
Journal of Computations & Modelling, vol.3, no.4, 2013, 137-163
ISSN: 1792-7625 (print), 1792-8850 (online)
Scienpress Ltd, 2013

Army Rapid Fielding by Optimizing Order Picking

Routes in Warehouses with Parallel Aisles –

Implementation in a Real Case Study

Athanassios Nikolakopoulos1

Abstract

Army fielding is the process by which new equipment is distributed to soldiers

either at dispersed units at homeland or at theatre of operations (J.D. Carter,

SIEDS IEEE, 2007). Minimization of personnel, space and time resources are of

utmost importance for improving the supply chain management system and the

fielding of the necessary equipment at the theatre of operations. The equipment is

stored in central warehouses where frequent and large orders of miscellaneous

items are received each day. The items have to be picked from specific location

within the warehoused then consolidated and finally dispatched. The most

common type of warehouse is divided into parallel aisles between multistore

storage racks. The order picking personnel walks or drives along the aisles to pick

items from storage. They can change aisles at a number of cross aisles, which are

usually located at the front and the back of the warehouse, but in some cases

additional cross aisles are located at positions in between. In this paper, optimal

1 National Technical University of Athens, School of Chemical Engineering, 9 Heroon
 Polytechneiou str., 15780 Zografou Campus Athens Greece.
 E-mail: nikolako@mail.ntua.gr

Article Info: Received : July 1, 2013. Revised : August 30, 2013.
 Published online : December 1, 2013.

mailto:nikolako@mail.ntua.gr

138 Army Rapid Fielding by Optimizing Order Picking Routes

routing of order pickers in parallel aisle warehouses is formulated as a Travelling

Salesman Problem (TSP). A Threshold Accepting meta-heuristic algorithm is

proposed next for the solution of the problem.

The proposed method is tested on a large set of randomly generated

instances and is compared favourably to other methods that can be found in the

literature. Moreover, the proposed method is implemented for the solution of a

number of instances obtained during the operation of a real warehouse. The

method produces better results compared to the method used in practice and it is

shown that the warehouse operations can be significantly benefited.

Keywords: Military Logistics, Order picking; Threshold accepting; Metaheuristic;

Routing; Warehouse Operations; Material Handling

1 Introduction
The seasonable replenishment of supplies and equipment during military

operations is of outmost importance for accomplishing the desired outcome. At the

heart of the military supply chain system lies the warehouse, where a multitude of

material handling operations are performed daily. There, the scope for

optimization is clear especially because time, space and personnel resources are

limited in times where military operations take place. The central and most

resource consuming activity of warehouse operations is the order-picking

operation. This paper considers order-picking in warehouses with parallel aisles,

which is the most common warehouse type used in practice. Order-picking is the

process of collecting the items included in an order, from specified storage

locations, and transporting them to the shipping area. In warehouses with parallel

aisles, order-pickers drive along the aisles and pick requested items from storage

locations. Possibilities for changing aisles are at the front and the back of the

Ath. Nikolakopoulos 139

warehouse and at a number of cross aisles in between. According to de Koster et.

al. ([1]), these systems form the majority of picking systems in warehouses and

they are named low-level picker-to-parts systems.

The activity of order picking is responsible for up to 55% of the total

warehouse operating cost ([2]). The warehouse productivity can be improved

significantly by reducing the order-picking travel time, which is an increasing

function of the travel distance. Consequently, the travel distance is considered as a

primary objective in optimization of the picking route. Except from precedence

constraints imposed by the need for picking small and fragile items after heavy

and big-volume items, the choice of an order picking tour is not affected by other

picking activities.

The problem is identified as a special case of the Travelling Salesman

Problem (TSP) ([3]), where given a number of locations and the cost of transiting

from any location to any other location, the objective is to find the route that visits

each location exactly once, at minimum cost. There is no polynomial-time

algorithm for the solution of this NP-hard problem. There are however, dynamic

programming algorithms for the case of optimizing order-picking routes in

rectangular warehouses with two cross aisles ([4]) and three cross aisles ([5]), in

running time which are linear with respect to the number of aisles and the number

of pick locations. Extensions of these algorithms to more cross aisles are non-

trivial.

In real warehouse practice, a heuristic solution to the problem is most often

obtained by applying the Traversal or else S-shape heuristic strategy in which

aisles are served in order and if an aisle contains at least one pick the picker

crosses the entire length ending at the opposite side of the warehouse.

Hall ([6]) evaluated and compared heuristic strategies for routing a manual

picker through warehouses with two cross aisles. Performance comparisons

between optimal routing and heuristics for this type of warehouse are also given

by De Koster and Van der Poort ([7]) and Petersen ([8]). These methods were

140 Army Rapid Fielding by Optimizing Order Picking Routes

modified by Roodbergen and De Koster ([9]) and implemented for the solution of

order-picking routing problems in warehouses with more than two cross aisles.

Makris and Giakoumakis ([10]) presented a route improvement method using the

Lin and Kernighan’s ([11]) k-opt methodology. Daniels et al. ([12]) considered the

case where units of the same item can be stored in multiple locations so that order

picking requires choosing a subset of the locations that store an item to collect the

required quantity. Thus, the total travelled distance is affected both by the

assignment of inventory to an order and the sequence in which the locations have

to be visited. For the solution of the aforementioned problem, Daniels et al.

proposed a modified standard nearest neighbour ([13]) a modified shortest arc

([14]) heuristic and a Tabu search algorithm.

The present work implements a metaheuristic algorithm for obtaining good

results for practical problems in realistic computational times. The Floyd’s ([15])

shortest path algorithm is used for the calculation of the minimum distances

between all pairs of picking locations and a modified Threshold Accepting method

([16]), with an intensified Local Search procedure is proposed for the solution of

the problem of determining the best picking routes in warehouses with multiple

cross aisles.

The optimal picking routes produced by the cutting-plane method of Dantzig

et al. ([17]) are used as benchmarks for the performance analysis of the

metaheuristic method proposed in this paper and other heuristic methods found in

the literature. The proposed method is also tested by providing solutions to

instances that emerged during the operation of a real warehouse. The proposed

method compares preferably to the method followed in practice.

The rest of the paper is structured as follows: The next section defines the

problem. Section 3 is devoted to the description of the proposed metaheuristic

algorithm. Section 4 reports computational results on benchmark instances and on

instances from a case study. The paper ends with conclusions in Section 5.

Ath. Nikolakopoulos 141

2 Warehouse Description

The layout of warehouses considered in this work, consists of a number of

back to back shelves and a number of parallel aisles between them. We assume

that the aisles can be traversed in both directions. Aisles communicate through

cross aisles at the front end, the rear end and probably through one or more cross

aisles in between. The aisles are narrow enough to permit simultaneous picking of

items from both sides of a pick aisle. Picked orders have to be deposited at the

depot, where the picker is supplied with an empty pallet or container for the

collection of the items of the next order. Without loss of generality, the depot is

located at the beginning of the first pick aisle.

 An example of a warehouse layout with 6 aisles and 4 cross aisles is given in

Figure 1(a) where black boxes indicate the locations from where the items of an

order have to be picked. By associating each crossing of aisles and cross aisles

with a node, the set

U={ }1 2, ,..., lu u u

of the crossing nodes is constructed. Additionally, the depot and each point in the

aisles next to the picking locations are also represented by nodes, which formulate

the set

V={ }1 2, ,..., nv v v

of nodes. Then a graph G(W, A) is defined, where

W= ∪U V ={ }1 2, ,..., mw w w

is the set of all nodes and A the set of all undirected links in G, i.e. all arcs that

connect adjacent nodes. The equivalent graph representation of the warehouse

layout and order presented in Figure 1(a) is given in Figure 1(b), where the nodes

in set V are represented by thicker circles.

 Given that the order picker has to collect a number of items in specified

quantities at known locations, the question is in what sequence the order picker

should visit these locations in order to minimize the total travelling distance. As

142 Army Rapid Fielding by Optimizing Order Picking Routes

already mentioned, the problem can be formulated as a variation of the TSP.

However, the route which is produced by the algorithm does not need to visit all

nodes in set U, in contrast to the nodes in the aisles next to the pick locations,

which are all visited. Moreover, the order-picking route may visit any node in sets

U and V more than once. Next section describes the proposed method for the

solution of the specified problem.

3 Description of the Proposed Method

3.1 Formulation of the TSP Problem

 The TSP is formulated by constructing a symmetric matrix containing the

distances between all pairs of nodes in set V, i.e. pairs of nodes that represent

picking locations. The distance between any pair of nodes of the graph is

calculated as the shortest path connecting these nodes. To this end, the Floyd’s

algorithm ([15]) is utilized, which as showed by Dreyfus ([18]) is about 50%

faster than the application of the Dijkstra’s algorithm ([19]) when applied for

every pair of nodes in G.

 The distance unit is defined under the assumption that all storage locations

have equal square-shaped base which is also equal to the square-area where two

crossing aisles overlap. The length of each side of the square is used as the

distance unit and will be called from now on as lsl. For any two adjacent nodes in

graph G, assignment of the distance is straightforward. For example in Figure 1(b)

the distance between the adjacent nodes v4 and v5 is 4 lsls and the distance

between the adjacent crossing nodes u16 and u23 is 3 lsls. For all other pairs of

nodes, i.e. non-adjacent nodes distances are assigned by calculating the respective

shortest paths. The Floyd’s algorithm is used for this task, which consist of the

following three steps:

Ath. Nikolakopoulos 143

Initialization: The 𝑚 × 𝑚 distance square matrix

(1,1) (1,2) ... (1,)
(2,1) (2,2) ... (2,)

(,1) (,2) ... (,)

d d d m
d d d m

d m d m d m m

 
 
 =
 
 
 

D
   

,

where m = W is initialized so that d(i,i) = 0 ∀ i = 1, …, m, and d(i,j) = ∞

whenever arc (wi, wj) ∉ A .

Set k = 0.

Step 1. k = k + 1

Step 2. For all i ≠ k and d(i,k) ≠ ∞

 For all j ≠ k and d(k,j)≠ ∞

 d(i,j)= min[d(i,j), d(i,k) + d(k,j)] (1)

Step 3. If k = m, D is contains the shortest paths between all pairs of nodes in W.

Stop.

 Else go to Step 1.

 After the calculation of matrix D, the 𝑛 × 𝑛 distance square matrix

(1,1) (1,2) ... (1,)
(2,1) (2,2) ... (2,)

(,1) (,2) ... (,)

p p p n
p p p n

p n p n p n n

 
 
 =
 
 
 

P
   

,

where n = V is easily obtained by keeping only the rows and columns of matrix

D that correspond to nodes in V . A TSP is now clearly formulated: Assuming a

complete undirected graph of V vertices with distances given by matrix P, find

the Hamilton cycle of minimum length. This problem is solved using the meta-

heuristic algorithm that is described in the next subsection.

 However, the sequence of nodes which is the result of the TSP does not

suffice to describe completely the optimal route for the order picker. It may be

possible that two subsequent nodes in the optimal solution are not actually

144 Army Rapid Fielding by Optimizing Order Picking Routes

adjacent in graph G. For these cases, a record containing the intermediate nodes

should be available. This is attained by the bookkeeping mechanism suggested by

Hu ([20]), according to which an additional m×m matrix

(1,1) (1,2) ... (1,)
(2,1) (2,2) ... (2,)

(,1) (,2) ... (,)

h h h m
h h h m

h m h m h m m

 
 
 =
 
 
 

H
   

is constructed. The element h(i,j) is the node just before wj on the shortest path

from wi to wj, in graph G. Calculation of matrix H can be included in Floyd’s

algorithm, by initializing the matrix (setting h(i,j) = wi, i, j = 1, …, m) and by

adding the following step right after equation (1):

If d(i,k) + d(k,i) < d(i,j), then h(i,j) = h(k,j).

 If two subsequent nodes, say ui and uj in the optimal solution of the TSP are

not actually adjacent in graph G, the solution is augmented by including the

realizable optimal path between the nodes. In particular, if wi and wj are the

respective nodes in graph G, the realizable shortest path can be obtained

immediately from matrix H as follows:

wi , wr, …, wc, wb, wa, wj

where wα = h(i,j), wb = h(i,a), wc= h (i,b), …, wi = h (i,r).

3.2 Description of the algorithm

This subsection describes the meta-heuristic algorithm which was used to

solve the TSP that was formulated in subsection 3.1.

Ath. Nikolakopoulos 145

3.2.1 The Threshold Accepting (TA) Method Combined with Gradually

Reinforced Local Search

 Assuming that *X is the set of all feasible solutions (sequences of nodes) of

the problem, TA starts with an element x0
*∈ X , which may be randomly chosen.

Then, the method proceeds in an iterative manner. In each iteration the algorithm

decides if the current solution xc will be replaced by a new one xnew. The new

candidate is chosen (by use of Local Search moves) as a small perturbation of the

current solution or-speaking in mathematical terms-in a given neighborhood of the

current solution xc. The value of the objective function is calculated for the new

candidate and the results are compared:

Δf = f(xnew) - f(xc).

 In the TA method, the new element xnew is accepted as the current solution if

and only if Δf ≤ T for the current threshold value T. The proposed algorithm uses

an adaptable string of prospective thresholds named TS. The values of thresholds

in TS are sorted in an order of increasing values. For all the test cases that will be

presented in this work, TS is initially formulated as

{0,1,2,3,…,Tmax},

i.e. it contains zero and all the positive integer numbers up to the maximum

threshold Tmax . Although the maximum threshold value can be selected by trial

and error, experimentation with many test cases showed that a good choice is to

select Tmax as half of the maximum distance between any two nodes i.e.

[]
 ,…1,= ,,…1,= ,

2

),(max
 = ,

max njni
jip

T ji (3)

The last threshold value in the string Tmax is considered as the current threshold T.

The decision of updating the value of the current threshold T is taken within an

iterative procedure, which starts by initializing the parameters Ls and Im. The

parameter Ls indicates the number of iterations devoted to Local Search and is

initially set to Lso, which depends on the magnitude of the problem (in all test

146 Army Rapid Fielding by Optimizing Order Picking Routes

cases we used Lso= n). The binary parameter Im indicates the improvement state,

that is whether there has been an improvement on the objective function value and

is initially set to 0. When the objective function value is improved (Δf < 0), the

value of Im becomes 1 and the current threshold T (the last element of TS) is set to

0, meaning that only improvements in the objective function are accepted. The

parameter Im remains equal to 1 for the next Ls = Ls * als iterations, where als ∈

(1, 1.5]. This way, the algorithm is forced to conduct local search when an

improvement in the value of the objective function occurs. Furthermore, as the

number of improvements increases, local search is becoming more insistent, since

Ls is continuously increasing. If 0≤ Δf ≤ T, then the last and largest value in TS

is replaced by Δf and the values in the string are sorted in an ascending order. If Δf

> T the algorithm proceeds to the next move and all the parameters remain to their

current values. The algorithm terminates when all the elements of TS become

equal to 0. Since this usually requires a large number of iterations, practically we

terminate the algorithm at an earlier stage, which is defined by a maximum

number of iterations. The flow diagram of the algorithm is shown in Figure 2.

 The above method initializes a group of potential thresholds and changes

the current threshold, based on the progress of the algorithm. Thus the functional

features of the algorithm are problem-independent, which is a great advantage

compared to other threshold accepting algorithms ([16], [21] and [22]).

3.2.2 Representation of the Solution and the Insertion Method

We consider as current solution a vector x *X∈ , where *X is the set of all

possible permutations of the nodes. In a specific permutation x, the position of

each node denotes the order in which it will be inserted in the schedule. Thus, for

the rest of the paper, the name Insertion Order will be used for the sequence x,

while the corresponding schedule will be denoted by S. This way the searching

operations of the algorithm are imposed on the unscheduled string x, x in turn is

Ath. Nikolakopoulos 147

translated into a schedule S and the solution x is surveyed right after the value of

the respective cost has been calculated.

 Let us assume an Insertion Order x = (v1,…,vn), where vk is a node in x and n

is the total number of nodes. The nodes of x will be inserted one by one into the

current partial path, until they formulate the final schedule S = (s1, …, sn).

According to the insertion scheme, the incomplete schedule S΄ = (s1,…, sk) where

the first k nodes (v1, …, vk) of the Insertion Order vector x have been positioned, is

augmented by placing the node vl = vk+1 between the nodes sr and sr+1 in S that

correspond to the minimum value of

 , 1 , 1 = () (,) ()+ ++ −i i l l i i iR p s v p v s p s s (4)

i.e.:

[]1 1arg min (,) (,) (,) , 1,...., 1+ += + − = −i l l i i ii
r p s v p v s p s s i k (5)

where p(i, j) is the distance or processing time from node i to node j and arg min

stands for the argument of the minimum, i.e. the value of i for which the value of

formula (5) attains its minimum value. The above procedure is repeated until k =

n, where the schedule is complete and feasible. Figure 3 presents the flow diagram

of the Insertion Method described above. To follow the iterative procedure of the

TA method, the algorithm needs to start with a feasible initial solution. The trivial

sequence (v1, v2, …, vn) is utilized for all implementations.

3.2.3 Local Search Moves

 The proposed algorithm is based on an Insertion Order x. As it was

discussed earlier, the actual schedule S results from x, by the use of node insertion

method. Local Search moves do not intervene on the schedule S, but on the

Insertion Order x. The new Insertion Order x΄ is located in the neighborhood of x.

However the new offspring schedule S΄ is not always a neighbor of S. This occurs

because the insertion method leads potentially to considerably altered schedules.

148 Army Rapid Fielding by Optimizing Order Picking Routes

We utilized six different types of Local Search moves. Given a primary Insertion

Order x = (v1, …, vn), the six moves are described as follows:

1) Choose randomly two nodes from x, say vk and vl (vk, vl ∈ {v1,…,vn}and vk ≠ vl)

and exchange their positions in the Insertion Order string. If vk precedes vl then x

= (v1,…, vk-1,vk,vk+1,…, vl-1,vl,vl+1,…,vn) becomes x΄ = (v1,…, vk-1,vl,vk+1,..., vl-1, vk,

vl+1,…,vn).

2) Choose randomly two nodes from x, say vk and vl (vk, vl ∈ {v1,…,vn}and vk ≠

vl) and invert the sequence of nodes between them including vk and vl. Using this

move x = (v1, …, vk-1,vk,vk+1,vk+2,…,vl-2,vl-1,vl, vl+1,…,vn) becomes x΄ = (v1,..., vk-

1,vl,vl-1,vl-2,...,vk+2,vk+1,vk, vl+1,…,vn).

3) Choose randomly two nodes from x, say vk and vl (vk, vl ∈ {v1,…,vn}and vk ≠

vl) and move the sequence of nodes (vk,vk+1,…, vl-1,vl) after another randomly

chosen node, say vm∈ {v1,…,vn}/{ vk,vk+1,…, vl-1,vl}. For example, if vk precedes vl

and vm precedes vk then x = (v1,…,vm,vm+1,…,vk-1,vk,vk+1,…,vl-1,vl,vl+1,…,vn)

becomes x΄ = (v1,…,vm,vk,vk+1,…,vl-1,vl, vm+1,…,vk-1,vl+1,…vn).

4) Choose only one node, say vl ∈ {v1,…,vn} and transfer it to the first position in

the Insertion Order string. So x = (v1,…,vl-1,vl,vl+1, …,vn) becomes x΄ = (vl,v1,… vl-

1,vl+1,...vn).

5) Divide the Insertion Order x into four, not necessarily of the same size,

sequential groups of nodes, say x = (gi, gi+1, gh, gh+1). Altering the order of the

groups, the new sequence that is produced is: x΄= (gi, gh+1, gh, gi+1). This operator

can be thought of as a variation of operator (3) which also divides Insertion Order

x into four segments, but the new sequence that is produced is x΄= (gi, gh, gi+1,

gh+1).

6) Divide the Insertion Order x into six, not necessarily of the same size,

sequential groups of nodes, say x = (gi, g i+1, g j, g j+1, gh, gh+1). Altering the order

of the groups, the new sequence that is produced is x΄= (gi, g j+1, gh, g i+1, g j, g h+1)

or x΄ = (gi, g h, g j+1,g i+1, g j, g h+1) with equal probability.

Ath. Nikolakopoulos 149

Remark 1: Moves 5 and 6 are similar to the ones used by Cirasella et al. [23] and

Gambardella and Dorigo [24] and originate from the k-exchange moves when k is

equal to 2 and 3 respectively.

Remark 2: At each iteration of the algorithm, only one of the six moves is selected

to be applied to the current string xc in order to produce the new string xnew. The

probability of selection is the same for all six moves.

4 Computational Results

4.1 Comparative Results for Randomly Generated Instances

The MatLab programming language was used for implementing the

algorithm and a 3.2 MHz Pentium 4 processor was used for all computational

experiments.

 For our simulation experiments we assume warehouses with 18 aisles. We

consider 2, 3, 4 and 5 cross aisles, and in the resulting layouts the aisles contain

50, 48, 48 and 44 stock locations respectively on either side of every aisle. These

values are representative of small warehouses or zones ([1]) that comprise large

order picking areas and are assigned to specific order pickers. Typical numbers of

items requested in a single order for most low-level picker-to-parts systems are 20,

50 and 100 items/order. Combinations of the aforementioned values sum up to 12

configurations. For each configuration, we generate 10 random orders thus

producing 120 instances in total. We assume a random storage assignment where

storage locations are selected randomly among all eligible empty locations with

equal probability [8], which results to a uniform and independent distribution of

the locations.

The optimal solutions of the corresponding TSPs were obtained using the

cutting plane algorithm introduced by Dantzig ([17]). It should be noted however,

that this exact algorithm has unpredictable large computational times, which is an

150 Army Rapid Fielding by Optimizing Order Picking Routes

undesirable property for practical implementations. Some problems with up to 50

nodes may require more than 15 hours in a typical PC configuration running

Matlab depending on the structure of the distance matrix of the nodes. The

computations are even more time consuming for problems with 50 to 100 nodes.

All 120 instances were also solved using five heuristics and the proposed

method. The five heuristics: S-shape, Largest gap, Aisle-by-Aisle, Combined and

Combined+, are described in detail by Roodbergen and De Koster ([9]) as

extensions of the heuristic routing methods for warehouses with two cross aisles

developed by Roodbergen and De Koster ([25]) and the combination of heuristics

and dynamic programming algorithm developed by Vaughan and Petersen ([26]).

Results for instances with 2 and 3 cross aisles are contained in Table 1, while

Table 2 contains results for instances with 4 and 5 cross aisles. The first column of

Tables 1 and 2 contains the name of the instances. Columns 2 – 5 contain the

number of aisles, cross aisles, stock locations on either side of an aisle and the

number of pick locations for each instance. Columns 6 – 12 contain the resulting

total traveled distance in lsls by all heuristic methods, the Dantzig’s cutting plane

method and the proposed metaheuristic method. Computational times are omitted

because all algorithms (except the cutting plane method) produce their results

within milliseconds. For all instances the proposed method outperforms all other

heuristic methods. For 107 out of 120 instances the proposed method reaches the

optimal value of the total traveled distance. For the remaining 13 instance the

optimality gap is practically negligible as it varies from 0.14% (instance

HundredOrd36) to 0.7% (instance HundredOrd34).

 Average results of Tables 1 and 2 are reported in Table 3. The first column

contains the name of the groups of instances of the same configuration (number of

aisles, cross aisles, locations per aisle and picking locations) where x = 0, …, 9.

Figure 4 gives a visual representation of the results contained in the last row of

Table 3 and illustrates the efficiency of the proposed algorithm. It should be

particularly emphasized that the average of the solutions obtained by the proposed

Ath. Nikolakopoulos 151

algorithm is only 0.03% above the average over the optimal solutions, while the

best next heuristic, Combined + shows a 13,7% positive gap.

4.2 Case Study

 The proposed method was also tested on data from real warehouse

management problems arising in a warehouse of a major electrical retailer in

Greece. The warehouse consists of 30 aisles, 2 cross aisles (at the front and rear

end of the warehouse) and 45 storage locations on either side of every aisle.

Figure 5 shows the layout of the warehouse. The total storage area is 4200 m2 and

it is divided into two areas of 2100 m2: AREA 1 and AREA 2. This partition of the

storage area is due to safety reasons against fire, according to the relative

legislation (P.D. 71/88 art. 11.3), which defines that the maximum section area

should not exceed 2500 m2. Each one of these two areas has 15 aisles: A, B, C, …,

Q. This partition poses limits on the circulation of the order pickers. If a picker has

to pass from one area to the other, this can only be done at the front end of aisle Q

(storage locations 45) and not at the rear end because areas 1 and 2 are isolated.

The warehouse uses VNA (Very Narrow Aisle) vehicles, thus the order pickers

can pick items from both sides of a pick aisle simultaneously. The depot is located

at the beginning of aisle A (storage location 45) of AREA 1.

 The practice followed so far for picking the items of an order is even simpler

than the S-shape method ([9]): All storage locations have a serial number. When

an order is placed the items of the order are picked in order of the serial number of

the location they are stored. This leads to excessively large total travelled

distances.

 The problem was solved by the proposed method by setting the distances

between the nodes crossing at the end of aisles 15 and 16 (AREA 1, aisle Q and

AREA 2, aisle Q), to a fairly large positive number.

152 Army Rapid Fielding by Optimizing Order Picking Routes

The problem can be solved to optimality by using the dynamic programming

method of Ratliff and Rosenthal ([4]) and setting the length of arc configurations

(i), (ii) and (iv) in [4] (p. 515) for crossover between aisles 15 and 16 (aisles:

AREA 1, aisle Q and AREA 2, aisle Q), equal to a fairly large positive number.

 The proposed method is tested on five orders of 67 to 102 items/order and

the results are compared to those from the method used in practice and the optimal

results produced by the method of Ratliff and Rosenthal with the modification

introduced earlier. The results are reported in Table 4. The proposed method

always finds the optimal solution and produces routes with 16.7 % to 22.8 %

shorter total distances compared to the method used in practice.

5 Conclusions

The present paper considers the problem of optimizing order picking routes

in low-level picker-to-parts systems of warehouses that contain parallel aisles,

while changing of aisles is allowed through two or more cross aisles. First, the

problem is identified and formulated as a TSP problem for any warehouse with the

features mentioned before and any order distribution within the storage area. This

is achieved by implementing a dynamic programming algorithm for the

calculation of the shortest path between any pair of nodes in a connected graph.

Then, a metaheuristic algorithm based on the framework of the Threshold

Accepting method is proposed for the solution of the formulated problem. An

intensive neighborhood (Local) search procedure is incorporated in the body of

the algorithm and a sorted list of Thresholds is maintained and updated throughout

the entire iterative procedure. The former facilitates the exploration of the most

promising areas of the search space, while the latter reduces the number of user

defined parameters of the algorithm to just the length of the threshold list, thus

making tuning of the algorithm much easier. Computational results of the

Ath. Nikolakopoulos 153

proposed method have been compared favorably to a number of algorithms found

in the literature, which are specially devised for the solution of the problem at

hand. Finally the proposed method has been tested on the solution of a number of

instances obtained during the operation of a real warehouse. The method produces

better results compared to the method used in practice and improves significantly

the warehouse operations.

Future research could encompass dynamic storage assignment, simultaneous

order picking and replenishment route optimization, and also inbound receipt and

outbound delivery of goods in a complete framework for the maximum utilization

of labour and equipment via the practice of task interleaving.

References

[1] De Koster R, Le-Duc T, Roodbergen K J. Design and control of warehouse

order picking: A literature review, Eur J of Oper Res, 182, (2007), 481-501.

[2] Tompkins JA, White JA, Bozer YA, Frazelle EH, Tanchoco JMA and

Trevino J., Facilities Planning, New York: John Wiley & Sons, Inc. 2nd edn.

1996.

[3] Christofides N., Graph Theory: An Algorithmic Approach, London,

Academic Press, 1975.

[4] Ratliff HD and Rosenthal AS, Orderpicking in a rectangular warehouse: A

solvable case of the traveling salesman problem, Oper Res, 31, (1983), 507-

521.

[5] Roodbergen KJ, De Koster R. Routing order-pickers in a warehouse with a

middle aisle, Eur J of Oper Res, 133, (2001), 32–43.

[6] Hall RWH, Distance approximations for routing manual pickers in a

warehouse, IIE Trans, 25, (1993), 76 - 87.

154 Army Rapid Fielding by Optimizing Order Picking Routes

[7] De Koster R, Van der Poort E., Routing orderpickers in a warehouse: a

comparison between optimal and heuristic solutions, IIE Trans., 30, (1998),

469 - 480.

[8] Petersen CG, An evaluation of order picking routing policies, Inte J Oper

Prod Man, 17, (1997), 1098 - 1111.

[9] Roodbergen KJ and De Koster R., Routing methods for warehouses with

multiple cross aisles, Int J Prod Res, 39(9), (2001), 865–1883.

[10] Makris PA and Giakoumakis IG. k-Interchange heuristic as an optimization

procedure for material handling applications, Appl Math Model, 27(5),

(2003), 345–358.

[11] Lin S and Kernighan BW, An effective heuristic algorithm for the traveling

salesman problem, Oper Res 1973;21(2): 498–516.

[12] Daniels R, Rummel J and Schantz R., A model for warehouse order picking,

Eur J Oper Res, 105, (1998), 1-17.

[13] Rosenkrantz DJ, Steams RE, Lewis EM., An analysis of several heuristics for

the Traveling Salesman Problem, SIAM J Comput, 6, (1977), 563-581.

[14] Golden BL, Bodin LD, Doyle T, Stewart W, Approximate traveling salesman

algorithms, Oper Res, 28, (1980), 694-711.

[15] Floyd RW, Algorithm 97: Shortest Path, Commun ACM, 5(6), (1962), 345.

[16] Dueck G and Scheuer T., Threshold Accepting: A General Purpose

Optimization Algorithm Appearing Superior to Simulated Annealing, J

Comput Phys, 90, (1990), 161-175.

[17] Dantzig G, Fulkerson R and Johnson S. Solution of a Large-Scale Traveling-

Salesman Problem, J Oper Res Soc Am, 2, (1954), 393-410.

[18] Dreyfus SE, An appraisal of some shortest path algorithms, Oper Res, 17,

(1959), 395.

[19] Dijkstra EW, A note on two problems in connection with graphs, Numer

Math, 1, (1959), 269.

http://en.wikipedia.org/wiki/Robert_W._Floyd
http://en.wikipedia.org/wiki/Communications_of_the_ACM

Ath. Nikolakopoulos 155

[20] Hu TC., Integer Programming and Network Flows, Reading, Massachusetts,

Addison-Wesley, 1969.

[21] Nissen V and Paul H., A modification of threshold accepting and its

application to the quadratic assignment problem, OR Spectrum, 17, (1995),

205-210.

[22] Winker P and Fang KT., Application of Threshold Accepting to the

Evaluation of the Discrepancy of a Set of Points, SIAM J Numer Anal, 34(5),

(1997), 2028-2042.

[23] Cirasella J, Johnson DS, McGeoch LA and Zhang W., The asymmetric

traveling salesman problem: Algorithms, instance generators, and tests, In

Proc. 3rd ALENEX, 2153 of LNCS, Springer-Verlag, (2001), 32-59.

[24] Gambardella LC and Dorigo Μ., An Ant Colony System Hybridized with a

New Local Search for the Sequential Ordering Problem, INFORMS J

Comput, 12, (2000), 237-255.

[25] Roodbergen KJ and De Koster R., Routing orderpickers in a warehouse with

multiple cross aisles, in R. J. Graves, L. F. McGinnis, D. J. Medeiros, R. E.

Ward and M. R. Wilhelm (eds.), Progress in Material Handling Research:

1998 (Charlotte, NC: Material Handling Institute), (1998), 451 - 467.

[26] Vaughan TS and Petersen CG., The effect of warehouse cross aisles on order

picking efficiency, Int J Prod Res, 37, (1999), 881- 897.

156 Army Rapid Fielding by Optimizing Order Picking Routes

List of Figures

Figure 1: (a) A warehouse layout with 6 aisles and 4 cross aisles and a particular
 order location problem.
 (b)The graph that corresponds to the problem appearing on Figure 1 (a).

Ath. Nikolakopoulos 157

Figure 2: The flow diagram of the proposed algorithm

158 Army Rapid Fielding by Optimizing Order Picking Routes

Figure 3: The flow diagram of the Insertion Method

Ath. Nikolakopoulos 159

Figure 4: Average travelling distances (in lsls) produced by all tested methods

699,0 680,7
651,2

621,8 608,9

536,8 536,5

0

100

200

300

400

500

600

700

800

S-shape Aisle-by-ailse Largest gap Combined Combined+ Proposed
algorithm

Dantzig's
Cutting Plane

160 Army Rapid Fielding by Optimizing Order Picking Routes

Figure 5: Layout of the warehouse of a major Greek electrical retailer

Ath. Nikolakopoulos 161

List of Tables

162 Army Rapid Fielding by Optimizing Order Picking Routes

Ath. Nikolakopoulos 163

