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Army Rapid Fielding by Optimizing Order Picking
Routes in Warehouses with Parallel Aisles —
Implementation in a Real Case Study

Athanassios Nikolakopoulos®

Abstract

Army fielding is the process by which new equipment is distributed to soldiers
either at dispersed units at homeland or at theatre of operations (J.D. Carter,
SIEDS IEEE, 2007). Minimization of personnel, space and time resources are of
utmost importance for improving the supply chain management system and the
fielding of the necessary equipment at the theatre of operations. The equipment is
stored in central warehouses where frequent and large orders of miscellaneous
items are received each day. The items have to be picked from specific location
within the warehoused then consolidated and finally dispatched. The most
common type of warehouse is divided into parallel aisles between multistore
storage racks. The order picking personnel walks or drives along the aisles to pick
items from storage. They can change aisles at a number of cross aisles, which are
usually located at the front and the back of the warehouse, but in some cases

additional cross aisles are located at positions in between. In this paper, optimal
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routing of order pickers in parallel aisle warehouses is formulated as a Travelling
Salesman Problem (TSP). A Threshold Accepting meta-heuristic algorithm is
proposed next for the solution of the problem.

The proposed method is tested on a large set of randomly generated
instances and is compared favourably to other methods that can be found in the
literature. Moreover, the proposed method is implemented for the solution of a
number of instances obtained during the operation of a real warehouse. The
method produces better results compared to the method used in practice and it is

shown that the warehouse operations can be significantly benefited.

Keywords: Military Logistics, Order picking; Threshold accepting; Metaheuristic;
Routing; Warehouse Operations; Material Handling

1 Introduction

The seasonable replenishment of supplies and equipment during military
operations is of outmost importance for accomplishing the desired outcome. At the
heart of the military supply chain system lies the warehouse, where a multitude of
material handling operations are performed daily. There, the scope for
optimization is clear especially because time, space and personnel resources are
limited in times where military operations take place. The central and most
resource consuming activity of warehouse operations is the order-picking
operation. This paper considers order-picking in warehouses with parallel aisles,
which is the most common warehouse type used in practice. Order-picking is the
process of collecting the items included in an order, from specified storage
locations, and transporting them to the shipping area. In warehouses with parallel
aisles, order-pickers drive along the aisles and pick requested items from storage

locations. Possibilities for changing aisles are at the front and the back of the
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warehouse and at a number of cross aisles in between. According to de Koster et.
al. ([1]), these systems form the majority of picking systems in warehouses and
they are named low-level picker-to-parts systems.

The activity of order picking is responsible for up to 55% of the total
warehouse operating cost ([2]). The warehouse productivity can be improved
significantly by reducing the order-picking travel time, which is an increasing
function of the travel distance. Consequently, the travel distance is considered as a
primary objective in optimization of the picking route. Except from precedence
constraints imposed by the need for picking small and fragile items after heavy
and big-volume items, the choice of an order picking tour is not affected by other
picking activities.

The problem is identified as a special case of the Travelling Salesman
Problem (TSP) ([3]), where given a number of locations and the cost of transiting
from any location to any other location, the objective is to find the route that visits
each location exactly once, at minimum cost. There is no polynomial-time
algorithm for the solution of this NP-hard problem. There are however, dynamic
programming algorithms for the case of optimizing order-picking routes in
rectangular warehouses with two cross aisles ([4]) and three cross aisles ([5]), in
running time which are linear with respect to the number of aisles and the number
of pick locations. Extensions of these algorithms to more cross aisles are non-
trivial.

In real warehouse practice, a heuristic solution to the problem is most often
obtained by applying the Traversal or else S-shape heuristic strategy in which
aisles are served in order and if an aisle contains at least one pick the picker
crosses the entire length ending at the opposite side of the warehouse.

Hall ([6]) evaluated and compared heuristic strategies for routing a manual
picker through warehouses with two cross aisles. Performance comparisons
between optimal routing and heuristics for this type of warehouse are also given
by De Koster and Van der Poort ([7]) and Petersen ([8]). These methods were
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modified by Roodbergen and De Koster ([9]) and implemented for the solution of
order-picking routing problems in warehouses with more than two cross aisles.
Makris and Giakoumakis ([10]) presented a route improvement method using the
Lin and Kernighan’s ([11]) k-opt methodology. Daniels et al. ([12]) considered the
case where units of the same item can be stored in multiple locations so that order
picking requires choosing a subset of the locations that store an item to collect the
required quantity. Thus, the total travelled distance is affected both by the
assignment of inventory to an order and the sequence in which the locations have
to be visited. For the solution of the aforementioned problem, Daniels et al.
proposed a modified standard nearest neighbour ([13]) a modified shortest arc
([14]) heuristic and a Tabu search algorithm.

The present work implements a metaheuristic algorithm for obtaining good
results for practical problems in realistic computational times. The Floyd’s ([15])
shortest path algorithm is used for the calculation of the minimum distances
between all pairs of picking locations and a modified Threshold Accepting method
([16]), with an intensified Local Search procedure is proposed for the solution of
the problem of determining the best picking routes in warehouses with multiple
cross aisles.

The optimal picking routes produced by the cutting-plane method of Dantzig
et al. ([17]) are used as benchmarks for the performance analysis of the
metaheuristic method proposed in this paper and other heuristic methods found in
the literature. The proposed method is also tested by providing solutions to
instances that emerged during the operation of a real warehouse. The proposed
method compares preferably to the method followed in practice.

The rest of the paper is structured as follows: The next section defines the
problem. Section 3 is devoted to the description of the proposed metaheuristic
algorithm. Section 4 reports computational results on benchmark instances and on
instances from a case study. The paper ends with conclusions in Section 5.
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2 Warehouse Description

The layout of warehouses considered in this work, consists of a number of
back to back shelves and a number of parallel aisles between them. We assume
that the aisles can be traversed in both directions. Aisles communicate through
cross aisles at the front end, the rear end and probably through one or more cross
aisles in between. The aisles are narrow enough to permit simultaneous picking of
items from both sides of a pick aisle. Picked orders have to be deposited at the
depot, where the picker is supplied with an empty pallet or container for the
collection of the items of the next order. Without loss of generality, the depot is
located at the beginning of the first pick aisle.

An example of a warehouse layout with 6 aisles and 4 cross aisles is given in
Figure 1(a) where black boxes indicate the locations from where the items of an
order have to be picked. By associating each crossing of aisles and cross aisles
with a node, the set

U={u,,U,,..., U}

of the crossing nodes is constructed. Additionally, the depot and each point in the
aisles next to the picking locations are also represented by nodes, which formulate
the set

V={V,,V,, ...V, }
of nodes. Then a graph G(W, A) is defined, where
W= U UV ={w,,W,,...,w, }

is the set of all nodes and A the set of all undirected links in G, i.e. all arcs that
connect adjacent nodes. The equivalent graph representation of the warehouse
layout and order presented in Figure 1(a) is given in Figure 1(b), where the nodes
in set V are represented by thicker circles.

Given that the order picker has to collect a number of items in specified
quantities at known locations, the question is in what sequence the order picker

should visit these locations in order to minimize the total travelling distance. As
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already mentioned, the problem can be formulated as a variation of the TSP.
However, the route which is produced by the algorithm does not need to visit all
nodes in set U, in contrast to the nodes in the aisles next to the pick locations,
which are all visited. Moreover, the order-picking route may visit any node in sets
U and V more than once. Next section describes the proposed method for the

solution of the specified problem.

3 Description of the Proposed Method

3.1 Formulation of the TSP Problem

The TSP is formulated by constructing a symmetric matrix containing the
distances between all pairs of nodes in set V, i.e. pairs of nodes that represent
picking locations. The distance between any pair of nodes of the graph is
calculated as the shortest path connecting these nodes. To this end, the Floyd’s
algorithm ([15]) is utilized, which as showed by Dreyfus ([18]) is about 50%
faster than the application of the Dijkstra’s algorithm ([19]) when applied for
every pair of nodes in G.

The distance unit is defined under the assumption that all storage locations
have equal square-shaped base which is also equal to the square-area where two
crossing aisles overlap. The length of each side of the square is used as the
distance unit and will be called from now on as Isl. For any two adjacent nodes in
graph G, assignment of the distance is straightforward. For example in Figure 1(b)
the distance between the adjacent nodes v, and vs is 4 Isls and the distance
between the adjacent crossing nodes uj;g and uyz is 3 Isls. For all other pairs of
nodes, i.e. non-adjacent nodes distances are assigned by calculating the respective
shortest paths. The Floyd’s algorithm is used for this task, which consist of the

following three steps:
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Initialization: The m X m distance square matrix

a1 d@L2) .. dim)

o_|d@Y d@2) .. d@m)

diml) d(m,2) .. d(m,m)
where m = \W| is initialized so that d(i,i) =0 V i =1, ..., m, and d(i,j) = o
whenever arc (w;, wj) ¢ A.
Setk=0.
Stepl.k=k+1
Step 2. Forall i #kand d(i,k) # o
For all j=k and d(k,j) # oo
d(i.,j)= min[d(i,j), d(i,k) + d(k,j)] 1)

Step 3. If k = m, D is contains the shortest paths between all pairs of nodes in W.
Stop.

Else go to Step 1.

After the calculation of matrix D, the n X n distance square matrix

pt1y) pl@2) .. pn)

p(n.)) p(n2) .. p(nn)
where n = [\/| is easily obtained by keeping only the rows and columns of matrix

D that correspond to nodes in [\/| A TSP is now clearly formulated: Assuming a

complete undirected graph of [\/| vertices with distances given by matrix P, find

the Hamilton cycle of minimum length. This problem is solved using the meta-
heuristic algorithm that is described in the next subsection.

However, the sequence of nodes which is the result of the TSP does not
suffice to describe completely the optimal route for the order picker. It may be

possible that two subsequent nodes in the optimal solution are not actually
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adjacent in graph G. For these cases, a record containing the intermediate nodes
should be available. This is attained by the bookkeeping mechanism suggested by
Hu ([20]), according to which an additional mxm matrix

h(L,1) h@L2) .. h@m)

h(2,1) h(2,2) .. h(2,m)

h(m,1) h(m,2) .. h(m,m)
is constructed. The element h(i,j) is the node just before w; on the shortest path
from w; to w;, in graph G. Calculation of matrix H can be included in Floyd’s
algorithm, by initializing the matrix (setting h(i,j)) = w; i, j = 1, ..., m) and by
adding the following step right after equation (1):
If d(i,k) +d(k,i) < d(i,j), then h(i,j) = h(kj).

If two subsequent nodes, say u; and u; in the optimal solution of the TSP are
not actually adjacent in graph G, the solution is augmented by including the
realizable optimal path between the nodes. In particular, if w; and w; are the
respective nodes in graph G, the realizable shortest path can be obtained
immediately from matrix H as follows:

Wi, Wy, ..., We, Wp, Wa, W

where w, = h(i,j), W, = h(i,a), we="h (i,b), ..., wi = h (i,r).

3.2 Description of the algorithm

This subsection describes the meta-heuristic algorithm which was used to
solve the TSP that was formulated in subsection 3.1.
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3.2.1 The Threshold Accepting (TA) Method Combined with Gradually

Reinforced Local Search

Assuming that X~ is the set of all feasible solutions (sequences of nodes) of

the problem, TA starts with an element xoe X, which may be randomly chosen.

Then, the method proceeds in an iterative manner. In each iteration the algorithm
decides if the current solution x. will be replaced by a new one Xney. The new
candidate is chosen (by use of Local Search moves) as a small perturbation of the
current solution or-speaking in mathematical terms-in a given neighborhood of the
current solution x.. The value of the objective function is calculated for the new
candidate and the results are compared:

AF = T(Xnew) - f(Xc).

In the TA method, the new element Xne, is accepted as the current solution if
and only if Af < T for the current threshold value T. The proposed algorithm uses
an adaptable string of prospective thresholds named TS. The values of thresholds
in TS are sorted in an order of increasing values. For all the test cases that will be
presented in this work, TS is initially formulated as

{0,1,2,3,..., Tmax}
I.e. it contains zero and all the positive integer numbers up to the maximum
threshold Tpax . Although the maximum threshold value can be selected by trial
and error, experimentation with many test cases showed that a good choice is to

select Trax as half of the maximum distance between any two nodes i.e.
max[p(i, )] _
T . =—34——i=1..n j=1,..n A3)
2

The last threshold value in the string Tmax is considered as the current threshold T.
The decision of updating the value of the current threshold T is taken within an
iterative procedure, which starts by initializing the parameters Ls and Im. The
parameter Ls indicates the number of iterations devoted to Local Search and is

initially set to Ls,, which depends on the magnitude of the problem (in all test
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cases we used Ls,= n). The binary parameter Im indicates the improvement state,
that is whether there has been an improvement on the objective function value and
is initially set to 0. When the objective function value is improved (Af < 0), the
value of Im becomes 1 and the current threshold T (the last element of TS) is set to
0, meaning that only improvements in the objective function are accepted. The
parameter Im remains equal to 1 for the next Ls = Ls « a5 iterations, where a;s
(1, 1.5]. This way, the algorithm is forced to conduct local search when an
improvement in the value of the objective function occurs. Furthermore, as the
number of improvements increases, local search is becoming more insistent, since
Ls is continuously increasing. If 0< Af < T, then the last and largest value in TS
is replaced by Af and the values in the string are sorted in an ascending order. If Af
> T the algorithm proceeds to the next move and all the parameters remain to their
current values. The algorithm terminates when all the elements of TS become
equal to 0. Since this usually requires a large number of iterations, practically we
terminate the algorithm at an earlier stage, which is defined by a maximum
number of iterations. The flow diagram of the algorithm is shown in Figure 2.

The above method initializes a group of potential thresholds and changes
the current threshold, based on the progress of the algorithm. Thus the functional
features of the algorithm are problem-independent, which is a great advantage
compared to other threshold accepting algorithms ([16], [21] and [22]).

3.2.2 Representation of the Solution and the Insertion Method

We consider as current solution a vector xe X, where X is the set of all

possible permutations of the nodes. In a specific permutation X, the position of
each node denotes the order in which it will be inserted in the schedule. Thus, for
the rest of the paper, the name Insertion Order will be used for the sequence X,
while the corresponding schedule will be denoted by S. This way the searching

operations of the algorithm are imposed on the unscheduled string x, x in turn is
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translated into a schedule S and the solution x is surveyed right after the value of
the respective cost has been calculated.

Let us assume an Insertion Order X = (vy,...,Vn), Where vy isa node in x and n
is the total number of nodes. The nodes of x will be inserted one by one into the
current partial path, until they formulate the final schedule S = (s1, ..., Sn).
According to the insertion scheme, the incomplete schedule S” = (sy,..., Sx) Where
the first k nodes (va, ..., vi) of the Insertion Order vector x have been positioned, is
augmented by placing the node v| = v+1 between the nodes s, and s;+1 in S that

correspond to the minimum value of

Ri =p(s,vi)+ PV Si1) — P(S; Siap) (4)

r=arg miin[p(si,v|)+ JUAEW p(si’Si+1)]! i=1..,k-1 ®)

where p(i, j) is the distance or processing time from node i to node j and arg min
stands for the argument of the minimum, i.e. the value of i for which the value of
formula (5) attains its minimum value. The above procedure is repeated until k =
n, where the schedule is complete and feasible. Figure 3 presents the flow diagram
of the Insertion Method described above. To follow the iterative procedure of the
TA method, the algorithm needs to start with a feasible initial solution. The trivial

sequence (i, Vo, ..., Vp) is utilized for all implementations.

3.2.3 Local Search Moves

The proposed algorithm is based on an Insertion Order x. As it was
discussed earlier, the actual schedule S results from x, by the use of node insertion
method. Local Search moves do not intervene on the schedule S, but on the
Insertion Order x. The new Insertion Order x " is located in the neighborhood of x.
However the new offspring schedule S is not always a neighbor of S. This occurs

because the insertion method leads potentially to considerably altered schedules.
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We utilized six different types of Local Search moves. Given a primary Insertion
Order x = (v, ..., Vp), the six moves are described as follows:

1) Choose randomly two nodes from x, say vk and v; (V, Vi e {V1,...,Vn}and vk = V)
and exchange their positions in the Insertion Order string. If v precedes v then x
= (Vyeees Ve, ViV dy - VIe1, VIV, ..., Vn) DECOMES X7 = (V1,0 Vi1, ViVke1yeeey ViI-1, Vi
Vi41yeeesVn).

2) Choose randomly two nodes from x, say vk and v; (vk, Vi ¢ {vi,...,Vn}and vg =
v|) and invert the sequence of nodes between them including vk and v;. Using this
move X = (V1, ..., Vi1 VioVk+1,Vk+2y - V1-2, Vi1, Vi, Viet,...,Vn) becomes X = (vy,..., Vi
VLV, V12, Vi 2, Vit 1, Vi Vit ee-5Vin).

3) Choose randomly two nodes from x, say vk and v (vk, Vi ¢ {Vvi,...,Vn}and vg =
v;) and move the sequence of nodes (VkVk+1,..., Vi-1,v)) after another randomly
chosen node, say Vme {Vi1,....Va}/{ Vi,Vk+1,-.., Vi-1,Vi}. For example, if v, precedes v,
and vp, precedes vi then X = (Vi,...,Vm\Vm+1, Vi1, Vi Ve 1s o VI, VI Vi, oo, Vi)
becomes X" = (V1,...,Vm,Vi,Vk+1, -+ VI-1,VIy Vim+1y -+, Vk-1,Vi+1, .- Vn).

4) Choose only one node, say v ¢ {vi,...,Vn} and transfer it to the first position in
the Insertion Order string. So X = (V1,...,Vi-1,VI,Vi+1, ...,Vn) becomes X" = (Vj,Vy ... Vi
1,VI+1,...Vn).

5) Divide the Insertion Order x into four, not necessarily of the same size,
sequential groups of nodes, say X = (gi, Qi+1, Gn, On+1). Altering the order of the
groups, the new sequence that is produced is: X = (gi, 9n+1, Gn, Ji+1). This operator
can be thought of as a variation of operator (3) which also divides Insertion Order
X into four segments, but the new sequence that is produced is X = (i, On, Gi+1,
Oh+1)-

6) Divide the Insertion Order x into six, not necessarily of the same size,
sequential groups of nodes, say X = (@i, 9 i+1, 9j, 9 j+1, On, Gn+1). Altering the order
of the groups, the new sequence that is produced is X = (@i, 9 j+1, On, Gi+1, 9, O h+1)
or X" = (0i, 9n 9j+1.9i+1, 9, 9 n+1) With equal probability.
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Remark 1: Moves 5 and 6 are similar to the ones used by Cirasella et al. [23] and
Gambardella and Dorigo [24] and originate from the k-exchange moves when k is
equal to 2 and 3 respectively.

Remark 2: At each iteration of the algorithm, only one of the six moves is selected
to be applied to the current string X in order to produce the new string Xpew. The

probability of selection is the same for all six moves.

4 Computational Results

4.1 Comparative Results for Randomly Generated Instances

The MatLab programming language was used for implementing the
algorithm and a 3.2 MHz Pentium 4 processor was used for all computational
experiments.

For our simulation experiments we assume warehouses with 18 aisles. We
consider 2, 3, 4 and 5 cross aisles, and in the resulting layouts the aisles contain
50, 48, 48 and 44 stock locations respectively on either side of every aisle. These
values are representative of small warehouses or zones ([1]) that comprise large
order picking areas and are assigned to specific order pickers. Typical numbers of
items requested in a single order for most low-level picker-to-parts systems are 20,
50 and 100 items/order. Combinations of the aforementioned values sum up to 12
configurations. For each configuration, we generate 10 random orders thus
producing 120 instances in total. We assume a random storage assignment where
storage locations are selected randomly among all eligible empty locations with
equal probability [8], which results to a uniform and independent distribution of
the locations.

The optimal solutions of the corresponding TSPs were obtained using the
cutting plane algorithm introduced by Dantzig ([17]). It should be noted however,
that this exact algorithm has unpredictable large computational times, which is an
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undesirable property for practical implementations. Some problems with up to 50
nodes may require more than 15 hours in a typical PC configuration running
Matlab depending on the structure of the distance matrix of the nodes. The
computations are even more time consuming for problems with 50 to 100 nodes.

All 120 instances were also solved using five heuristics and the proposed
method. The five heuristics: S-shape, Largest gap, Aisle-by-Aisle, Combined and
Combined+, are described in detail by Roodbergen and De Koster ([9]) as
extensions of the heuristic routing methods for warehouses with two cross aisles
developed by Roodbergen and De Koster ([25]) and the combination of heuristics
and dynamic programming algorithm developed by Vaughan and Petersen ([26]).
Results for instances with 2 and 3 cross aisles are contained in Table 1, while
Table 2 contains results for instances with 4 and 5 cross aisles. The first column of
Tables 1 and 2 contains the name of the instances. Columns 2 — 5 contain the
number of aisles, cross aisles, stock locations on either side of an aisle and the
number of pick locations for each instance. Columns 6 — 12 contain the resulting
total traveled distance in Isls by all heuristic methods, the Dantzig’s cutting plane
method and the proposed metaheuristic method. Computational times are omitted
because all algorithms (except the cutting plane method) produce their results
within milliseconds. For all instances the proposed method outperforms all other
heuristic methods. For 107 out of 120 instances the proposed method reaches the
optimal value of the total traveled distance. For the remaining 13 instance the
optimality gap is practically negligible as it varies from 0.14% (instance
HundredOrd36) to 0.7% (instance HundredOrd34).

Average results of Tables 1 and 2 are reported in Table 3. The first column
contains the name of the groups of instances of the same configuration (number of
aisles, cross aisles, locations per aisle and picking locations) where x = 0, ..., 9.
Figure 4 gives a visual representation of the results contained in the last row of
Table 3 and illustrates the efficiency of the proposed algorithm. It should be

particularly emphasized that the average of the solutions obtained by the proposed
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algorithm is only 0.03% above the average over the optimal solutions, while the

best next heuristic, Combined + shows a 13,7% positive gap.

4.2 Case Study

The proposed method was also tested on data from real warehouse
management problems arising in a warehouse of a major electrical retailer in
Greece. The warehouse consists of 30 aisles, 2 cross aisles (at the front and rear
end of the warehouse) and 45 storage locations on either side of every aisle.
Figure 5 shows the layout of the warehouse. The total storage area is 4200 m? and
it is divided into two areas of 2100 m* AREA 1 and AREA 2. This partition of the
storage area is due to safety reasons against fire, according to the relative
legislation (P.D. 71/88 art. 11.3), which defines that the maximum section area
should not exceed 2500 m?. Each one of these two areas has 15 aisles: A, B, C, ...,
Q. This partition poses limits on the circulation of the order pickers. If a picker has
to pass from one area to the other, this can only be done at the front end of aisle Q
(storage locations 45) and not at the rear end because areas 1 and 2 are isolated.
The warehouse uses VNA (Very Narrow Aisle) vehicles, thus the order pickers
can pick items from both sides of a pick aisle simultaneously. The depot is located
at the beginning of aisle A (storage location 45) of AREA 1.

The practice followed so far for picking the items of an order is even simpler
than the S-shape method ([9]): All storage locations have a serial number. When
an order is placed the items of the order are picked in order of the serial number of
the location they are stored. This leads to excessively large total travelled
distances.

The problem was solved by the proposed method by setting the distances
between the nodes crossing at the end of aisles 15 and 16 (AREA 1, aisle Q and
AREA 2, aisle Q), to a fairly large positive number.
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The problem can be solved to optimality by using the dynamic programming
method of Ratliff and Rosenthal ([4]) and setting the length of arc configurations
(1), (i) and (iv) in [4] (p. 515) for crossover between aisles 15 and 16 (aisles:
AREA 1, aisle Q and AREA 2, aisle Q), equal to a fairly large positive number.

The proposed method is tested on five orders of 67 to 102 items/order and
the results are compared to those from the method used in practice and the optimal
results produced by the method of Ratliff and Rosenthal with the modification
introduced earlier. The results are reported in Table 4. The proposed method
always finds the optimal solution and produces routes with 16.7 % to 22.8 %

shorter total distances compared to the method used in practice.

5 Conclusions

The present paper considers the problem of optimizing order picking routes
in low-level picker-to-parts systems of warehouses that contain parallel aisles,
while changing of aisles is allowed through two or more cross aisles. First, the
problem is identified and formulated as a TSP problem for any warehouse with the
features mentioned before and any order distribution within the storage area. This
is achieved by implementing a dynamic programming algorithm for the
calculation of the shortest path between any pair of nodes in a connected graph.
Then, a metaheuristic algorithm based on the framework of the Threshold
Accepting method is proposed for the solution of the formulated problem. An
intensive neighborhood (Local) search procedure is incorporated in the body of
the algorithm and a sorted list of Thresholds is maintained and updated throughout
the entire iterative procedure. The former facilitates the exploration of the most
promising areas of the search space, while the latter reduces the number of user
defined parameters of the algorithm to just the length of the threshold list, thus

making tuning of the algorithm much easier. Computational results of the
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proposed method have been compared favorably to a number of algorithms found
in the literature, which are specially devised for the solution of the problem at
hand. Finally the proposed method has been tested on the solution of a number of
instances obtained during the operation of a real warehouse. The method produces
better results compared to the method used in practice and improves significantly
the warehouse operations.

Future research could encompass dynamic storage assignment, simultaneous
order picking and replenishment route optimization, and also inbound receipt and
outbound delivery of goods in a complete framework for the maximum utilization

of labour and equipment via the practice of task interleaving.
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Figure 1: (a) A warehouse layout with 6 aisles and 4 cross aisles and a particular
order location problem.
(b)The graph that corresponds to the problem appearing on Figure 1 (a).
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Create Threshold string TS

Initialize: x. = x, € X" with feasible schedule
S,
and local search iterations Ls = Ls,

Data of the Produce new string x,.., by applying Local
problem Search moves to x,

Produce the corresponding Schedule S, using
insertion method

Compute

M :ﬂxnewJ 'ﬂx:J

3

=17
Im=11 YES .l TS(end) =0

NO *

3

Af < Tsm NO

S, is the best
schedule found

YES

Im =1 for next
Ls:= Ls agilerations,
then fm = 0

YES

TS{end) =N

Sort TS

Figure 2: The flow diagram of the proposed algorithm



158 Army Rapid Fielding by Optimizing Order Picking Routes

Insertion Order string X = {vy, ..., V)
produced in the main body of the algorithm

Initialize k=2

Form the initial uncompleted schedule
8= (Sl, Sz) where 1=V and 5=V

3

Vi = Vel

e PUs )+ PO 8,0) = U8, 83) Jsi = e k]

Insert new node v;in the incomplete
schedule after node s, that
corresponds to the minimum R; value

NO ;
8= (Sb oo Sy Vi Sipily Sic)
k=k+1
The schedule is completed
k=nt YES g=§’

Figure 3: The flow diagram of the Insertion Method
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List of Tables
‘Warehouse and order features Method
No. . . . ;
. . Mo, Mo of Mo, of . Aisle Dantzig's
Instances of _Of locations  picking 3 Largest by Combined  Combined+ Cutlil;gg Eiopeecd
. Cross ) . shape eap . algorithm
aisles aisles  PEF aisle  locations aisle Plane

TwentyCrd10 18 2 50 20 659 479 563 569 563 466 466
TwentyOrd11 18 2 50 20 768 532 572 618 572 512 512
Twenty Ord12 18 2 S0 20 764 605 646G 646 646G 570 570
TwentyCrd13 18 2 50 20 621 461 477 477 477 427 427
TwentyCrdl4 18 2 50 20 668 445 532 542 532 409 409
Twenty Ord15 18 2 50 20 739 300 349 549 549 458 458
Twenty Ord16 18 2 50 20 568 514 532 532 532 492 492
TwentyOrdl7 18 2 50 20 Gl 445 557 557 557 429 429
Twenty Crd1 8 18 2 50 20 647 524 557 T 1o 557 471 471
TwentyOrd19 18 i 50 20 G629 453 507 523 507 435 435
Twenty Ord20 18 3 48 20 450 311 437 is2 352 285 285
Twenty Ord21 18 3 48 20 469 370 401 199 3173 204 294
Twenty Ord22 18 3 18 20 496 433 454 426 377 335 335
Twenty Ord23 18 3 48 20 400 359 373 330 330 230 280
Twenty Crd24 18 3 48 20 452 361 470 398 168 315 315
Twenty Crd25 18 3 48 20 425 421 432 87 370 356 356
Twenty Ord26 18 3 48 20 439 359 355 403 365 333 333
Twenty Ord27 18 3 48 20 438 337 416 310 208 297 207
Twenty Ord28 18 3 48 20 431 344 388 347 109 276 276
Twenty Ord29 18 3 48 20 382 377 451 358 131 323 323
FiftyOrd10 18 2 50 50 959 936 897 897 897 794 794
FiftyOrd11 18 2 50 50 937 840 801 801 801 769 769
FiflyOrd12 18 2 50 50 965 880 841 841 841 763 763
FiftyOrd13 18 2 50 50 947 239 845 877 845 734 734
FiftyOrd14 18 2 50 50 961 796 BO5 903 895 753 753
FiflyOrd1 5 18 2 50 50 965 902 847 847 847 803 803
FiflyOrd16 18 2 50 50 968 941 886 886 886 873 873
FiftyOrd17 18 2 50 50 968 839 872 872 872 742 742
FiftyOrd18 18 2 50 50 859 791 771 771 771 652 652
FiflyOrd19 18 2 50 50 965 57 853 853 853 660 660
FiftyOrd20 18 3 18 50 827 632 793 653 612 537 537
FiftyOrd21 18 3 48 50 731 641 645 651 635 548 548
FiftyOrd22 18 3 48 50 824 674 692 676 647 557 5587
FiflyOrd23 18 3 48 S0 726 501 745 626 626 521 521
FiftyOrd24 18 3 18 50 743 584 779 G641 633 530 530
FiftyOrd25 18 3 48 50 692 673 724 642 642 603 605
Fifly Ord26 18 3 48 50 749 650 711 663 649 589 589
Fifty Ord27 18 3 48 50 781 625 723 663 657 569 569
FiftyOrd2g 18 3 48 50 688 643 693 622 608 543 543
FiflyOrd29 18 3 48 50 740 660 801 644 640 574 574
HundredOrdl0 18 2 50 100 968 1177 968 968 968 944 044
HundredOrdl 1 18 2 50 100 968 1144 968 968 968 906 906
HundredOrd12 18 2 50 1ivy 968 1229 968 968 968 938 938
HundredOrd13 18 2 50 100 968 1175 968 968 968 961 961
HundredOrdl4 18 2 50 100 968 1195 968 968 968 268 D68
HundredOrdls 18 2 50 1ivy 968 1215 968 968 968 951 951
HundredOrd16 18 2 50 100 968 1252 962 962 962 951 8951
HundredOrdl 7 18 2 50 100 968 1162 942 942 942 925 925
HundredOrdls 18 2 50 100 968 1184 968 968 968 968 968
HundredOrd19 18 2 50 100 968 1051 942 942 942 872 872
HundredOrd20 18 3 48 100 932 929 930 B9G 390 790 790
HundredOrd2 1 18 3 48 100 932 962 932 832 832 805 805
HundredOrd22 18 3 48 100 923 922 905 873 842 737 737
HundredOrd23 18 3 48 100 919 935 201 855 853 770 770
HundredOrd24 18 3 48 100 932 963 932 296 892 794 794
HundredOrd25 18 3 48 100 929 955 901 869 869 826 826
HundredOrd26 18 3 48 100 a19 G984 a11 863 863 842 842
HundredOrd27 18 3 48 100 B84 961 876 818 3218 779 779
HundredOrd2§ 18 3 48 100 932 927 BRO0 832 832 777 TiT
HundredOrd29 18 3 48 100 884 882 B95 790 T8 739 739

Table 1. Computational results in /s/s for instances in warehouses with two and three cross

aisles
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‘Warchouse and order features Method
5 Na, No. of Mao. of Aisle Dantzig's
Instances N.u' of of locations  picking S Largest by  Combined Combined+  Cutting Pwpt_’bbd
aisles  cross e = | shape gap kA — algorithm
aisles  P¥T aisle  localions ailse Plane
TwentyOrd30 18 4 48 20 406 345 420 358 334 296 296
TwentyOrd31 18 4 48 20 396 404 356 344 307 267 267
TwentyOrd32 18 4 48 20 453 390 403 405 335 276 276
TwentyOrd33 18 4 48 20 351 310 349 321 298 249 249
TwentyOrd34 18 4 48 20 410 363 456 316 318 288 288
TwentyOrd35 18 4 48 20 in 43 337 313 303 254 254
TwentyOrd36 18 4 48 20 395 356 317 325 311 273 273
TwentyOrd37 18 4 48 20 385 338 410 37 305 281 281
Twenty Ord3§ 18 4 48 20 366 325 374 322 288 247 247
TwentyOrd39 18 4 48 20 s 306 392 266 259 253 253
TwentyOrd40) 18 5 44 20 314 M1 419 278 267 246 246
TwentyOrdd 1 18 5 44 20 344 343 324 310 266 216 216
TwentyOrd42 18 5 iE| 20 358 362 31 298 274 232 232
TwentyOrd43 18 5 44 20 306 310 313 270 243 218 218
TwentyOrdd4 18 5 44 20 340 322 428 296 271 252 252
TwentyOrdd 5 18 5 a4 20 323 331 307 307 267 218 218
TwentyOrdd6 18 5 a4 20 336 317 270 302 265 230 230
TwentyOrd47 18 ' 44 20 338 250 41 298 269 246 246
TwentyOrd1 8 18 5 44 20 304 2498 342 268 222 212 212
Twenty Ordd? 13 5 44 20 199 280 360 273 234 3 3
FiftyOrd30 18 4 48 50 766 645 780 626 626 526 526
FiftyOrd31 18 4 18 50 664 609 615 606 606 498 498
FiftyOrd32 18 4 48 50 708 aid 665 606 606 497 497
FiftyOrd33 18 4 48 50 655 532 714 571 571 441 441
FiftyOnd34 18 4 48 50 744 626 685 612 642 506 506
FiftyOnd35 18 4 48 50 721 570 620 595 595 168 168
FiftyOrd36 18 4 4% 50 680 615 608 578 578 472 472
FiftyOrd37 18 4 48 50 664 541 657 550 550 439 439
FiflyOrd33 13 4 48 50 696 564 756 580 580 450 450
FiftyOrd39 18 4 48 50 749 543 765 615 615 465 465
FiftyOrd40 18 5 44 50 611 529 723 531 472 39 39
FiftyOrda1 18 5 44 50 582 556 575 512 500 419 419
FiftyOn2 18 5 44 50 602 525 599 516 500 389 389
FiftyOrd43 18 5 44 50 550 505 651 480 461 384 384
FiftyOrd44 18 5 44 50 544 487 698 452 440 395 395
FiflyOrd4 5 18 5 4 50 605 545 617 487 468 401 401
FiftyOrd46 18 5 44 50 558 532 565 472 453 381 381
FiftyOrd47 18 5 A 50 551 531 613 459 442 380 380
FiftyOrd48 13 5 44 50 512 508 G4 458 448 383 383
FiftyOrd49 18 5 44 50 528 508 6493 448 435 387 388
HundredOrd30 18 4 48 100 972 836 910 834 817 704 704
HundredOrd31 18 4 48 100 932 886 894 816 810 718 723
HundredOred32 18 4 48 100 910 868 883 842 827 707 709
HundredOre33 18 4 48 100 833 779 855 735 727 637 640
HundredOrd34 18 4 18 100 990 843 915 860 853 702 707
HundredOrd35 18 4 48 100 952 859 873 862 836 707 il
THundredOrd3a 18 4 48 100 951 826 860 863 851 716 7
HundredOrd37 18 4 48 100 886 865 862 818 810 692 692
HundredOrd38 18 4 18 100 a1l 791 870 795 795 662 665
HundredOrd39 18 4 48 100 835 802 864 765 738 634 634
HundredOrd40 18 5 A4 100 830 716 826 706 693 570 575
HundredOrdi1 18 5 44 100 793 750 815 11 705 601 604
HundredOrdi2 18 5 44 100 808 702 8l6 24 710 554 555
HundredOrdd3 18 5 iE| 100 783 738 790 681 681 550 551
HundredOrd44 18 5 44 100 848 751 844 740 707 596 599
HundredOrdd 3 18 5 44 100 799 733 T96 721 721 586 et
HundredOrdd 18 5 a4 100 818 731 785 684 667 576 576
HundredOrdd 7 18 5 a4 100 791 734 792 697 677 577 577
HundredOrdi® 18 5 44 100 765 T08 791 651 651 565 566
HundredOrdd9 18 5 44 100 716 710 805 636 (30 552 552

Table 2. Computational results in /s/s for instances in warehouses with four and five cross
aisles
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163

Warchouse and order features Method
Group of No :‘; No. of No. of g TR Adsle Danlzig's o
Instances of locations  picking 5 UGS by  Combined Combined+  Cutting I
) CIOSs . X shape gap i = algorithm
aisles .7 peraisle  locations ailse Plane
aisles
TwentyOrd1x 18 2 50 20 0H084 4958 3492 557.0 549.2 406,9 460,9
TwentyOrd2x 18 3 48 20 4382 3712 4177 3710 M3 3094 3094
FiftyOrdlx 18 2 50 50 0404 8521  B508 8548 8508 7543 7543
FiftyOrd2x 18 2 48 50 750,1 637.3 730,60 648,1 6349 557.3 557.3
HundredOrd1x 18 2 50 100 9680 11784 9622 962,2 9622 9384 9384
HundredOrd2x 18 3 48 100 0186 9420 9063 8534 8489 7859 7859
TwentyOrd3x 18 4 48 20 3849 3480 3814 337 3058 2684 2684
TwentyOrdix 18 ] a4 20 3262 3194 3536 2900 2578 2293 2293
FiftyOrd3x 18 4 48 50 74T 5840 6955 596.9 596.9 476,2 470,2
FiftyOrd4x 18 5 44 50 5653 5226 6368 4815 4619 3910 391,1
HundredOrd3x 18 4 48 100 9192 8355 8784 819,2 8064 687.9 690,2
HundredOrd4x 18 5 44 100 7951 7273 8060 695, 1 684,2 572,7 574,3
AVERAGE 699 651,2 6807 621,8 608,9 536,5 536,8
Table 3. Average computational results of Tables 1 and 2.
Warehouse and order features Method
Modified %
Instances No.of  No. No. .
nstanees No. of Ho. of ¢ .Of .0 .Of The method used  Ratliff and  Proposed | improvement
) cross  locations  picking : : :
aisles . . . in practice Raosenthal — algorithm
aisles  peraisle locations ;
algorithm
1301 30 2 45 89 953 743 743 22.0%
2277 30 2 45 98 1032 860 360 16,7%
3503 3 2 45 90 1320 1074 1074 18.6%
4081 30 2 45 102 1417 1094 1094 22.8%
5552 30 2 45 67 997 825 825 17.3%
AVERAGE 1144 919,2 919,2 19.6%

Table 4. Computational results for five real order instances of a Greek electrical retailer warchouse



