), j = 1, . . . , Li.

3. GenerateEi,j ∼ Exponential (β), j = 1, . . . , Li.

4. GenerateGi,j ∼ Gamma (2, β), j = 1, . . . , Li.

5. If Ui,j 6 p = β
β+1

, then setXi,j = Ei,j, otherwise setXi,j = Gi,j,

j = 1, . . . , Li.

6. SetYi=min(Xi,1, . . . , Xi,Li
), i = 1, . . . , n.

(b) The second algorithm is based on generating random data from the inverse

CDF in Equation (44) of the LL distribution.

Algorithm II (Inverse CDF)

1. GenerateUi ∼ Uniform (0, 1), i = 1, . . . , n.

2. Set

Xi = −1− 1

β
− 1

β
W

(
−(β + 1)(1− e(1−Ui) log(1−λ))

λeβ+1

)
, for i = 1, . . . , n,

whereW (.) is the negative branch of the LambertW function.

5.2 Monte Carlo simulation study

In this subsection, we study the performance and accuracy of maximum like-

lihood estimates of the LL model parameters by conducting various simulations

for different combinations of 7 sample sizes with two sets of parameter values.
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Algorithm II was used to generate random data from the LL distribution. The

simulation study was repeatedN = 5, 000 times each with samples of sizen =

25, 50, 75, 100, 200, 400, 600 combined with parameter valuesI : β = 0.1, λ = 0.7

and II : β = 2.5, λ = 0.7. Four quantities were computed in this simulation

study:(i) Average bias of the MLÊϑ of the parameterϑ = β, λ : 1
N

∑N
i=1(ϑ̂−ϑ);(ii)

Root mean squared error (RMSE) of the MLÊϑ of the parameterϑ = β, λ :

[ 1
N

∑N
i=1(ϑ̂ − ϑ)2]0.5;(iii) Coverage probability (CP) of 95% confidence intervals

of the parameterϑ = β, λ;(iv) Average width (AW) of 95% confidence intervals of

the parameterϑ = β, λ.

Table 3 presents the Average Bias, RMSE, CP and AW values of the parameters

β andλ for different sample sizes. According to the results, it can be concluded that

as the sample sizen increases, the RMSEs decrease toward zero. We also observe

that for all the parameters, the biases decrease as the sample sizen increases. The

results show that the coverage probabilities of the confidence intervals are quite

close to the nominal level of95% and that the average confidence widths decrease

as the sample size increases. Consequently, the MLE’s and their asymptotic results

can be used for estimating and constructing confidence intervals even for reasonably

small sample sizes.

Table 3: Monte Carlo simulation results: Average Bias, RMSE, CP and AW
I II

Parameter n Average Bias RMSE CP AW Average Bias RMSE CP AW

β 25 0.00468 0.02262 0.98080 0.13859 0.16756 0.71375 0.98720 3.63908
50 0.00289 0.01807 0.98080 0.09807 0.10053 0.52504 0.98220 2.50945
75 0.00262 0.01610 0.98000 0.08024 0.09089 0.45331 0.98220 2.04865

100 0.00192 0.01478 0.97880 0.06945 0.07244 0.40718 0.97460 1.75856
200 0.00184 0.01205 0.96960 0.04924 0.04158 0.31182 0.96360 1.22790
400 0.00101 0.00885 0.95740 0.03451 0.02955 0.22128 0.95560 0.86329
600 0.00063 0.00720 0.95400 0.02804 0.02160 0.18137 0.95240 0.70262

λ 25 -0.10488 0.28690 0.95260 2.26965 -0.08595 0.26145 0.98160 1.98164
50 -0.08667 0.26303 0.95020 1.61974 -0.07816 0.24433 0.93800 1.38358
75 -0.08384 0.24889 0.93420 1.33696 -0.07781 0.23321 0.93560 1.14433

100 -0.06867 0.23041 0.92120 1.13093 -0.06477 0.21019 0.92480 0.94998
200 -0.05515 0.19298 0.92560 0.77673 -0.04021 0.16403 0.92660 0.62195
400 -0.03259 0.13717 0.93500 0.50956 -0.02591 0.11198 0.94780 0.41789
600 -0.02087 0.10701 0.94380 0.39892 -0.01637 0.08733 0.94860 0.32971
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6 Applications

In this section, we present examples to illustrate the flexibility and superiority

of the LL distribution in modeling real data. We fit the density functions of LL dis-

tribution in Equation (1) and its sub-model the Lindley (L) distribution in Equation

(2).

We also compare the LL distribution with the exponential logarithmic (EL) dis-

tribution by Tahmasbi and Rezaei [22], the exponential geometric (EG) by Adamidis

and Loukas [1], the exponential Poisson (EP) distribution by Kus [10], the Weibull

(W) distribution and the Gamma (G) distribution. The density functions EL, EG,

EP, W and G distributions are respectively given by

fEL(x; β, λ) =
β(1− λ)e−βx

log(λ)[(1− λ)e−βx − 1]
, x > 0, β > 0, 0 < λ < 1, (75)

fEG(x; β, λ) =
β(1− λ)e−βx

(1− λe−βx)2
, x > 0, β > 0, 0 < λ < 1, (76)

fEP (x; β, λ) =
λβe−λ−βx+λe−βx

1− e−λ
, x > 0, β > 0, λ > 0, (77)

fW (x; β, λ) = λβxβ−1e−λxβ

, x > 0, β > 0, λ > 0, (78)

and

fG(x; β, λ) =
βλxλ−1e−βx

Γ(λ)
, x > 0, β > 0, λ > 0. (79)

For each data set, the estimates of the parameters of the distributions, standard

errors (in parentheses), Akaike Information Criterion (AIC = 2p− 2 log(L)), Cor-

rected Akaike Information Criterion (AICC = AIC + 2p(p+1)
n−p−1

), Bayesian Infor-

mation Criterion (BIC = p log(n) − 2 log(L)), whereL = L(Θ̂) is the value of

the likelihood function evaluated at the parameter estimates,n is the number of ob-

servations, andp is the number of estimated parameters are obtained. Moreover,

the goodness-of-fit statistics: Cramer von Mises (W ∗), Anderson-Darling(A∗), and

sum of squares (SS) from the probability plots are also presented.

When comparing models, the model with the smallest AIC is considered to be

the best fit model for a given data set. However, whenn is small or the number of

parameters is large, the chance of selecting a model with many parameters as the

best model will be increased using AIC. In such situations, it is strongly recom-

mended to use AICC to select the best model. Note that whenn is too large, the
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AICC converges to AIC. When selecting the best model for a given data set based

on the values of SS, the model with the smallest SS is considered as the best fit

model.

Plots of the fitted densities, the histogram of the data and probability plots are

given for each example. For the probability plot, we plottedFLL(x(j); β̂, λ̂ against
j − 0.375

n + 0.25
, j = 1, 2, · · · , n, wherex(j) are the ordered values of the observed data.

The measures of closeness are given by the sum of squares

SS =
n∑

j=1

[
FLL(x(j))−

(
j − 0.375

n + 0.25

)]2

.

The goodness-of-fit statisticsW ∗ andA∗, are also presented in the tables. These

statistics can be used to verify which distribution provides the best fit to the data. In

general, the smaller the values ofW ∗ andA∗, the better the fit.

Since the Lindley distribution is a sub-model of the LL distribution, we use the

likelihood ratio (LR) test to compare the fits of the two distributions. For example,

to testβ = 1, the LR statistic isω∗ = 2[ln(L(β̂, λ̂))− ln(L(1, λ̃))], whereβ̂ andλ̂

are the unrestricted estimates, andλ̃ is the restricted estimate. The LR test rejects

the null hypothesis ifω∗ > χ2
ε
, whereχ2

ε
denote the upper100ε% point of theχ2

distribution with1 degree of freedom.

6.1 Breastfeeding data

The first data set is a subset of a breastfeeding study from the National Longitu-

dinal Survey of Youth. The complete data set is given by Klein and Moeschberger

[9]. The data set consists of the times to weaning for 927 children of white-race

mothers who chose to breast feed their children. The duration of the breast feeding

was measured in weeks.

Estimates of the parameters of LL distribution (standard error in parentheses),

Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (AICC),

Bayesian Information Criterion (BIC) are given in Table 4 for breastfeeding data.

The sum of squares (SS) and the goodness-of-fit statisticsW ∗ andA∗ are also given.

Plots of the fitted densities and histogram, observed probability versus predicted

probability for the breastfeeding data data are given in Figure 3.

For the hypothesisH0: L againstHa: LL the LR test statistic is 293.8 (p-
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Table 4: Estimates of models for breastfeeding data

Estimates Statistics

Distribution β̂ λ̂ −2 log L AIC AICC BIC SS W∗ A∗

LL 0.05741 0.9804 6979.1 6983.1 6983.1 6992.7 0.44734 0.54892 4.45339
(0.0034) (0.0043)

EL 0.05162 0.4886 7002.9 7006.9 7007.0 7016.6 0.50385 0.78992 5.71575
(0.0033) (0.0988)

EG 0.05055 0.3237 7002.7 7006.7 7006.7 7016.4 0.49585 0.78489 5.69381
(0.0038) (0.0793)

EP 0.005374 12.6047 7006.1 7010.1 7010.1 7019.8 0.68138 0.90504 6.43375
(0.0021) (4.4768)

W 0.9610 0.07017 7012.2 7016.2 7016.2 7025.8 0.81253 0.95875 6.68162
(0.0241) (0.0059)

L 0.1172 - 7272.9 7274.9 7274.9 7279.7 10.33162 1.40222 9.34569
(0.0027) -

G 0.06078 0.9832 7014.6 7018.6 7018.6 7028.3 1.11402 0.99753 6.90138
(0.0032) (0.0402)

Note.Standard errors are in parentheses.

value=7.389×10−66). Since the p-value is small, we rejectH0. We conclude that

there is a significant difference between L and LL distributions. The values of the

statistics AIC, AICC, and BIC show that the LL distribution performs better than

other distributions it is compared to for the breastfeeding data. The value of the sum

of squares (SS=0.44734) from the probability plots in Figure 3 is smallest for the

LL distribution. Consequently, there is clear evidence, based on the goodness-of-fit

statisticsW ∗ andA∗ that the LL distribution provides the best fit for the breastfeed-

ing data.

The asymptotic covariance matrix of the MLEs of the LL model parameters,

which is the inverse of the observed Fisher information matrixI−1
n (Θ̂) is given by:[

0.000011 −0.0001

−0.0001 0.000019

]
,

and the95% confidence intervals for the model parametersβ andλ are given by

0.05741± 0.0065 and0.9804± 0.0085 respectively.

6.2 Plasma concentrations data

The second data set consists of real data taken from the R base package. It is

located in the Indometh object. The data set contains 66 observations of plasma

concentrations of indomethicin (mcg/ml).
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Figure 3: Histogram, fitted density and probability plots for breastfeeding data

Estimates of the parameters of LL distribution (standard error in parentheses),

Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (AICC),

Bayesian Information Criterion (BIC) are given in Table 5 for plasma concentrations

data. The sum of squares (SS) and the goodness-of-fit statisticsW ∗ andA∗ are also

given.

Plots of the fitted densities and histogram, observed probability versus predicted

probability for the plasma concentrations data are given in Figure 4.

For the hypothesisH0: L againstHa: LL the LR test statistic is 3.4 (p-value

= 0.065196). We conclude that there is no significant differences between L and

LL distributions at the 5% level. However, the result is significant at 10%. The

value of BIC also shows that the L distribution is a better fit, whereas the goodness

of fit-statisticsW ∗ andA∗ show that the LL distribution is better than its sub-model

Lindley (L) distribution and all other distributions that were fitted to the data. The

value of the sum of squares (SS=0.15874) from the probability plots in Figure 4 is

smallest for the LL distribution. Consequently, there is clear evidence, based on the

goodness-of-fit statisticsW ∗ andA∗ that the LL distribution provides the best fit for

the plasma concentration data.

The asymptotic covariance matrix of the MLEs of the LL model parameters,

which is the inverse of the observed Fisher information matrixI−1
n (Θ̂) is given by:[

0.1106 −0.04822

−0.04822 0.03092

]
,
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Table 5: Estimates of models for plasma concentration data

Estimates Statistics

Distribution β̂ λ̂ −2 log L AIC AICC BIC SS W∗ A∗

LL 1.6572 0.7596 60.9 64.9 65.1 69.3 0.15874 0.23068 1.48439
(0.3325) (0.1758)

EL 1.3254 0.3754 61.1 65.1 65.3 69.5 0.15925 0.23235 1.49235
(0.3171) (0.2711)

EG 1.2949 0.4080 61.2 65.2 65.4 69.5 0.16284 0.23402 1.50117
(0.3691) (0.2598)

EP 1.3178 0.9791 61.4 65.4 65.6 69.7 0.17784 0.23868 1.52920
(0.4003) (0.9636)

W 0.9546 1.6857 62.5 66.5 66.7 70.9 0.22627 0.25085 1.60805
(0.0904) (0.2078)

L 2.2152 - 64.3 66.3 66.3 68.5 0.36964 0.26346 1.68826
(0.2208) -

G 1.6513 0.9773 62.7 66.7 66.9 71.1 0.26865 0.25365 1.62600
(0.3257) (0.1495)

Note.Standard errors are in parentheses.

and the95% confidence intervals for the model parametersβ andλ are given by

1.6146± 0.6518 and0.7374± 0.3446 respectively.

6.3 Air conditioning system data

The third data set consists of the number of successive failures for the air condi-

tioning system of each member in a fleet of 13 Boeing 720 jet airplanes. This data

set was used by Proschan [18].

Estimates of the parameters of LL distribution (standard error in parentheses),

Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (AICC),

Bayesian Information Criterion (BIC) are given in Table 6 for the air conditioning

system data. The sum of squares (SS) and the goodness-of-fit statisticsW ∗ andA∗

are also given.

Plots of the fitted densities and histogram, observed probability versus predicted

probability for the air conditioning system data are given in Figure 5.

For the hypothesisH0: L againstHa: LL the LR test statistic is 101.4 (p-

value=7.5163×10−24). Since the p-value is small, we reject the null hypothesis.

We can conclude that there is significant difference between the L and LL distribu-

tions. The values of statistics AIC, AICC, and BIC show that the LL distribution

performs the best for the air conditioning data. The value of the sum of squares
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Figure 4: Histogram, fitted density and probability plots for plasma concentrations
data

(SS=0.02601) from the probability plots in Figure 5 is smallest for the LL distribu-

tion. Consequently, there is clear evidence, based on the goodness-of-fit statistics

W ∗ andA∗ that the LL distribution provides the best fit for the air conditioning

system data.

The asymptotic covariance matrix of the MLEs of the LL model parameters,

which is the inverse of the observed Fisher information matrixI−1
n (Θ̂) is given by:[

1.459× 10−6 −3.29× 10−6

−3.29× 10−6 1.1× 10−5

]
,

and the95% confidence intervals for the model parametersβ andλ are given by

0.008897± 0.00236 and0.9932± 0.0065 respectively.

7 Concluding Remarks

We propose a new class of lifetime distributions called the Lindley power se-

ries (LPS) class of distributions. This class of distributions is a generalization of

the Lindley (L) distribution and is obtained by compounding the Lindley (L) dis-

tribution and the power series class of distributions. The properties of the LPS

distribution including reverse hazard function, hazard function, quantile function,
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Table 6: Estimates of models for air conditioning system data

Estimates Statistics

Distribution β̂ λ̂ −2 log L AIC AICC BIC SS W∗ A∗

LL 0.008897 0.9932 2063.9 2067.9 2068.0 2074.4 0.02601 0.02192 0.16651
(0.0012) (0.0034)

EL 0.008211 0.3331 2070.0 2074.0 2074.1 2080.5 0.07521 0.09774 0.62895
(0.0012) (0.1395)

EG 0.007663 0.4824 2069.5 2073.5 2073.6 2080.0 0.05991 0.08444 0.55095
(0.0014) (0.1388)

EP 0.007113 1.5746 2069.3 2073.3 2073.4 2079.8 0.05333 0.08398 0.54977
(0.0018) (0.8074)

W 0.9109 0.01698 2073.5 2077.5 2077.6 2084.0 0.14302 0.15940 0.99691
(0.0505 (0.0044)

L 0.02149 - 2165.3 2167.3 2167.3 2170.5 3.15895 0.22965 1.43466
(0.0011) -

G 0.009826 0.9047 2075.2 2079.2 2079.3 2085.7 0.23089 0.19000 1.17913
(0.0012) (0.0815)

Note.Standard errors are in parentheses.

moments, distribution of order statistics, mean deviations, Lorenz and Bonferroni

curves and maximum likelihood estimates are presented. We introduce four special

cases of the LPS distribution called Lindley binomial (LB) distribution, Lindley

geometric (LG) distribution, Lindley Poisson (LB) distribution and Lindley loga-

rithmic (LL) distribution. In addition to the properties of the general class, mea-

sures of uncertainty, and reliability for the LL distribution are obtained. The hazard

function of the LL distribution has different shapes including monotonically in-

creasing, monotonically decreasing, bathtub, upside down bathtub and increasing-

decreasing-increasing shapes. We present a simulation study to exhibit the perfor-

mance and accuracy of maximum likelihood estimates of the LL model parameters.

Real data applications are also presented to illustrate the usefulness and applicabil-

ity of the LL distribution.
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Figure 5: Histogram, fitted density and probability plots for air conditioning system
data
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[19] A.L.F.R.P.E.D. Ŕenyi, On measures of entropy and information,In Fourth

Berkeley Symposium on Mathematical Statistics & Probability, 1, (1961), 547-

561.

[20] E.A. Shannon, A Mathematical Theory of Communication,The Bell System

Technical Journal, 27(10), (1948), 461-464.

[21] E.A. Shannon, A Mathematical Theory of Communication,The Bell System

Technical Journal, 27(10), (1948), 379-423.

[22] R. Tahmasbi and S. Rezaei, A two-parameter lifetime distribution with de-

creasing failure rate,Computational Statistics & Data Analysis, 52(8), (2008),

3889-3901.

[23] G. Warahena-Liyanage and M. Pararai, A Generalized Power Lindley Dis-

tribution with Applications,Asian Journal of Mathematics and Applications,

2014, Article ID ama0169, (2014), 1-23.

[24] H. Zakerzadeh and E. Mahmoudi, A new two parameter lifetime distribution:

model and properties, arXiv preprint arXiv:1204.4248, (2012).



78 The Lindley Power Series Class of Distributions

R Algorithms

In this appendix, we present R codes to compute cdf, pdf, moments, reliability,

Rényi entropy, mean deviations, maximum likelihood estimates and variance-covariance

matrix for the LL distribution.
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