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Abstract 

In the last decades an interesting relationship between chaos theory and 

cryptography has been developed. As a result of this close relationship several 

chaos-based cryptosystems, which play important role especially in military 

operations because of the significant strategic advantage that these systems 

provide, have been put forward. This work, presents a novel Chaotic Random Bit 

Generator (CRBG), which is realized by the Arduino, an open-source physical 

computing platform based on a simple microcontroller board. The proposed 

CPRBG, uses the XOR function, in the bit sequences, that are produced by two 

Logistic maps with different initial conditions and systems’ parameters, for 

achieving better results concerning the “randomness” of the produced bits 

sequence. The generated by the proposed CRBG bit sequences are subjected to the 

most stringent tests of randomness, the FIPS-140-2 suite tests, to detect the 

specific characteristics which are expected of random bit sequences. 
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1 Introduction  

New rapid developments in communication technologies, such as in 

Internet, in mobile networks, and in military networks, depend upon the 

generation of sufficient size, unpredictable quantities for ensuring the information 

security. Especially, the “randomness” of the generated quantities in the sense that 

probability of any particular value being selected must be sufficiently small to 

preclude an adversary from gaining advantage through optimizing a search 

strategy based on such probability, plays a crucial role for the safety of the 

communication network. For this reason various techniques including the 

keystream in the one-time pad, the secret key in the DES encryption algorithm, the 

primes p, q in the RSA encryption and digital signature schemes, the private key a 

in the DSA, and the challenges used in challenge-response identification systems, 

have been developed and are commercial available.  

So, in the last two decades many research teams tried to design devices or 

algorithms which satisfy the basic demand of generating unpredictable quantities. 

These devices or algorithms are called Random Bit Generators (RBGs). As a 

definition one could say that ([1]): 

“A random bit generator is a device or algorithm which outputs a sequence of 

statistically independent and unbiased binary digits.” 

Until now a great number of RBGs have been proposed. All these can be 

classified, based on the source of the randomness, into three major types ([2]):  

• True Random Bit Generators (TRBGs),     

• Pseudo-Random Bit Generators (PRBGs) and  

• Hybrid Random Bit Generators (HRBGs). 
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In the first type, TRBGs require a naturally occurring source of randomness, 

which comes from an unpredictable natural process in a physical or hardware 

device. However, designing a hardware device to exploit this randomness and 

produce a bit sequence that is free of biases and correlations is a difficult task. 

Additionally, for most cryptographic applications, the generator must not be 

subject to observation or manipulation by an adversary. Due to the fact that the 

TRBGs are based on natural sources of randomness are subject to influence by 

external factors which cause malfunctions.  

All the above mentioned difficulties of obtaining uniform random sequences 

from TRNG lead many research teams to the design of pseudorandom bit 

generators. A PRBG is a deterministic algorithm which, outputs a binary sequence 

of length 𝑙 >>  𝑘 that “appears” to be random, if a binary sequence of length k is 

given. The input to the PRBG is called the seed, while the output of the PRBG is 

called a pseudorandom bit sequence. This bit sequence is not truly random in that 

it is completely determined by a relatively small set of initial values. Also, PRBGs 

are very important in practice for their speed in number generation, their 

portability and their reproducibility, and they are thus central in applications such 

as in cryptography, in decision making, in simulating natural phenomena and in 

sampling data ([3, 4]). So, a good PRBG for the previous mentioned applications 

should possess three very important characteristics: long period, high speed and 

randomness. 

Nevertheless, it is obvious that in PRBGs due to the fact that the output is a 

function of the seed state, the actual entropy of the output can never exceed the 

entropy of the seed. Hence, the randomness level of the pseudo-random numbers 

depends on the level of randomness of the seed. Thus, HRNGs have been 

proposed to use a random generator as a seed generator and expand it. A seed 

generator is a hardware-based RNG with or without user’s interaction, such as 

mouse movements, random keystrokes, or hard drive seek times. 
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Furthermore, in the last decades, nonlinear systems and especially chaotic 

systems have aroused tremendous interest because of their applications in many 

scientific fields, such as in physics, sociology and economic theory but also of 

many other interesting applications such as in secure communication schemes and 

cryptography ([5-7]).  

Nowadays it is known, that chaos and cryptography have a structural 

relationship because they have many similar properties (Table 1) ([8]). As a result 

of this relationship several chaotic cryptosystems have been presented ([9-11]). 

One of the most interesting way through which chaotic cryptosystems can be 

realized is via the implementation of Chaotic Random Bit Generator (CRBG). So, 

several ideas of designing CRBG, by using either continuous or discrete chaotic 

systems, have been proposed by academia and industry ([12-20]).  

 
 

Table 1: Properties of Chaos and its analogous properties of Cryptography 

Chaos Cryptography 
 

Ergodicity 
 

Confusion 

Sensitivity to initial 

conditions / system 

parameters 

 

Diffusion with small 

changes in plaintext / 

secret keys 
 

Mixing               

property 

 

Diffusion with a small 

change within one block 

of the plaintext 
 

 

Deterministic dynamics 
 

Deterministic pseudo 

randomness 
 

Structural  complexity Algorithm Complexity 
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In the present work a novel CRBG, which is realized by an open-source 

physical computing platform based on a simple microcontroller board, the well-

known Arduino, is discussed. The microcontroller runs side-by-side two Logistic 

maps, working in different chaotic regimes because of having different initial 

conditions and systems’ parameters. The produced, by the proposed CRBG, bit 

sequences are results of the XOR function in the outputs of the two chaotic 

Logistic maps, which are subjected to de-skewing technique to extract unbiased 

bits with no correlation. Also, the algorithm, in which the microcontroller has 

programmed, is very simple, so the CRBG is quite fast. The use of two chaotic 

discrete maps increases the complexity in the random bit generation, as it is 

confirmed by the statistical test suite, FIPS-140-2, and hence becomes difficult for 

an intruder to extract information about the system.       

This paper is organized as follows. In Section 2, the Logistic map, which is 

the base of this CRBG, is presented. Section 3 describes the proposed CRBG 

block by block as such its realization with the Arduino. In Section 4 the results of 

the statistical tests of FIPS-140-2 which assess the statistical properties of the 

CRBG, are presented. Finally, Section 5 includes the conclusion remarks of this 

work. 

 

 

2 The Logistic Map 

Since the discovery of deterministic chaos in the mid 1960s, the field of 

non-linear dynamical systems has attracted the attention of researchers worldwide. 

It is known that the most important aspects of chaotic behavior should appear in 

systems of lowest dimension and especially in discrete-time dynamical systems. 

Discrete-time dynamical systems are a particular type of non-linear dynamical 

systems generally described as an iterative map 𝑓:ℝ𝑛 ⟶ ℝ𝑛 by the state 

equation: 
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𝑥𝑘+1 =  𝑓 (𝑥𝑘),   𝑘 =  0, 1, 2, …          (1) 

where 𝑛 is the dimensionality of the state-space, 𝑘 denotes the discrete time, 

𝑥𝑘 ∈ ℝ𝑛 is the state of the system at time 𝑘, while 𝑥𝑘+1 denotes the next state.  

The Logistic map, a well-known iterative equation, which is described by 

the following equation: 

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛), 0 ≤ 𝑥 ≤ 1                                  (2) 

is one of the most studied, one-dimensional, discrete chaotic maps because of its 

simplicity. As pointed out by May, this map may be thought of as a simple 

idealized ecological model for the yearly variations in the population of an insect 

species ([21]). This map was also proposed as pseudo-random number generator 

by Von Neumann ([22]) partly because it had a known algebraic distribution so 

that the iterated values could be transformed to a uniform distribution. Over the 

years, many other realizations of random number generators, based on various 

forms of the Logistic equation, has been proposed ([23-28]). 

Furthermore, Fiegenbaum ([29, 30]) reported some of the universal 

quantitative features (Table 1), which became the hallmark of the contemporary 

study of chaos. For this reason Logistic map possesses great potential for various 

cryptographic applications such as image encryption ([31, 32]), public key 

cryptography ([33]), block cipher ([34]), and hash function ([35]).  

In more details, the parameter 𝑟 in Eq. (2) varies in the interval [0, 4] so that 

𝑥𝑛+1 maps the unit interval into the unit interval. Fig.1 shows the map function of 

𝑥𝑛+1 as a function of 𝑥𝑛, e.g. for 𝑟 =  3.99 and 𝑥0 = 0.4. From this plot the 

symmetry of the Logistic map about the mid point of the interval [0, 1], is 

concluded. For the Logistic map of Eq.(2) the following regions, depending on the 

value of 𝑟, may be considered. 

•  For 𝑟 <  1, 𝑥 decays to a fixed point (𝑥 →  0). That is, for any value of the 

seed x0 between zero and one the 𝑥𝑛 approaches the value of zero 

exponentially. 
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• For 1 ≤  𝑟 <  3, the previous fixed point loses its stability and another fixed 

(𝑥 =  1 –  1/𝑟) appears. 

• For 3 ≤  𝑟 ≤  4, the Logistic map presents a more complex behavior (such as 

repeated period doubling, appearance of odd periods etc) which finally is 

leading to chaos.  

In Figure 2 this rich dynamical behavior in the third region, which is mainly 

characterized by the very interesting period-doubling route from periodic to 

chaotic behavior, is illustrated. This so-called “Bifurcation diagram” of Figure 2 is 

also a very common perspective in nonlinear dynamics, being in this case a plot of 

the steady-state behavior of Eq. (2) with respect to the bifurcation parameter r. 

The first bifurcation, as it is shown in Figure 2, occurs at the value of 𝑟 =

 3, followed by further doublings at shorter and shorter intervals of r until the 

period goes to infinity at 𝑟∞ =  3.5699 …., signifying chaos. Also, various periodic 

windows interspersed beyond 𝑟∞, is observed, in which the behavior returns to a 

normal periodic one, quickly followed again by bifurcations to an infinite period. 

 

 
Figure 1: The map function of the Logistic equation (1), for 𝑟 =  3.99 and 

                     𝑥0  =  0.4. 
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Figure 2: Bifurcation diagram of 𝑥𝑛 vs. parameter 𝑟, 

illustrating the period-doubling route to chaos 
 

 

So, for 𝑟∞ >  3.5699 … the Logistic map shows a strange complex behavior 

(the so-called chaotic behavior) where map function never repeats its history. This 

is evident from Fig.3 where no periodicity arises, for 𝑟 =  3.99 and 𝑥0  =  0.4. 

Finally, in Fig.4 the well-known Lyapunov exponent: 

𝜆 = 𝑙𝑖𝑚𝑛→∞∑ 𝑙𝑛|𝑓′(𝑥𝑖)|𝑛
𝑖=1                         (3) 

 

 𝑓′(𝑥) = 𝑟 − 2𝑟𝑥                                                                 (4) 

as a function of parameter 𝑟, is displayed. As it is known from the nonlinear 

theory a positive Lyapunov exponent indicates chaos. So, Figure 4 confirms the 

Logistic map’s dynamical behavior as found from the bifurcation diagram (Figure 

2).  
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Figure 3: Variable 𝑥 vs. 𝑛, for 𝑟 =  3.99 and 𝑥0  =  0.4 

 

 
Figure 4: Lyapunov exponent (𝜆) vs. parameter r 

 

 

3 The Chaotic Random Bit Generator  

The main feature of the larger number of chaotic random bit generators, 

which have been presented, is that they work only in a software environment, 
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where everything is ideal. For this reason, in this work, a step forward to the 

realization of a CRBG via a microcontroller is done. In general, the 

microcontroller combines the software programming with the hardware 

(processor) for doing a specific job. So, it is very interesting to find out the 

strengths and the weaknesses of the specific proposal because the microcontroller 

gives us the opportunity for using CRBGs in many applications, such as in 

robotics, in cryptography etc.   

 As it is mentioned the well-known open-source Arduino prototyping 

platform was used in this work for realizing the proposed CRBG. Arduino was 

chosen because, among all the other advantages it has, it is probably the most 

commercial platform which is used in a great number of applications. So, in this 

section the proposed CRBG is presented block by block by presenting also its 

realization with the microcontroller. 

 

 

3.1 The Description of the CRBG 

As it is referred in the previous section, various forms of the Logistic map 

have been used, especially in the last decade, in the design of chaotic random bit 

generators ([23-28]). Especially, in [28] Li et al. design and analyze a pseudo-

random bit generator based on a piecewise-linear map. Authors by choosing the 

mean of the xn values assure the generating of the same numbers of bits according 

to the following formula: 

𝑏𝑛 = �
0, 𝑖𝑓 𝑥𝑛 ≤ 𝑥𝑐𝑟
1, 𝑖𝑓 𝑥𝑛 > 𝑥𝑐𝑟

�                   (5) 

where 𝑥𝑐𝑟 = �̅� denotes the mean value and 𝑏𝑛 is the bit generated by the n-th 

iteration of the Logistic map. 

In this work, the above mentioned technique for producing bit sequences by 

the Logistic map, with 𝑥𝑐𝑟 different from (𝑥𝑐𝑟 ≠ �̅�), has been adopted. Also, the 

proposed CRBG (Fig.5) is based on two Logistic Maps (LM) of Eq.(1): 
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�LM1: 𝑥𝑛+1 = 𝑟1𝑥𝑛(1 − 𝑥𝑛)
LM2: 𝑦𝑛+1 = 𝑟2𝑦𝑛(1 − 𝑦𝑛)

�    (6) 

having different parameters (𝑟1, 𝑟2) and (𝑥𝑐𝑟1,𝑥𝑐𝑟2) while maps start from random 

independent initial conditions: (𝑥0, 𝑦0) with 𝑥0 ≠ 𝑦0. So, the two iterative maps of 

Eqs.(6), consist the first block of the proposed CRBG. By using Eq.(5), with 

𝑥𝑐𝑟 ≠ �̅�, two different chaotic bit sequences (𝑏1,𝑏2) are produced. 

The second block of the proposed CRBG relies on extracting unbiased bits 

with no correlation from the two defective Logistic maps. For this purpose one of 

the most known de-skewing technique, the Von Neumann technique ([36]) has 

been used. Von Neumann proposed a digital post-processing that balances the 

distribution of bits. Post-processing converts non-overlapping pairs of bits into 

output bits by converting the bit pair “01” into an output “0”, converting “10” into 

an output “1”, while the pairs “11” and “00” are discarded. This technique is very 

easily implemented but it decreases throughput of generating approximately 1 bit 

from 4 bit. 

Finally, the third block generates the bit sequence (𝜎𝑖) by using the XOR 

function, in the outputs of the second block (𝜎𝑖 = 𝑓1 ⊕ 𝑓2). This technique 

provides, as it is shown in the next Section, better results concerning the 

“randomness” of the produced bit sequences by the proposed CRBG. 

 

 
Figure 5: The schematic block diagram of the proposed Chaotic Random Bit  

              Generator 



126                           Chaotic Random Bit Generator Realized with a Microcontroller 

3.2 The Realization of the CRBG with the Microcontroller 

The proposed CRBG was realized by using an open-source Arduino 

prototyping platform made up of an Atmel AVR processor (microcontroller), 

based on flexible, easy-to-use hardware and software ([37]). This platform has 14 

digital input/output pins, 6 analog inputs, a 16 MHz crystal oscillator, a USB 

connection, a power jack, an ICSP header, and a reset button (Figure 6). The 

Arduino is connected to the computer through the USB port and programmed 

using the language “Wiring” which is similar to C++. The program, which is 

known as “sketch” is uploaded into the microcontroller using an Integrated 

Development Environment (IDE). 

So, in this work, the microcontroller outputs a random bits sequence by 

programming it with the sketch (Listing 1), which implements the proposed 

CRBG. The produced bitstream by the Arduino was captured to a text file by 

using the HyperTerminal program on Windows (Figure 7). This is the simplest 

method for writing data from the Arduino to the serial port and save them to a file. 

 

 

 
Figure 6: Arduino Uno prototyping platform 
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Figure 7: The setup of the proposed CRBG 

 

 

4 Statistical Tests  

The invention of a foolproof source of random numbers it is not an easy 

task. In order to gain the confidence that a newly developed random bit generator 

is cryptographically secure, it should be subjected to a variety of statistical tests 

designed to detect the specific characteristics expected of truly random sequences. 

There are several options available in the bibliography for analyzing the 

randomness of the newly developed random bit generators. The four most popular 

options are:  

(i)  the FIPS-140-2 (Federal Information Processing Standards) suite of 

statistical tests of the National Institute of Standards and Technology 

(NIST) ([38]),  

(ii)  the DIEHARD suite of statistical tests ([39]), 

(iii) the Crypt-XS suite of statistical tests ([40]) and 

(iv) the Donald Knuth’s statistical tests set ([41]). 

In this work the “randomness” of the produced bit sequences, by the 

proposed CRBG, is analyzed by using the most stringent tests of randomness: the 
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FIPS-140-2 suite of statistical tests. The results of the use of the four statistical 

tests, Monobit test, Poker test, Runs test, and Long run test, which are part of the 

FIPS-140-2, are presented in details. According to FIPS-140-2, the examined 

CRBG will produce a bitstream, bi = b0, b1, b2, …, bn−1, of length n (at least 

20,000 bits), which must satisfy the following standards.  

• Monobit Test: The number n1 of 1’s in the bitstream must be 9725 < n1 < 

10275. 

• Poker Test: This test determines whether the sequences of length n (n = 4) 

show approximately the same number of times in the bitstream. The 

bounds of this statistic are then 2.16 < x3 < 46.17. 

• Runs Test: This test determines whether the number of 0’s (Gap) and 1’s 

(Block) of various lengths in the bitstream are as expected for a random 

sequence ([38]). 

• Long Run Test: This test is passed if there are no runs longer than 26 bits. 

 

 

// Chaotic Random Bit Generator by Using Two Logistic Maps 
 

// Logistic Map parameters 

const double R1 = 3.990;     // Logistic map 1 constant 

const double R2 = 3.984;     // Logistic map 2 constant 

double XN = 0.400;             // Initial position for XN 

double XN1 = 0.800;           // Initial position for XN1 

double YN = 0.500;             // Initial position for YN 

double YN1 = 0.720;           // Initial position for YN1 

double XCR1 = 0.496;         // value of xcr1 of the Logistic map 1 

double XCR2 = 0.477;         // value of xcr2 of the Logistic map 2 

int x;                                     // produced bit from Logistic map 1 

int y;                                     // produced bit from Logistic map 2 

double rem;                          // result of the modulo 

int n = 1; 
 

void setup() { 
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Serial.begin (9600);            // start serial communication at 9600bps  
 

// De-skewing technique for each system 

void loop() { 

if ((XN < XCR1) && (XN1 >= XCR1)) 

x = 0; 

if ((XN >= XCR1) && (XN1 < XCR1)) 

x = 1; 

if ((YN < XCR2) && (YN1 >= XCR2)) 

y = 0; 

if ((YN >= XCR2) && (YN1 < XCR2)) 

y = 1; 
 

// XOR Function 

rem = n%2; 
 

if (rem == 1.00) { 

if ((x == 0) && (y == 0)) 

Serial.println(0);                      // write bit 0 to the serial interface 

if ((x == 1) && (y == 1)) 

Serial.println(0);                      // write bit 0 to the serial interface 

if ((x == 0) && (y == 1)) 

Serial.println(1);                      // write bit 1 to the serial interface 

if ((x == 1) && (y == 0)) 

Serial.println(1);                      // write bit 1 to the serial interface 

} 
 

// The Logistic Maps' functions 

XN = XN1; 

XN1 = R1 * XN * (1.000 - XN); 

YN = YN1; 

YN1 = R2 * YN * (1.000 - YN); 
 

n = n + 1;} 

Listing 1: The sketch for the proposed CRBG 
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As it is known from information theory, noise has maximum entropy. For 

this reason, the systems’ parameters and initial condition are chosen so as 

measure-theoretic entropy ([42]) of the CRBG, which is given by the following 

equation, is maximum. 

𝐻𝑛 = 𝑙𝑖𝑚𝑛→∞(−∑ 𝑃(𝐵𝑛) 𝑙𝑛𝑃(𝐵𝑛)𝐵𝑛 𝑛⁄ )                      (7) 

𝑃(𝐵𝑛) is the probability of occurrence of a binary subsequence 𝐵 of length 𝑛. 

Using the procedure described in the previous section, by using (𝑟1, 𝑟2)  =

 (3.990, 3.984), (𝑥𝑐𝑟1, 𝑥𝑐𝑟2)  =  (0.496, 0.477) and initial condition (𝑥0,𝑦0)  =

 (0.400, 0.500), a bitstream of 200,000 bits is obtained which is divided in 10 bit 

sequences of length 20,000 bits. In Table 2 the measure-theoretic entropy for 

𝑛 =  3 and 𝑛 =  4 and the detailed results of the 10 bit sequences which were 

subjected to the four tests of FIPS-140-2 test suite, are presented. As a conclusion, 

all the bit sequences produced by the CRBG have numerically verified the specific 

characteristics expected of random bit sequences. 

 

Table 2: Results of the measure-theoretic entropy and FIPS-140-2 test suite,                                                                                                                                

for 10 bit sequences produced by the proposed CRBG 

Tests 1 2 3 4 5 6 7 8 9 10 

H3 0.6928639  0.6927789  0.6930688 0.6927888  0.6928473 0.6928352   0.6928734  0.6930840 0.6930764 0.6928072 

H4 0.6925834  0.6928304  0.6926863 0.6925997  0.6922313 0.6925797   0.6927214  0.6925965 0.6926413 0.6925933 

Monobit  

Test 
√ √ √ √ √ √ √ √ √ √ 

Poker  

Test 
√ √ √ √ √ √ √ √ √ √ 

Runs  

Test 
√ √ √ √ √ √ √ √ √ √ 

Long Run  

Test 
√ √ √ √ √ √ √ √ √ √ 

Result Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed 
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Finally, by using the proposed CRBG, with the systems’ parameters and 

initial conditions which has been previously mentioned, two bit sequences of 

length 20,000 bits from the outputs of each of the two Logistic maps, have been 

obtained. The measure-theoretic entropy and the results of FIPS-140-2 test suite of 

the two bit sequences produced by each Logistic map and of the XORed bitstream, 

which is the output of the proposed CRBG, are shown in Table 3. As follows from 

the comparison of the results of Table 3, the application of the XOR function 

increases significantly the measure-theoretic entropy and also improves the results 

of the FIPS-140-2 test suite. Although the bit sequence produced from the first 

Logistic map (LM1) failed to pass the Poker Test (𝑥3 =  140.36064) and also the 

bit sequence produced from the second Logistic map (LM2) failed to pass the 

Poker Test (𝑥3 =  119.81938) and the Runs Test, the final bit sequence of the 

CRBG passed all the tests of FIPS-140-2 with very good results, as it shown in 

Table 4. 

 

Table 3: Results of the measure-theoretic entropy and FIPS-140-2 test suite,                                                                                                                                

for the bit sequences of each Logistic map and of the final CRBG 

 Tests LM1 LM2 LM1 (XOR) LM2 

H3 0.6893599 0.6901588 0.6930719 

H4 0.6874755 0.6925876 0.6926863 

Monobit Test √ √ √ 

Poker Test X X √ 

Runs Test √ X √ 

Long Run Test √ √ √ 

Result Failed Failed Passed 
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Table 4: Results of FIPS-140-2 test, for the CRBG 

Monobit 

Test 

Poker 

Test 

Runs         

Test 

Long Run   

Test 

  B1 = 2469  

  B2 = 1268  

n1 = 10018 3.0021 B3 = 617 No 

(50.09 %)  B4 = 323  

  B5 = 161  

  B6 = 158  

Passed Passed Passed Passed 

 

 

5 Conclusions 

In this paper, a chaotic random bit generator, which is based on the Logistic 

map and implemented by a microcontroller, was presented. The final bit sequence 

was the result of the application of the XOR function in two chaotic bit sequences 

that were produced by Logistic maps running side-by-side, with different initial 

conditions and systems’ parameters. The use of the XOR function joint with 

different values of threshold values (𝑥𝑐𝑟1,𝑥𝑐𝑟2) of each map increased the 

complexity of the random bit sequence, in regard to other previous works, as it 

was confirmed by the use of a well-known statistical test suite FIPS-140-2. So, the 

chaotic random bit generator of this work proved to be very robust against 

interference from an intruder.   

Also, the use of probably the most commercial platform, the Arduino 

prototyping platform, appointed the proposed chaotic random bit generator 

suitable in many interesting applications, such as in the design of robot’s motion 

controllers and cryptographic systems. So, in future works, the experimental 

realization of such systems based in the proposed chaotic random bit generator 

will be studied. 
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