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Abstract 

Army fielding is the process by which new equipment is distributed to soldiers 

either at dispersed units at homeland or at theatre of operations (J.D. Carter, 

SIEDS IEEE, 2007). Minimization of personnel, space and time resources are of 

utmost importance for improving the supply chain management system and the 

fielding of the necessary equipment at the theatre of operations. The equipment is 

stored in central warehouses where frequent and large orders of miscellaneous 

items are received each day. The items have to be picked from specific location 

within the warehoused then consolidated and finally dispatched. The most 

common type of warehouse is divided into parallel aisles between multistore 

storage racks. The order picking personnel walks or drives along the aisles to pick 

items from storage. They can change aisles at a number of cross aisles, which are 

usually located at the front and the back of the warehouse, but in some cases 

additional cross aisles are located at positions in between. In this paper, optimal 
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routing of order pickers in parallel aisle warehouses is formulated as a Travelling 

Salesman Problem (TSP). A Threshold Accepting meta-heuristic algorithm is 

proposed next for the solution of the problem. 

The proposed method is tested on a large set of randomly generated 

instances and is compared favourably to other methods that can be found in the 

literature. Moreover, the proposed method is implemented for the solution of a 

number of instances obtained during the operation of a real warehouse. The 

method produces better results compared to the method used in practice and it is 

shown that the warehouse operations can be significantly benefited. 

 

Keywords: Military Logistics, Order picking; Threshold accepting; Metaheuristic; 

Routing; Warehouse Operations; Material Handling 

 

 

1 Introduction  
The seasonable replenishment of supplies and equipment during military 

operations is of outmost importance for accomplishing the desired outcome. At the 

heart of the military supply chain system lies the warehouse, where a multitude of 

material handling operations are performed daily. There, the scope for 

optimization is clear especially because time, space and personnel resources are 

limited in times where military operations take place. The central and most 

resource consuming activity of warehouse operations is the order-picking 

operation. This paper considers order-picking in warehouses with parallel aisles, 

which is the most common warehouse type used in practice. Order-picking is the 

process of collecting the items included in an order, from specified storage 

locations, and transporting them to the shipping area. In warehouses with parallel 

aisles, order-pickers drive along the aisles and pick requested items from storage 

locations. Possibilities for changing aisles are at the front and the back of the 
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warehouse and at a number of cross aisles in between. According to de Koster et. 

al. ([1]), these systems form the majority of picking systems in warehouses and 

they are named low-level picker-to-parts systems.  

The activity of order picking is responsible for up to 55% of the total 

warehouse operating cost ([2]). The warehouse productivity can be improved 

significantly by reducing the order-picking travel time, which is an increasing 

function of the travel distance. Consequently, the travel distance is considered as a 

primary objective in optimization of the picking route. Except from precedence 

constraints imposed by the need for picking small and fragile items after heavy 

and big-volume items, the choice of an order picking tour is not affected by other 

picking activities. 

The problem is identified as a special case of the Travelling Salesman 

Problem (TSP) ([3]), where given a number of locations and the cost of transiting 

from any location to any other location, the objective is to find the route that visits 

each location exactly once, at minimum cost. There is no polynomial-time 

algorithm for the solution of this NP-hard problem. There are however, dynamic 

programming algorithms for the case of optimizing order-picking routes in 

rectangular warehouses with two cross aisles ([4]) and three cross aisles ([5]), in 

running time which are linear with respect to the number of aisles and the number 

of pick locations. Extensions of these algorithms to more cross aisles are non-

trivial. 

In real warehouse practice, a heuristic solution to the problem is most often 

obtained by applying the Traversal or else S-shape heuristic strategy in which 

aisles are served in order and if an aisle contains at least one pick the picker 

crosses the entire length ending at the opposite side of the warehouse. 

Hall ([6]) evaluated and compared heuristic strategies for routing a manual 

picker through warehouses with two cross aisles. Performance comparisons 

between optimal routing and heuristics for this type of warehouse are also given 

by De Koster and Van der Poort ([7]) and Petersen ([8]). These methods were 
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modified by Roodbergen and De Koster ([9]) and implemented for the solution of 

order-picking routing problems in warehouses with more than two cross aisles. 

Makris and Giakoumakis ([10]) presented a route improvement method using the 

Lin and Kernighan’s ([11]) k-opt methodology. Daniels et al. ([12]) considered the 

case where units of the same item can be stored in multiple locations so that order 

picking requires choosing a subset of the locations that store an item to collect the 

required quantity. Thus, the total travelled distance is affected both by the 

assignment of inventory to an order and the sequence in which the locations have 

to be visited. For the solution of the aforementioned problem, Daniels et al. 

proposed a modified standard nearest neighbour ([13]) a modified shortest arc 

([14]) heuristic and a Tabu search algorithm. 

The present work implements a metaheuristic algorithm for obtaining good 

results for practical problems in realistic computational times. The Floyd’s ([15]) 

shortest path algorithm is used for the calculation of the minimum distances 

between all pairs of picking locations and a modified Threshold Accepting method 

([16]), with an intensified Local  Search procedure is proposed for the solution of 

the problem of determining the best picking routes in warehouses with multiple 

cross aisles.  

The optimal picking routes produced by the cutting-plane method of Dantzig 

et al. ([17]) are used as benchmarks for the performance analysis of the 

metaheuristic method proposed in this paper and other heuristic methods found in 

the literature. The proposed method is also tested by providing solutions to 

instances that emerged during the operation of a real warehouse. The proposed 

method compares preferably to the method followed in practice. 

The rest of the paper is structured as follows: The next section defines the 

problem. Section 3 is devoted to the description of the proposed metaheuristic 

algorithm. Section 4 reports computational results on benchmark instances and on 

instances from a case study. The paper ends with conclusions in Section 5. 
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2 Warehouse Description 

The layout of warehouses considered in this work, consists of a number of 

back to back shelves and a number of parallel aisles between them. We assume 

that the aisles can be traversed in both directions. Aisles communicate through 

cross aisles at the front end, the rear end and probably through one or more cross 

aisles in between. The aisles are narrow enough to permit simultaneous picking of 

items from both sides of a pick aisle. Picked orders have to be deposited at the 

depot, where the picker is supplied with an empty pallet or container for the 

collection of the items of the next order. Without loss of generality, the depot is 

located at the beginning of the first pick aisle. 

 An example of a warehouse layout with 6 aisles and 4 cross aisles is given in 

Figure 1(a) where black boxes indicate the locations from where the items of an 

order have to be picked. By associating each crossing of aisles and cross aisles 

with a node, the set  

U={ }1 2, ,..., lu u u  

of the crossing nodes is constructed. Additionally, the depot and each point in the 

aisles next to the picking locations are also represented by nodes, which formulate 

the set  

V={ }1 2, ,..., nv v v  

of nodes. Then a graph G(W, A) is defined, where  

W= ∪U V ={ }1 2, ,..., mw w w  

is the set of all nodes and A the set of all undirected links in G, i.e. all arcs that 

connect adjacent nodes. The equivalent graph representation of the warehouse 

layout and order presented in Figure 1(a) is given in Figure 1(b), where the nodes 

in set V are represented by thicker circles. 

 Given that the order picker has to collect a number of items in specified 

quantities at known locations, the question is in what sequence the order picker 

should visit these locations in order to minimize the total travelling distance. As 
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already mentioned, the problem can be formulated as a variation of the TSP. 

However, the route which is produced by the algorithm does not need to visit all 

nodes in set U, in contrast to the nodes in the aisles next to the pick locations, 

which are all visited. Moreover, the order-picking route may visit any node in sets 

U and V more than once. Next section describes the proposed method for the 

solution of the specified problem. 

 

 

3 Description of the Proposed Method 

3.1 Formulation of the TSP Problem 

 The TSP is formulated by constructing a symmetric matrix containing the 

distances between all pairs of nodes in set V, i.e. pairs of nodes that represent 

picking locations. The distance between any pair of nodes of the graph is 

calculated as the shortest path connecting these nodes. To this end, the Floyd’s 

algorithm ([15]) is utilized, which as showed by Dreyfus ([18]) is about 50% 

faster than the application of the Dijkstra’s algorithm ([19]) when applied for 

every pair of nodes in G.  

 The distance unit is defined under the assumption that all storage locations 

have equal square-shaped base which is also equal to the square-area where two 

crossing aisles overlap. The length of each side of the square is used as the 

distance unit and will be called from now on as lsl. For any two adjacent nodes in 

graph G, assignment of the distance is straightforward. For example in Figure 1(b) 

the distance between the adjacent nodes v4 and v5 is 4 lsls and the distance 

between the adjacent crossing nodes u16 and u23 is 3 lsls. For all other pairs of 

nodes, i.e. non-adjacent nodes distances are assigned by calculating the respective 

shortest paths. The Floyd’s algorithm is used for this task, which consist of the 

following three steps: 
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Initialization: The 𝑚 × 𝑚 distance square matrix 

(1,1) (1,2) ... (1, )
(2,1) (2,2) ... (2, )

( ,1) ( ,2) ... ( , )

d d d m
d d d m

d m d m d m m

 
 
 =
 
 
 

D
   

, 

where m = W   is initialized so that d(i,i) = 0 ∀  i = 1, …, m, and d(i,j) = ∞

whenever arc (wi, wj) ∉ A .  

Set k = 0. 

Step 1. k = k + 1 

Step 2. For all i ≠ k and d(i,k) ≠  ∞   

            For all j ≠ k and d(k,j)≠  ∞  

   d(i,j)= min[d(i,j), d(i,k) + d(k,j)]                                  (1) 

Step 3. If k = m, D is contains the shortest paths between all pairs of nodes in W. 

Stop. 

 Else go to Step 1. 

 After the calculation of matrix D, the 𝑛 × 𝑛 distance square matrix  

(1,1) (1,2) ... (1, )
(2,1) (2,2) ... (2, )

( ,1) ( ,2) ... ( , )

p p p n
p p p n

p n p n p n n

 
 
 =
 
 
 

P
   

, 

where n = V   is easily obtained by keeping only the rows and columns of matrix  

D that correspond to nodes in V . A TSP is now clearly formulated: Assuming a 

complete undirected graph of  V  vertices with distances given by matrix P, find 

the Hamilton cycle of minimum length. This problem is solved using the meta-

heuristic algorithm that is described in the next subsection.  

 However, the sequence of nodes which is the result of the TSP does not 

suffice  to describe completely the optimal route for the order picker. It may be 

possible that two subsequent nodes in the optimal solution are not actually 
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adjacent in graph G. For these cases, a record containing the intermediate nodes 

should be available. This is attained by the bookkeeping mechanism suggested by 

Hu ([20]), according to which an additional m×m matrix 

(1,1) (1,2) ... (1, )
(2,1) (2,2) ... (2, )

( ,1) ( ,2) ... ( , )

h h h m
h h h m

h m h m h m m

 
 
 =
 
 
 

H
   

 

is constructed. The  element h(i,j) is the node just before wj on the shortest path 

from wi to wj, in graph G. Calculation of matrix H can be included in Floyd’s 

algorithm, by initializing the matrix  (setting h(i,j) = wi, i, j = 1, …, m) and by 

adding the following step right after equation (1): 

If  d(i,k) + d(k,i) < d(i,j), then  h(i,j) = h(k,j). 

 If two subsequent nodes, say ui and uj in the optimal solution of the TSP are 

not actually adjacent in graph G, the solution is augmented by including the 

realizable optimal path between the nodes. In particular, if wi and wj are the 

respective nodes in graph G, the realizable shortest path can be obtained 

immediately from matrix H as follows: 

wi , wr,  …, wc, wb, wa, wj 

where wα = h(i,j), wb = h(i,a), wc= h (i,b), …, wi = h (i,r). 

 

 

3.2 Description of the algorithm  

This subsection describes the meta-heuristic algorithm which was used to 

solve the TSP that was formulated in subsection 3.1. 
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3.2.1 The Threshold Accepting (TA) Method Combined with Gradually  

Reinforced Local Search 

 Assuming that *X  is the set of all feasible solutions (sequences of nodes) of 

the problem, TA starts with an element x0
*∈ X , which may be randomly chosen. 

Then, the method proceeds in an iterative manner. In each iteration the algorithm 

decides if the current solution xc will be replaced by a new one xnew. The new 

candidate is chosen (by use of Local Search moves) as a small perturbation of the 

current solution or-speaking in mathematical terms-in a given neighborhood of the 

current solution xc. The value of the objective function is calculated for the new 

candidate and the results are compared:  

Δf = f(xnew) - f(xc). 

 In the TA method, the new element xnew is accepted as the current solution if 

and only if Δf ≤  T for the current threshold value T. The proposed algorithm uses 

an adaptable string of prospective thresholds named TS. The values of thresholds 

in TS are sorted in an order of increasing values. For all the test cases that will be 

presented in this work, TS is initially formulated as  

{0,1,2,3,…,Tmax}, 

i.e. it contains zero and all the positive integer numbers  up to the maximum 

threshold Tmax . Although the maximum threshold value can be selected by trial 

and error, experimentation with many test cases showed that a good choice is to 

select Tmax as half of the maximum distance between any two nodes i.e.  

[ ]
 ,…1,=   ,,…1,=  ,

2

),(max
 = ,

max njni
jip

T ji     (3) 

The last threshold value in the string Tmax is considered as the current threshold T.  

The decision of updating the value of the current threshold T is taken within an 

iterative procedure, which starts by initializing the parameters Ls and Im. The 

parameter Ls indicates the number of iterations devoted to Local Search and is 

initially set to Lso, which depends on the magnitude of the problem (in all test 
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cases we used Lso= n). The binary parameter Im indicates the improvement state, 

that is whether there has been an improvement on the objective function value and 

is initially set to 0. When the objective function value is improved (Δf < 0), the 

value of Im becomes 1 and the current threshold T (the last element of TS) is set to 

0, meaning that only improvements in the objective function are accepted. The 

parameter Im remains equal to 1 for the next Ls = Ls * als iterations, where als ∈ 

(1, 1.5]. This way, the algorithm is forced to conduct local search when an 

improvement in the value of the objective function occurs. Furthermore, as the 

number of improvements increases, local search is becoming more insistent, since 

Ls is continuously increasing. If 0≤  Δf ≤  T, then the last and largest value in TS 

is replaced by Δf and the values in the string are sorted in an ascending order. If Δf  

> T the algorithm proceeds to the next move and all the parameters remain to their 

current values. The algorithm terminates when all the elements of TS become 

equal to 0. Since this usually requires a large number of iterations, practically we 

terminate the algorithm at an earlier stage, which is defined by a maximum 

number of iterations. The flow diagram of the algorithm is shown in Figure 2. 

 The above method initializes a group of potential thresholds and changes 

the current threshold, based on the progress of the algorithm. Thus the functional 

features of the algorithm are problem-independent, which is a great advantage 

compared to other threshold accepting algorithms ([16], [21] and [22]). 

 

3.2.2 Representation of the Solution and the Insertion Method 

We consider as current solution a vector x *X∈ , where *X is the set of all 

possible permutations of the nodes. In a specific permutation x, the position of 

each node denotes the order in which it will be inserted in the schedule. Thus, for 

the rest of the paper, the name Insertion Order will be used for the sequence x, 

while the corresponding schedule will be denoted by S. This way the searching 

operations of the algorithm are imposed on the unscheduled string x, x in turn is 
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translated into a schedule S and the solution x is surveyed right after the value of 

the respective cost has been calculated.  

 Let us assume an Insertion Order x = (v1,…,vn), where vk is a node in x and n 

is the total number of nodes. The nodes of x will be inserted one by one into the 

current partial path, until they formulate the final schedule S = (s1, …, sn). 

According to the insertion scheme, the incomplete schedule S΄ = (s1,…, sk) where 

the first k nodes (v1, …, vk) of the Insertion Order vector x have been positioned, is 

augmented by placing the node vl = vk+1  between the nodes sr and sr+1 in S that 

correspond to the minimum value of  

 , 1 , 1 = ( ) ( , ) ( )+ ++ −i i l l i i iR p s v p v s p s s                 (4) 

i.e.: 

[ ]1 1arg min ( , ) ( , ) ( , ) ,           1,...., 1+ += + − = −i l l i i ii
r p s v p v s p s s i k   (5) 

where p(i, j) is the distance or processing time from node i to node j and arg min 

stands for the argument of the minimum, i.e. the value of i for which the value of 

formula (5) attains its minimum value. The above procedure is repeated until k = 

n, where the schedule is complete and feasible. Figure 3 presents the flow diagram 

of the Insertion Method described above. To follow the iterative procedure of the 

TA method, the algorithm needs to start with a feasible initial solution. The trivial 

sequence (v1, v2, …, vn) is utilized for all implementations.  

 

3.2.3 Local Search Moves 

 The proposed algorithm is based on an Insertion Order x. As it was 

discussed earlier, the actual schedule S results from x, by the use of node insertion 

method. Local Search moves do not intervene on the schedule S, but on the 

Insertion Order x. The new Insertion Order x΄ is located in the neighborhood of x. 

However the new offspring schedule S΄ is not always a neighbor of S. This occurs 

because the insertion method leads potentially to considerably altered schedules. 
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We utilized six different types of Local Search moves. Given a primary Insertion 

Order x = (v1, …, vn), the six moves are described as follows: 

1) Choose randomly two nodes from x, say vk and vl (vk, vl ∈ {v1,…,vn}and vk ≠ vl) 

and exchange their positions in the Insertion Order string. If vk precedes vl then x 

=    (v1,…, vk-1,vk,vk+1,…, vl-1,vl,vl+1,…,vn) becomes x΄ = (v1,…, vk-1,vl,vk+1,..., vl-1, vk, 

vl+1,…,vn). 

2) Choose randomly two nodes from x, say vk and vl (vk, vl ∈ {v1,…,vn}and vk ≠  

vl) and invert the sequence of nodes between them including vk and vl. Using this 

move x = (v1, …, vk-1,vk,vk+1,vk+2,…,vl-2,vl-1,vl, vl+1,…,vn) becomes x΄ = (v1,..., vk-

1,vl,vl-1,vl-2,...,vk+2,vk+1,vk, vl+1,…,vn). 

3) Choose randomly two nodes from x, say vk and vl (vk, vl ∈ {v1,…,vn}and vk ≠  

vl) and move the sequence of nodes (vk,vk+1,…, vl-1,vl) after another randomly 

chosen node, say vm∈ {v1,…,vn}/{ vk,vk+1,…, vl-1,vl}. For example, if vk  precedes vl 

and vm precedes vk then x = (v1,…,vm,vm+1,…,vk-1,vk,vk+1,…,vl-1,vl,vl+1,…,vn) 

becomes x΄ = (v1,…,vm,vk,vk+1,…,vl-1,vl, vm+1,…,vk-1,vl+1,…vn). 

4) Choose only one node, say vl ∈ {v1,…,vn} and transfer it to the first position in 

the Insertion Order string. So x = (v1,…,vl-1,vl,vl+1, …,vn) becomes x΄ = (vl,v1,… vl-

1,vl+1,...vn). 

5) Divide the Insertion Order x into four, not necessarily of the same size, 

sequential groups of nodes, say x = (gi, gi+1, gh, gh+1). Altering the order of the 

groups, the new sequence that is produced is: x΄= (gi, gh+1, gh, gi+1). This operator 

can be thought of as a variation of operator (3) which also divides Insertion Order 

x into four segments, but the new sequence that is produced is x΄= (gi, gh, gi+1, 

gh+1). 

6) Divide the Insertion Order x into six, not necessarily of the same size, 

sequential groups of nodes, say x = (gi, g i+1, g j, g j+1, gh, gh+1). Altering the order 

of the groups, the new sequence that is produced is x΄= (gi, g j+1, gh, g i+1, g j, g h+1) 

or x΄ = (gi, g h, g j+1,g i+1, g j, g h+1) with equal probability. 
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Remark 1: Moves 5 and 6 are similar to the ones used by Cirasella et al. [23] and 

Gambardella and Dorigo [24] and originate from the k-exchange moves when k is 

equal to 2 and 3 respectively.  

Remark 2: At each iteration of the algorithm, only one of the six moves is selected 

to be applied to the current string xc in order to produce the new string xnew. The 

probability of selection is the same for all six moves.  

 

 

4 Computational Results 

4.1 Comparative Results for Randomly Generated Instances 

The MatLab programming language was used for implementing the 

algorithm and a 3.2 MHz Pentium 4 processor was used for all computational 

experiments.  

 For our simulation experiments we assume warehouses with 18 aisles. We 

consider 2, 3, 4 and 5 cross aisles, and in the resulting layouts the aisles contain 

50, 48, 48 and 44 stock locations respectively on either side of every aisle. These 

values are representative of small warehouses or zones ([1]) that comprise large 

order picking areas and are assigned to specific order pickers. Typical numbers of 

items requested in a single order for most low-level picker-to-parts systems are 20, 

50 and 100 items/order. Combinations of the aforementioned values sum up to 12 

configurations. For each configuration, we generate 10 random orders thus 

producing 120 instances in total. We assume a random storage assignment where 

storage locations are selected randomly among all eligible empty locations with 

equal probability [8], which results to a uniform and independent distribution of 

the locations.  

The optimal solutions of the corresponding TSPs were obtained using the 

cutting plane algorithm introduced by Dantzig ([17]). It should be noted however, 

that this exact algorithm has unpredictable large computational times, which is an 
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undesirable property for practical implementations. Some problems with up to 50 

nodes may require more than 15 hours in a typical PC configuration running 

Matlab depending on the structure of the distance matrix of the nodes. The 

computations are even more time consuming for problems with 50 to 100 nodes. 

All 120 instances were also solved using five heuristics and the proposed 

method. The five heuristics: S-shape, Largest gap, Aisle-by-Aisle, Combined and 

Combined+, are described in detail by Roodbergen and De Koster ([9]) as 

extensions of the heuristic routing methods for warehouses with two cross aisles 

developed by Roodbergen and De Koster ([25]) and the combination of heuristics 

and dynamic programming algorithm developed by Vaughan and Petersen ([26]). 

Results for instances with 2 and 3 cross aisles are contained in Table 1, while 

Table 2 contains results for instances with 4 and 5 cross aisles. The first column of 

Tables 1 and 2 contains the name of the instances. Columns 2 – 5 contain the 

number of aisles, cross aisles, stock locations on either side of an aisle and the 

number of pick locations for each instance. Columns 6 – 12 contain the resulting 

total traveled distance in lsls by all heuristic methods, the Dantzig’s cutting plane 

method and the proposed metaheuristic method. Computational times are omitted 

because all algorithms (except the cutting plane method) produce their results 

within milliseconds. For all instances the proposed method outperforms all other 

heuristic methods. For 107 out of 120 instances the proposed method reaches the 

optimal value of the total traveled distance. For the remaining 13 instance the 

optimality gap is practically negligible as it varies from 0.14% (instance 

HundredOrd36) to 0.7% (instance HundredOrd34). 

 Average results of Tables 1 and 2 are reported in Table 3. The first column 

contains the name of the groups of instances of the same configuration (number of 

aisles, cross aisles, locations per aisle and picking locations) where x = 0, …, 9. 

Figure 4 gives a visual representation of the results contained in the last row of 

Table 3 and illustrates the efficiency of the proposed algorithm. It should be 

particularly emphasized that the average of the solutions obtained by the proposed 
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algorithm is only 0.03% above the average over the optimal solutions, while the 

best next heuristic, Combined + shows a 13,7% positive gap. 

 

 

4.2 Case Study 

 The proposed method was also tested on data from real warehouse 

management problems arising in a warehouse of a major electrical retailer in 

Greece. The warehouse consists of 30 aisles, 2 cross aisles (at the front and rear 

end of the warehouse) and 45 storage locations on either side of every aisle. 

Figure 5 shows the layout of the warehouse. The total storage area is 4200 m2 and 

it is divided into two areas of 2100 m2: AREA 1 and AREA 2. This partition of the 

storage area is due to safety reasons against fire, according to the relative 

legislation (P.D. 71/88 art. 11.3), which defines that the maximum section area 

should not exceed 2500 m2. Each one of these two areas has 15 aisles: A, B, C, …, 

Q. This partition poses limits on the circulation of the order pickers. If a picker has 

to pass from one area to the other, this can only be done at the front end of aisle Q 

(storage locations 45) and not at the rear end because areas 1 and 2 are isolated. 

The warehouse uses VNA (Very Narrow Aisle) vehicles, thus the order pickers 

can pick items from both sides of a pick aisle simultaneously. The depot is located 

at the beginning of aisle A (storage location 45) of AREA 1.  

 The practice followed so far for picking the items of an order is even simpler 

than the S-shape method ([9]): All storage locations have a serial number. When 

an order is placed the items of the order are picked in order of the serial number of 

the location they are stored. This leads to excessively large total travelled 

distances. 

 The problem was solved by the proposed method by setting the distances 

between the nodes crossing at the end of aisles 15 and 16 (AREA 1, aisle Q and 

AREA 2, aisle Q), to a fairly large positive number.  
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The problem can be solved to optimality by using the dynamic programming 

method of Ratliff and Rosenthal ([4]) and setting the length of arc configurations 

(i), (ii) and (iv) in [4] (p. 515) for crossover between aisles 15 and 16 (aisles: 

AREA 1, aisle Q and AREA 2, aisle Q), equal to a fairly large positive number.   

 The proposed method is tested on five orders of 67 to 102 items/order and 

the results are compared to those from the method used in practice and the optimal 

results produced by the method of Ratliff and Rosenthal with the modification 

introduced earlier. The results are reported in Table 4. The proposed method 

always finds the optimal solution and produces routes with 16.7 % to 22.8 % 

shorter total distances compared to the method used in practice.  

 

 

5 Conclusions 

The present paper considers the problem of optimizing order picking routes 

in low-level picker-to-parts systems of warehouses that contain parallel aisles, 

while changing of aisles is allowed through two or more cross aisles. First, the 

problem is identified and formulated as a TSP problem for any warehouse with the 

features mentioned before and any order distribution within the storage area. This 

is achieved by implementing a dynamic programming algorithm for the 

calculation of the shortest path between any pair of nodes in a connected graph. 

Then, a metaheuristic algorithm based on the framework of the Threshold 

Accepting method is proposed for the solution of the formulated problem. An 

intensive neighborhood (Local) search procedure is incorporated in the body of 

the algorithm and a sorted list of Thresholds is maintained and updated throughout 

the entire iterative procedure.  The former facilitates the exploration of the most 

promising areas of the search space, while the latter reduces the number of user 

defined parameters of the algorithm to just the length of the threshold list, thus 

making tuning of the algorithm much easier. Computational results of the 
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proposed method have been compared favorably to a number of algorithms found 

in the literature, which are specially devised for the solution of the problem at 

hand. Finally the proposed method has been tested on the solution of a number of 

instances obtained during the operation of a real warehouse. The method produces 

better results compared to the method used in practice and improves significantly 

the warehouse operations.  

Future research could encompass dynamic storage assignment, simultaneous 

order picking and replenishment route optimization, and also inbound receipt and 

outbound delivery of goods in a complete framework for the maximum utilization 

of labour and equipment via the practice of task interleaving. 
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Figure 1: (a) A warehouse layout with 6 aisles and 4 cross aisles and a particular       
                       order location problem. 
      (b)The graph that corresponds to the problem appearing on Figure 1 (a). 
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Figure 2: The flow diagram of the proposed algorithm 
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Figure 3: The flow diagram of the Insertion Method 
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Figure 4: Average travelling distances (in lsls) produced by all tested methods 
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Figure 5: Layout of the warehouse of a major Greek electrical retailer 
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