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Abstract  

An investigation into the support points for which optimal solutions can be got 

through super convergent line series of quadratic programming problems has been 

done. The line search algorithm was used to achieve all these. Support points from 

the response surface were classified into boundary and interior support points. 

Two illustrative examples of quadratic programming problems were solved using 

boundary and interior support points. It was verified that support points from the 

boundary of the response surface yielded optimal solutions that compared 

favorably with the existing solutions of the illustrative examples. But the solution 

of the support points from interior of the response surface was far from optimal 

when compared with existing solutions. 
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1    Introduction 

Over the years a variety of line search algorithms have been developed in 

locating the local optimizers of response surfaces. Some of the techniques are: the 

active set and simplex methods which are available for solving linear 

programming problems, see for example, [1] and the Wolfe algorithm for solving 

quadratic programming problems, [2]. Other classical line search algorithms are: 

the methods of steepest ascent, the Newton’s method and the conjugate direction 

method, see for example, [3]. Recent line search algorithms include line search 

algorithms for solving large scale unconstrained optimization problems, [4], line 

search algorithm based on the Majorize minimum principle, [5], a one 

dimensional search algorithm for solving general high-dimensional optimization 

problems that uses line search algorithm as sub routine, [6] etc. Another important 

study on line search algorithm called Super Convergent Line Series (SCLS) is 

widely discussed by [7], [8] and [9]. Here we shall investigate which of the 

support points of the boundary and interior that will give optimal solutions of 

quadratic programming problems through Super Convergent Line Series (SCLS). 

 

 

 

2   Preliminaries  
We shall define and discuss basic concepts in Super Convergent Line Series. 
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2.1   Algorithm for Super Convergent Line Series  

The line search algorithm called Super Convergent Line Series (SCLS) is a 

powerful tool for solving different optimization problems that are encountered in 

such areas as design of experiment with emphasis on incomplete blocking, 

Mathematical Programming, Stochastic Programming, etc.The line search 

algorithm, which is built around the concept of Super Convergence have several 

points of departure from the classical, gradient –based line series. Of course, these 

gradient-based series do often times fail to converge to the optimum but the Super 

Convergent Line Series (SCLS) which incidentally are also gradient –based 

techniques locate the global optimum of response surfaces with certainty, [10]. 

The algorithm is defined by the following sequence of steps: 

(a) Select Ns support points from the kth boundary or interior of the response 

surface, 

Hence make up an N-point design.  { } K

s

K
Nn NNXXXX ∑==Ν ,,...,,...,, 21ζ  

(b) Compute the vectors ** , dX  and *ρ  where **,X d  and *ρ  are the optimal 

starting point, direction vector and optimal step length, respectively. 

(c) Move to the point ***
dXX ρ−=∗  

(d) Is **
fX X=  , where *

fX  is the maximize of (.)f .  

(e) Is ?,...,11 SknN K =∀+≥  

 Yes: go to step (b) above  

No: take extra support points so that Nk ≥ n+1 and go to step (b) above. 

 

 

2.2 Mean Square error Matrix 

When )(xf  is of the regression function, the Mean Square Error (MSE) 

matrix is used to obtain the matrix, Hk, of the coefficients of convex combination. 
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Therefore, the mean square error matrix, is defined by  

( ) ( ) ( )nkKBKBKknknkk MXXggXXMMCM ζζζ 1//

22

/11 )( −−− +=  

 = ( ) /1
Kknk bbM +− ζ   

where 

 ( ) ( ) 11 / ,nk k kM X Xζ
−− =   

kX      is the design matrix,  

( ) ,
2

/1 gXXMb BKknkk ζ−=  

BKX  is the coefficients matrix for the biasing effects, and 2g  is the vector of 

biasing effects. 

Therefore, the mean square error matrix with ith row and jth column is given 

by  

( )





















=

)(...)()(

)(...)()(
)(...)()(

21

22221

1211

nnnn

n

in

k

kMkMkM

kMkMkM
kMkMkM

CM


 

for i, j, = 1, 2,…, n. 

The diagonal elements, )( iikM or )( nnkM , are the mean square errors while 

)( 1nkM   and ( )1nkM  are the off – diagonal elements. 

 

 

2.3 The Average information matrix and the direction vector  

The average information matrix, )( nM ζ , is the sum of the product of the k   

information matrices, and the k matrices of the coefficient of convex combinations 

given by )( nM ζ  = //

1
kkkk

s

k
HXXH∑

=

. 
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In vector form, )( nM ζ = 1/// =HHHXXH  

                                     { }SS XXXXXXdiagXX /
2

/
21

/
1

/ ,...,,=  

                                                

/
1 1

/
2 2

/

0 ... 0

0
.

0 . S S

X X
X X

X X

 
 
 =  
 
 
 

 



 

The direction vector is given by (.))(ˆ 1 ZMd nζ
−=  

where ),...,,((.) 10 nZZZZ =  is an n component vector of responses; 

)( ii MfZ = ,mi  is the ith row of the information matrix )( nM ζ . 

 

 

3    Results and Discussion  

3.1     Response Surface (Experimental Area) 

 

 

 

 

 

 

 

 

 

            
The selection of support points for both boundary and interior are governed 

by the inequalities below. 

4
1  
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Boundary support points (illustrative Example 1) 

(a) 






 ≤≤≤≤

4
70,

2
1,0:, 2121 XXXX  for design X1 

(b) 






 ≤≤≤≤

4
70,

2
3,0:, 2121 XXXX  for design X2 

illustrative Example 2 

(a) 






 ≤≤≤≤ 10,

4
3,0:, 2121 XXXX for design X1 

(b) 






 ≤≤≤≤

4
30,

4
5,0:, 2121 XXXX for design X2 

Interior support points (illustrative Example 1) 

(a) 






 ≤≤≤≤

4
3

4
1,

2
3

2
1:, 2121 XXXX  for design X1 

(b) 






 ≤≤≤≤ 1

4
1,1

4
1:, 2121 XXXX  for design  X2 

illustrative Example 2 

(a) 






 ≤≤≤≤

4
3

4
1,

2
3

2
1:, 2121 XXXX  for design X1 

(b) 






 ≤≤≤≤

2
1

4
1,1

4
1:, 2121 XXXX  for design X2 

 

Note: Points with circle at the boundary of the response surface are the boundary 

support points, while points with asterisks in the interior of the response surface 

are interior support points. 

 

 

3.2   Illustrative examples 
Example 1 ([3], chapter 13, p 601) 

Maximize 2
22

2
1121 285),( XXXXXXf −+−=  
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      S.t. 623 21 ≤+ XX  

   0, 21 ≥XX  

 Example 1 using boundary support points.  

The design and bias matrices are: 

 1

71 0
4
31 0
2
31 0
4

11 0
2

X

 
 
 
 
 

=  
 
 
 
 
 

,   2

1 1 0
11 0
4
71 0
4

31 0
2

X

 
 
 
 
 =
 
 
 
 
 

,   1

490
16
90
4
90

16
1 0
4

BX

 
 
 
 
 

=  
 
 
 
 
 

,   2

1 0
10

16
490
16

9 0
4

BX

 
 
 
 
 =
 
 
 
 
 

. 

The vector of the biasing parameters is 







−
−

=
2
1

2g . 

The mean square error matrices are: 
















=

2420994318872
55724

14720

1

SYM
M , 

         
















−
−=

1443.179601.85805.4
3170.58973.2

1297.2

2

SYM
M  

Where “ SYM” means that the mean square error matrices 1M  and 2M  are 

symmetric matrices. 

The matrices of coefficient of convex combination of the means square error 

matrices are 

{ }0007.00880.00001.01 diagH = , 

{ }9993.09120.09999.02 diagH = . 

These matrices are normalized to give: 

{ }0007.00960.00001.1*
1 diagH =  
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{ }0000.19954.00000.1*
2 diagH =  

The direction vector,  









=

9035.0
7379.0

d . 

This is normalized to give  









=








=

6224.0
3107.0

,
7745.0
6326.0 ** Xd  

The step length, 1092.1* −=ρ  

5.11)(;
48.1
01.1* =







= xfMaxX  

This value is approximately the same as the value got by [3], Chapter 13, p 601, 

which is 5.11)( =xMaxf , for  







=








5.1
0.1

2

1

x
x

. 

 Example 1 using interior support points. 

The design and bias matrices are: 

1

1 11
2 2
3 11
2 4
1 31
2 4

11 1
2

X

 
 
 
 
 

=  
 
 
 
 
 

, 2

1 1 1
1 11
4 4
1 11
2 4
3 11
4 2

X

 
 
 
 
 =
 
 
 
 
 

, 



























=





























=

4
1

16
9

16
1

4
1

16
1

16
1

11

,

4
11

16
9

4
1

16
1

4
9

4
1

4
1

21 BB XX . 

The vector of the biasing parameters is 







−
−

=
2
1

2g . 

          The mean square error matrices are:  

















−
−=

3333.336667.145.26
3333.95.12

5625.22

1

SYM
M , 
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−−
−=

2500.284750.154063.0
2225.191031.4

2227.2

2

SYM
M . 

The matrices of coefficient of convex combination of the mean square error 

matrices are: 

{ }4587.06732.00897.01 diagH =  

{ }5413.03268.09103.02 diagH = . 

These matrices are normalized to give 

{ }6465.08996.00981.0*
1 diagH =  

{ }7629.04367.09952.0*
2 diagH = . 

The direction vector,  








−
=

0594.12
5567.0

d . 

This is normalized to give 








−
=

9989.0
0461.0*d . 

The optimal starting point,  









=

4594.0
6350.0*

X . 

The step length, 7081.1* −=ρ , 

 









=

17.2
56.0

X    and   42.10)( =xfMax . 

This value is not optimal and does not compare favorably with existing solution 

got by [3]. 
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Example 2 ([1], chapter 19, p 795). 

Maximize 2
221

2
121 22264 xXXXXXZ −−−+=  

 S. t 22 21 ≤+ XX  

 0, 21 ≥XX  

 Example 2 using boundary support points. 

The design and bias matrices are: 

1

11 0
2
31 0
4

1 0 1
31 0
4

X

 
 
 
 
 =
 
 
 
 
 

, 2

51 0
4

31 0
4
11 0
2

11 0
8

X

 
 
 
 
 

=  
 
 
 
 
 

, 





























=



























=

0
64
10

4
100

16
900

0
16
250

,

0
16
90

100
16
900

4
100

21 BB XX  

The vector of the biasing parameters is 







−
−

=
2
1

2g . 

The mean square error Matrices are: 

















−
−=

176667.161250.9
7160.184537.9

9184.5

1

SYM
M  

















−
−=

4801.77741.64120.2
2445.99677.1

2608.1

2

SYM
M  

The matrices of coefficient of convex combination of the mean square error 

matrices are: 

{ }3056.03306.01756.01 diagH =  

 { }6944.06694.08244.02 diagH = . 

These matrices are normalized  to give 

{ }4028.04428.02083.0*
1 diagH =  
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{ }9152.08966.09781.0*
2 diagH =  

The direction vector,  









=

0081.9
6583.4

d  

This is normalized to give  









=

8883.0
4593.0rd . 

The optimal starting point,  









=

4191.0
2022.0

X . 

The step -length, 4292.0* −=ρ  

16.4.,
800.0
399.0

=







= ZMaxX t  

This value is very close to the value got by [1], chapter 19, p 795, which is 

16.4=ZMax , for 







=








833.0
333.0

2

1

x
x

 

 Example 2 using interior support points. 

The design and bias matrices are: 

1

1 11
2 2
3 11
2 4
1 31
2 4

11 1
2

X

 
 
 
 
 

=  
 
 
 
 
 

, 2

11 1
4

1 11
4 4
1 11
2 4
3 11
4 2

X

 
 
 
 
 

=  
 
 
 
 
 

,  1

1 1 1
4 4 4
3 9 1
8 4 16
3 1 9
8 4 4
1 11
2 4

BX

 
 
 
 
 

=  
 
 
 
 
 

, 2

1 11
4 16
1 1 1

16 16 16
1 1 1
8 4 16
3 9 1
8 16 4

BX

 
 
 
 
 

=  
 
 
 
 
 

 

The vector of the biasing parameters is 
















−
−
−

=
2
2
2

2g . 
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−
−=

395.2328542.10625.152
8958.5075.70

102

1

SYM
M  

















−
−=

0816.287347.41633.8
8622.127194.4

0765.4

2

SYM
M . 

The matrices of coefficient of convex combination of the mean square error 

matrices are: 

{ }1078.02017.00384.01 diagH =  

{ }8922.07983.09616.02 diagH = . 

These matrices are normalized to give 

{ }6465.08996.00981.0*
1 diagH =  

{ }7629.04367.09952.0*
2 diagH = . 

The direction vector,  








−
=

0971.88
9480.4

d . 

This is normalized to give  








−
=

9984.0
0561.0*d . 

The optimal starting point,  









=

3989.0
6468.0*X . 

The step length, ,2862.0* −=ρ  









=

11.0
66.0*X  and Max. 26.2=Z  

This value is not optimal and does not compare favorably with existing solution 

got by [1]. 
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4   Conclusion 

From the foregoing, it is evident that the solution of quadratic programming 

problems using boundary supports points compared favorably with existing 

solution given by [3] and [1]. But the solution using interior support points did not 

yield optimal solution and did not also compared favorably with existing 

solutions. 

It is therefore advisable to use support points from the boundary of the 

response surface to solve quadratic programming problems. 
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