
Journal of Computations & Modelling, vol.3, no.4, 2013, 115-136
ISSN: 1792-7625 (print), 1792-8850 (online)
Scienpress Ltd, 2013

Chaotic Random Bit Generator Realized

with a Microcontroller

Christos K. Volos1

Abstract

In the last decades an interesting relationship between chaos theory and

cryptography has been developed. As a result of this close relationship several

chaos-based cryptosystems, which play important role especially in military

operations because of the significant strategic advantage that these systems

provide, have been put forward. This work, presents a novel Chaotic Random Bit

Generator (CRBG), which is realized by the Arduino, an open-source physical

computing platform based on a simple microcontroller board. The proposed

CPRBG, uses the XOR function, in the bit sequences, that are produced by two

Logistic maps with different initial conditions and systems’ parameters, for

achieving better results concerning the “randomness” of the produced bits

sequence. The generated by the proposed CRBG bit sequences are subjected to the

most stringent tests of randomness, the FIPS-140-2 suite tests, to detect the

specific characteristics which are expected of random bit sequences.

1 Division of Mathematics and Engineering Studies, Department of Military Science,
 Hellenic Military Academy, Vari 16673, Greece. E-mail: chvolos@gmail.com

Article Info: Received : July 1, 2013. Revised : August 30, 2013.
 Published online : December 1, 2013.

mailto:chvolos@gmail.com

116 Chaotic Random Bit Generator Realized with a Microcontroller

Keywords: Chaotic random bit generator, chaos, Logistic map, discrete nonlinear

map, XOR function, Arduino microcontroller, FIPS statistical tests.

1 Introduction

New rapid developments in communication technologies, such as in

Internet, in mobile networks, and in military networks, depend upon the

generation of sufficient size, unpredictable quantities for ensuring the information

security. Especially, the “randomness” of the generated quantities in the sense that

probability of any particular value being selected must be sufficiently small to

preclude an adversary from gaining advantage through optimizing a search

strategy based on such probability, plays a crucial role for the safety of the

communication network. For this reason various techniques including the

keystream in the one-time pad, the secret key in the DES encryption algorithm, the

primes p, q in the RSA encryption and digital signature schemes, the private key a

in the DSA, and the challenges used in challenge-response identification systems,

have been developed and are commercial available.

So, in the last two decades many research teams tried to design devices or

algorithms which satisfy the basic demand of generating unpredictable quantities.

These devices or algorithms are called Random Bit Generators (RBGs). As a

definition one could say that ([1]):

“A random bit generator is a device or algorithm which outputs a sequence of

statistically independent and unbiased binary digits.”

Until now a great number of RBGs have been proposed. All these can be

classified, based on the source of the randomness, into three major types ([2]):

• True Random Bit Generators (TRBGs),

• Pseudo-Random Bit Generators (PRBGs) and

• Hybrid Random Bit Generators (HRBGs).

Ch. K. Volos 117

In the first type, TRBGs require a naturally occurring source of randomness,

which comes from an unpredictable natural process in a physical or hardware

device. However, designing a hardware device to exploit this randomness and

produce a bit sequence that is free of biases and correlations is a difficult task.

Additionally, for most cryptographic applications, the generator must not be

subject to observation or manipulation by an adversary. Due to the fact that the

TRBGs are based on natural sources of randomness are subject to influence by

external factors which cause malfunctions.

All the above mentioned difficulties of obtaining uniform random sequences

from TRNG lead many research teams to the design of pseudorandom bit

generators. A PRBG is a deterministic algorithm which, outputs a binary sequence

of length 𝑙 >> 𝑘 that “appears” to be random, if a binary sequence of length k is

given. The input to the PRBG is called the seed, while the output of the PRBG is

called a pseudorandom bit sequence. This bit sequence is not truly random in that

it is completely determined by a relatively small set of initial values. Also, PRBGs

are very important in practice for their speed in number generation, their

portability and their reproducibility, and they are thus central in applications such

as in cryptography, in decision making, in simulating natural phenomena and in

sampling data ([3, 4]). So, a good PRBG for the previous mentioned applications

should possess three very important characteristics: long period, high speed and

randomness.

Nevertheless, it is obvious that in PRBGs due to the fact that the output is a

function of the seed state, the actual entropy of the output can never exceed the

entropy of the seed. Hence, the randomness level of the pseudo-random numbers

depends on the level of randomness of the seed. Thus, HRNGs have been

proposed to use a random generator as a seed generator and expand it. A seed

generator is a hardware-based RNG with or without user’s interaction, such as

mouse movements, random keystrokes, or hard drive seek times.

118 Chaotic Random Bit Generator Realized with a Microcontroller

Furthermore, in the last decades, nonlinear systems and especially chaotic

systems have aroused tremendous interest because of their applications in many

scientific fields, such as in physics, sociology and economic theory but also of

many other interesting applications such as in secure communication schemes and

cryptography ([5-7]).

Nowadays it is known, that chaos and cryptography have a structural

relationship because they have many similar properties (Table 1) ([8]). As a result

of this relationship several chaotic cryptosystems have been presented ([9-11]).

One of the most interesting way through which chaotic cryptosystems can be

realized is via the implementation of Chaotic Random Bit Generator (CRBG). So,

several ideas of designing CRBG, by using either continuous or discrete chaotic

systems, have been proposed by academia and industry ([12-20]).

Table 1: Properties of Chaos and its analogous properties of Cryptography

Chaos Cryptography

Ergodicity

Confusion

Sensitivity to initial

conditions / system

parameters

Diffusion with small

changes in plaintext /

secret keys

Mixing

property

Diffusion with a small

change within one block

of the plaintext

Deterministic dynamics

Deterministic pseudo

randomness

Structural complexity Algorithm Complexity

Ch. K. Volos 119

In the present work a novel CRBG, which is realized by an open-source

physical computing platform based on a simple microcontroller board, the well-

known Arduino, is discussed. The microcontroller runs side-by-side two Logistic

maps, working in different chaotic regimes because of having different initial

conditions and systems’ parameters. The produced, by the proposed CRBG, bit

sequences are results of the XOR function in the outputs of the two chaotic

Logistic maps, which are subjected to de-skewing technique to extract unbiased

bits with no correlation. Also, the algorithm, in which the microcontroller has

programmed, is very simple, so the CRBG is quite fast. The use of two chaotic

discrete maps increases the complexity in the random bit generation, as it is

confirmed by the statistical test suite, FIPS-140-2, and hence becomes difficult for

an intruder to extract information about the system.

This paper is organized as follows. In Section 2, the Logistic map, which is

the base of this CRBG, is presented. Section 3 describes the proposed CRBG

block by block as such its realization with the Arduino. In Section 4 the results of

the statistical tests of FIPS-140-2 which assess the statistical properties of the

CRBG, are presented. Finally, Section 5 includes the conclusion remarks of this

work.

2 The Logistic Map

Since the discovery of deterministic chaos in the mid 1960s, the field of

non-linear dynamical systems has attracted the attention of researchers worldwide.

It is known that the most important aspects of chaotic behavior should appear in

systems of lowest dimension and especially in discrete-time dynamical systems.

Discrete-time dynamical systems are a particular type of non-linear dynamical

systems generally described as an iterative map 𝑓:ℝ𝑛 ⟶ ℝ𝑛 by the state

equation:

120 Chaotic Random Bit Generator Realized with a Microcontroller

𝑥𝑘+1 = 𝑓 (𝑥𝑘), 𝑘 = 0, 1, 2, … (1)

where 𝑛 is the dimensionality of the state-space, 𝑘 denotes the discrete time,

𝑥𝑘 ∈ ℝ𝑛 is the state of the system at time 𝑘, while 𝑥𝑘+1 denotes the next state.

The Logistic map, a well-known iterative equation, which is described by

the following equation:

𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛), 0 ≤ 𝑥 ≤ 1 (2)

is one of the most studied, one-dimensional, discrete chaotic maps because of its

simplicity. As pointed out by May, this map may be thought of as a simple

idealized ecological model for the yearly variations in the population of an insect

species ([21]). This map was also proposed as pseudo-random number generator

by Von Neumann ([22]) partly because it had a known algebraic distribution so

that the iterated values could be transformed to a uniform distribution. Over the

years, many other realizations of random number generators, based on various

forms of the Logistic equation, has been proposed ([23-28]).

Furthermore, Fiegenbaum ([29, 30]) reported some of the universal

quantitative features (Table 1), which became the hallmark of the contemporary

study of chaos. For this reason Logistic map possesses great potential for various

cryptographic applications such as image encryption ([31, 32]), public key

cryptography ([33]), block cipher ([34]), and hash function ([35]).

In more details, the parameter 𝑟 in Eq. (2) varies in the interval [0, 4] so that

𝑥𝑛+1 maps the unit interval into the unit interval. Fig.1 shows the map function of

𝑥𝑛+1 as a function of 𝑥𝑛, e.g. for 𝑟 = 3.99 and 𝑥0 = 0.4. From this plot the

symmetry of the Logistic map about the mid point of the interval [0, 1], is

concluded. For the Logistic map of Eq.(2) the following regions, depending on the

value of 𝑟, may be considered.

• For 𝑟 < 1, 𝑥 decays to a fixed point (𝑥 → 0). That is, for any value of the

seed x0 between zero and one the 𝑥𝑛 approaches the value of zero

exponentially.

Ch. K. Volos 121

• For 1 ≤ 𝑟 < 3, the previous fixed point loses its stability and another fixed

(𝑥 = 1 – 1/𝑟) appears.

• For 3 ≤ 𝑟 ≤ 4, the Logistic map presents a more complex behavior (such as

repeated period doubling, appearance of odd periods etc) which finally is

leading to chaos.

In Figure 2 this rich dynamical behavior in the third region, which is mainly

characterized by the very interesting period-doubling route from periodic to

chaotic behavior, is illustrated. This so-called “Bifurcation diagram” of Figure 2 is

also a very common perspective in nonlinear dynamics, being in this case a plot of

the steady-state behavior of Eq. (2) with respect to the bifurcation parameter r.

The first bifurcation, as it is shown in Figure 2, occurs at the value of 𝑟 =

 3, followed by further doublings at shorter and shorter intervals of r until the

period goes to infinity at 𝑟∞ = 3.5699 …., signifying chaos. Also, various periodic

windows interspersed beyond 𝑟∞, is observed, in which the behavior returns to a

normal periodic one, quickly followed again by bifurcations to an infinite period.

Figure 1: The map function of the Logistic equation (1), for 𝑟 = 3.99 and

 𝑥0 = 0.4.

122 Chaotic Random Bit Generator Realized with a Microcontroller

Figure 2: Bifurcation diagram of 𝑥𝑛 vs. parameter 𝑟,

illustrating the period-doubling route to chaos

So, for 𝑟∞ > 3.5699 … the Logistic map shows a strange complex behavior

(the so-called chaotic behavior) where map function never repeats its history. This

is evident from Fig.3 where no periodicity arises, for 𝑟 = 3.99 and 𝑥0 = 0.4.

Finally, in Fig.4 the well-known Lyapunov exponent:

𝜆 = 𝑙𝑖𝑚𝑛→∞∑ 𝑙𝑛|𝑓′(𝑥𝑖)|𝑛
𝑖=1 (3)

 𝑓′(𝑥) = 𝑟 − 2𝑟𝑥 (4)

as a function of parameter 𝑟, is displayed. As it is known from the nonlinear

theory a positive Lyapunov exponent indicates chaos. So, Figure 4 confirms the

Logistic map’s dynamical behavior as found from the bifurcation diagram (Figure

2).

Ch. K. Volos 123

Figure 3: Variable 𝑥 vs. 𝑛, for 𝑟 = 3.99 and 𝑥0 = 0.4

Figure 4: Lyapunov exponent (𝜆) vs. parameter r

3 The Chaotic Random Bit Generator

The main feature of the larger number of chaotic random bit generators,

which have been presented, is that they work only in a software environment,

124 Chaotic Random Bit Generator Realized with a Microcontroller

where everything is ideal. For this reason, in this work, a step forward to the

realization of a CRBG via a microcontroller is done. In general, the

microcontroller combines the software programming with the hardware

(processor) for doing a specific job. So, it is very interesting to find out the

strengths and the weaknesses of the specific proposal because the microcontroller

gives us the opportunity for using CRBGs in many applications, such as in

robotics, in cryptography etc.

 As it is mentioned the well-known open-source Arduino prototyping

platform was used in this work for realizing the proposed CRBG. Arduino was

chosen because, among all the other advantages it has, it is probably the most

commercial platform which is used in a great number of applications. So, in this

section the proposed CRBG is presented block by block by presenting also its

realization with the microcontroller.

3.1 The Description of the CRBG

As it is referred in the previous section, various forms of the Logistic map

have been used, especially in the last decade, in the design of chaotic random bit

generators ([23-28]). Especially, in [28] Li et al. design and analyze a pseudo-

random bit generator based on a piecewise-linear map. Authors by choosing the

mean of the xn values assure the generating of the same numbers of bits according

to the following formula:

𝑏𝑛 = �
0, 𝑖𝑓 𝑥𝑛 ≤ 𝑥𝑐𝑟
1, 𝑖𝑓 𝑥𝑛 > 𝑥𝑐𝑟

� (5)

where 𝑥𝑐𝑟 = �̅� denotes the mean value and 𝑏𝑛 is the bit generated by the n-th

iteration of the Logistic map.

In this work, the above mentioned technique for producing bit sequences by

the Logistic map, with 𝑥𝑐𝑟 different from (𝑥𝑐𝑟 ≠ �̅�), has been adopted. Also, the

proposed CRBG (Fig.5) is based on two Logistic Maps (LM) of Eq.(1):

Ch. K. Volos 125

�LM1: 𝑥𝑛+1 = 𝑟1𝑥𝑛(1 − 𝑥𝑛)
LM2: 𝑦𝑛+1 = 𝑟2𝑦𝑛(1 − 𝑦𝑛)

� (6)

having different parameters (𝑟1, 𝑟2) and (𝑥𝑐𝑟1,𝑥𝑐𝑟2) while maps start from random

independent initial conditions: (𝑥0, 𝑦0) with 𝑥0 ≠ 𝑦0. So, the two iterative maps of

Eqs.(6), consist the first block of the proposed CRBG. By using Eq.(5), with

𝑥𝑐𝑟 ≠ �̅�, two different chaotic bit sequences (𝑏1,𝑏2) are produced.

The second block of the proposed CRBG relies on extracting unbiased bits

with no correlation from the two defective Logistic maps. For this purpose one of

the most known de-skewing technique, the Von Neumann technique ([36]) has

been used. Von Neumann proposed a digital post-processing that balances the

distribution of bits. Post-processing converts non-overlapping pairs of bits into

output bits by converting the bit pair “01” into an output “0”, converting “10” into

an output “1”, while the pairs “11” and “00” are discarded. This technique is very

easily implemented but it decreases throughput of generating approximately 1 bit

from 4 bit.

Finally, the third block generates the bit sequence (𝜎𝑖) by using the XOR

function, in the outputs of the second block (𝜎𝑖 = 𝑓1 ⊕ 𝑓2). This technique

provides, as it is shown in the next Section, better results concerning the

“randomness” of the produced bit sequences by the proposed CRBG.

Figure 5: The schematic block diagram of the proposed Chaotic Random Bit

 Generator

126 Chaotic Random Bit Generator Realized with a Microcontroller

3.2 The Realization of the CRBG with the Microcontroller

The proposed CRBG was realized by using an open-source Arduino

prototyping platform made up of an Atmel AVR processor (microcontroller),

based on flexible, easy-to-use hardware and software ([37]). This platform has 14

digital input/output pins, 6 analog inputs, a 16 MHz crystal oscillator, a USB

connection, a power jack, an ICSP header, and a reset button (Figure 6). The

Arduino is connected to the computer through the USB port and programmed

using the language “Wiring” which is similar to C++. The program, which is

known as “sketch” is uploaded into the microcontroller using an Integrated

Development Environment (IDE).

So, in this work, the microcontroller outputs a random bits sequence by

programming it with the sketch (Listing 1), which implements the proposed

CRBG. The produced bitstream by the Arduino was captured to a text file by

using the HyperTerminal program on Windows (Figure 7). This is the simplest

method for writing data from the Arduino to the serial port and save them to a file.

Figure 6: Arduino Uno prototyping platform

Ch. K. Volos 127

Figure 7: The setup of the proposed CRBG

4 Statistical Tests

The invention of a foolproof source of random numbers it is not an easy

task. In order to gain the confidence that a newly developed random bit generator

is cryptographically secure, it should be subjected to a variety of statistical tests

designed to detect the specific characteristics expected of truly random sequences.

There are several options available in the bibliography for analyzing the

randomness of the newly developed random bit generators. The four most popular

options are:

(i) the FIPS-140-2 (Federal Information Processing Standards) suite of

statistical tests of the National Institute of Standards and Technology

(NIST) ([38]),

(ii) the DIEHARD suite of statistical tests ([39]),

(iii) the Crypt-XS suite of statistical tests ([40]) and

(iv) the Donald Knuth’s statistical tests set ([41]).

In this work the “randomness” of the produced bit sequences, by the

proposed CRBG, is analyzed by using the most stringent tests of randomness: the

128 Chaotic Random Bit Generator Realized with a Microcontroller

FIPS-140-2 suite of statistical tests. The results of the use of the four statistical

tests, Monobit test, Poker test, Runs test, and Long run test, which are part of the

FIPS-140-2, are presented in details. According to FIPS-140-2, the examined

CRBG will produce a bitstream, bi = b0, b1, b2, …, bn−1, of length n (at least

20,000 bits), which must satisfy the following standards.

• Monobit Test: The number n1 of 1’s in the bitstream must be 9725 < n1 <

10275.

• Poker Test: This test determines whether the sequences of length n (n = 4)

show approximately the same number of times in the bitstream. The

bounds of this statistic are then 2.16 < x3 < 46.17.

• Runs Test: This test determines whether the number of 0’s (Gap) and 1’s

(Block) of various lengths in the bitstream are as expected for a random

sequence ([38]).

• Long Run Test: This test is passed if there are no runs longer than 26 bits.

// Chaotic Random Bit Generator by Using Two Logistic Maps

// Logistic Map parameters

const double R1 = 3.990; // Logistic map 1 constant

const double R2 = 3.984; // Logistic map 2 constant

double XN = 0.400; // Initial position for XN

double XN1 = 0.800; // Initial position for XN1

double YN = 0.500; // Initial position for YN

double YN1 = 0.720; // Initial position for YN1

double XCR1 = 0.496; // value of xcr1 of the Logistic map 1

double XCR2 = 0.477; // value of xcr2 of the Logistic map 2

int x; // produced bit from Logistic map 1

int y; // produced bit from Logistic map 2

double rem; // result of the modulo

int n = 1;

void setup() {

Ch. K. Volos 129

Serial.begin (9600); // start serial communication at 9600bps

// De-skewing technique for each system

void loop() {

if ((XN < XCR1) && (XN1 >= XCR1))

x = 0;

if ((XN >= XCR1) && (XN1 < XCR1))

x = 1;

if ((YN < XCR2) && (YN1 >= XCR2))

y = 0;

if ((YN >= XCR2) && (YN1 < XCR2))

y = 1;

// XOR Function

rem = n%2;

if (rem == 1.00) {

if ((x == 0) && (y == 0))

Serial.println(0); // write bit 0 to the serial interface

if ((x == 1) && (y == 1))

Serial.println(0); // write bit 0 to the serial interface

if ((x == 0) && (y == 1))

Serial.println(1); // write bit 1 to the serial interface

if ((x == 1) && (y == 0))

Serial.println(1); // write bit 1 to the serial interface

}

// The Logistic Maps' functions

XN = XN1;

XN1 = R1 * XN * (1.000 - XN);

YN = YN1;

YN1 = R2 * YN * (1.000 - YN);

n = n + 1;}

Listing 1: The sketch for the proposed CRBG

130 Chaotic Random Bit Generator Realized with a Microcontroller

As it is known from information theory, noise has maximum entropy. For

this reason, the systems’ parameters and initial condition are chosen so as

measure-theoretic entropy ([42]) of the CRBG, which is given by the following

equation, is maximum.

𝐻𝑛 = 𝑙𝑖𝑚𝑛→∞(−∑ 𝑃(𝐵𝑛) 𝑙𝑛𝑃(𝐵𝑛)𝐵𝑛 𝑛⁄) (7)

𝑃(𝐵𝑛) is the probability of occurrence of a binary subsequence 𝐵 of length 𝑛.

Using the procedure described in the previous section, by using (𝑟1, 𝑟2) =

 (3.990, 3.984), (𝑥𝑐𝑟1, 𝑥𝑐𝑟2) = (0.496, 0.477) and initial condition (𝑥0,𝑦0) =

 (0.400, 0.500), a bitstream of 200,000 bits is obtained which is divided in 10 bit

sequences of length 20,000 bits. In Table 2 the measure-theoretic entropy for

𝑛 = 3 and 𝑛 = 4 and the detailed results of the 10 bit sequences which were

subjected to the four tests of FIPS-140-2 test suite, are presented. As a conclusion,

all the bit sequences produced by the CRBG have numerically verified the specific

characteristics expected of random bit sequences.

Table 2: Results of the measure-theoretic entropy and FIPS-140-2 test suite,

for 10 bit sequences produced by the proposed CRBG

Tests 1 2 3 4 5 6 7 8 9 10

H3 0.6928639 0.6927789 0.6930688 0.6927888 0.6928473 0.6928352 0.6928734 0.6930840 0.6930764 0.6928072

H4 0.6925834 0.6928304 0.6926863 0.6925997 0.6922313 0.6925797 0.6927214 0.6925965 0.6926413 0.6925933

Monobit

Test
√ √ √ √ √ √ √ √ √ √

Poker

Test
√ √ √ √ √ √ √ √ √ √

Runs

Test
√ √ √ √ √ √ √ √ √ √

Long Run

Test
√ √ √ √ √ √ √ √ √ √

Result Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed

Ch. K. Volos 131

Finally, by using the proposed CRBG, with the systems’ parameters and

initial conditions which has been previously mentioned, two bit sequences of

length 20,000 bits from the outputs of each of the two Logistic maps, have been

obtained. The measure-theoretic entropy and the results of FIPS-140-2 test suite of

the two bit sequences produced by each Logistic map and of the XORed bitstream,

which is the output of the proposed CRBG, are shown in Table 3. As follows from

the comparison of the results of Table 3, the application of the XOR function

increases significantly the measure-theoretic entropy and also improves the results

of the FIPS-140-2 test suite. Although the bit sequence produced from the first

Logistic map (LM1) failed to pass the Poker Test (𝑥3 = 140.36064) and also the

bit sequence produced from the second Logistic map (LM2) failed to pass the

Poker Test (𝑥3 = 119.81938) and the Runs Test, the final bit sequence of the

CRBG passed all the tests of FIPS-140-2 with very good results, as it shown in

Table 4.

Table 3: Results of the measure-theoretic entropy and FIPS-140-2 test suite,

for the bit sequences of each Logistic map and of the final CRBG

 Tests LM1 LM2 LM1 (XOR) LM2

H3 0.6893599 0.6901588 0.6930719

H4 0.6874755 0.6925876 0.6926863

Monobit Test √ √ √

Poker Test X X √

Runs Test √ X √

Long Run Test √ √ √

Result Failed Failed Passed

132 Chaotic Random Bit Generator Realized with a Microcontroller

Table 4: Results of FIPS-140-2 test, for the CRBG

Monobit

Test

Poker

Test

Runs

Test

Long Run

Test

 B1 = 2469

 B2 = 1268

n1 = 10018 3.0021 B3 = 617 No

(50.09 %) B4 = 323

 B5 = 161

 B6 = 158

Passed Passed Passed Passed

5 Conclusions

In this paper, a chaotic random bit generator, which is based on the Logistic

map and implemented by a microcontroller, was presented. The final bit sequence

was the result of the application of the XOR function in two chaotic bit sequences

that were produced by Logistic maps running side-by-side, with different initial

conditions and systems’ parameters. The use of the XOR function joint with

different values of threshold values (𝑥𝑐𝑟1,𝑥𝑐𝑟2) of each map increased the

complexity of the random bit sequence, in regard to other previous works, as it

was confirmed by the use of a well-known statistical test suite FIPS-140-2. So, the

chaotic random bit generator of this work proved to be very robust against

interference from an intruder.

Also, the use of probably the most commercial platform, the Arduino

prototyping platform, appointed the proposed chaotic random bit generator

suitable in many interesting applications, such as in the design of robot’s motion

controllers and cryptographic systems. So, in future works, the experimental

realization of such systems based in the proposed chaotic random bit generator

will be studied.

Ch. K. Volos 133

References

[1] A.J. Menezes, P.C. Van Oorschot and S. A. Vanstone, Handbook of applied

cryptography, CRC Press, 1997.

[2] T. Shu, Uniform random numbers: Theory and practice, Kluwer Academic

Publishers, 1995.

[3] D. Knuth, The art of computer programming, Addison-Wesley Publishing

Co., Reading, MA, 1981.

[4] S. Park and K. Miller, Random numbers generators: Good ones are hard to

find, Communications of the ACM, 31(10), (1988), 1192-1201.

[5] C. Grebogi and J. Yorke, The impact of chaos on science and society, United

Nations University Press, 1997.

[6] T. Yang, A survey of chaotic secure communication systems, International

Journal of Computational Cognition, 2(2), (2004), 81-130.

[7] L. Kocarev, Chaos-based cryptography: A brief overview, IEEE Circuits and

Systems Magazine, 1, (2001), 6-21.

[8] G. Alvarez and S. Li, Some basic cryptographic requirements for chaos based

cryptosystems, International Journal of Bifurcation and Chaos, 16, (2006),

2129-2151.

[9] J. Wei, X. Liao, K. Wong and T. Xiang, A new chaotic cryptosystem, Chaos,

Solitons & Fractals, 30(5), (2006), 1143-1152.

[10] K. Li, Y. C. Soh and Z. G. Li, Chaotic cryptosystem with high sensitivity to

parameter mismatch, IEEE Transactions on Circuits and Systems I:

Fundamental Theory and Applications, 50, (2003), 579-583.

[11] Ch. K. Volos, I.M. Kyprianidis and I.N. Stouboulos, Experimental

demonstration of a chaotic cryptographic scheme, WSEAS Transactions on

Circuits and Systems, 5, (2006), 1654-1661.

[12] Ch. K. Volos, I.M. Kyprianidis and I. N. Stouboulos, Fingerprint images

encryption process based on a chaotic true random bits generator,

134 Chaotic Random Bit Generator Realized with a Microcontroller

International Journal of Multimedia Intelligence and Security, 1, (2010),

320-335.

[13] Ch. K Volos, I. M. Kyprianidis and I.N. Stouboulos, Image encryption

process based on chaotic synchronization phenomena, Signal Processing,

93, (2013), 1328-1340.

[14] S. Oishi and H. Inoue, Pseudo-random number generators and chaos,

Transactions of the Institute of Electronics and Communication Engineers of

Japan E, 65, (1982), 534-541.

[15] V.V. Kolesov, R.V. Belyaev and G.M. Voronov, Digital random-number

generator based on the chaotic signal algorithm, Journal of Communications

Technology and Electronics, 46, (2001), 1258-1263.

[16] T. Stojanovski and L. Kocarev, Chaos-based random number generators -

Part I: Analysis, IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications, 48, (2001), 281-288.

[17] S. Li, X. Mou and Y. Cai, Pseudo-random bit generator based on coupled

chaotic systems and its application in stream-ciphers cryptography, In

Progress in Cryptology – INDOCRYPT 2001, Lecture Notes in Computer

Science, 2247, (2001), 316-329.

[18] L. Kocarev and G. Jakimoski, Pseudorandom bits generated by chaotic

maps, IEEE Transactions on Circuits and Systems I: Fundamental Theory

and Applications, 50, (2003), 123-126.

[19] S. M. Fu, Z. Y. Chen and Y. A. Zhou, Chaos based random number

generators, Computer Research and Development, 41, (2004), 749-754.

[20] L. Huaping, S. Wang and H. Gang, Pseudo-random number generator based

on coupled map lattices, International Journal of Modern Physics B, 18,

(2004), 2409-2414.

[21] R. M. May, Simple mathematical models with very complicated dynamics,

Nature, 261, (1976), 459-467.

Ch. K. Volos 135

[22] S.M. Ulam and J. Von Neumann, On combination of stochastic and

deterministic processes, Bulletin of the American Mathematical Society, 53,

(1947), 11-20.

[23] R. Ursulean, Reconsidering the generalized Logistic map as a pseudo

random bit generator, Electronika Ir Electrotechnika, 7, (2004), 10-13.

[24] V. Patidar, K.K. Sud and N.K. Pareek, A pseudo random bit generator based

on chaotic Logistic map and its statistical testing, Informatica, 33, (2009),

441-452.

[25] S. Ahadpour, Y. R. Sadra and Z. ArastehFard, A novel chaotic encryption

scheme based on pseudorandom bit padding, International Journal of

Computer Science Issues, 9, (2012), 449-456.

[26] J. Liu, Design of a chaotic random sequence and its application, Computer

Engineering, 31, (2005), 150-152.

[27] L. Wang, F. P. Wang and Z. J. Wang, Novel chaos-based pseudo-random

number generator, Acta Physica Sinica, 55, (2006), 3964-3968.

[28] X. M. Li, H. B. Shen and X. L. Yan, Characteristic analysis of a chaotic

random number generator using piece-wise-linear map, Journal of

Electronics Information Technology, 27, (2005), 874-878.

[29] M.J. Feigenbaum, The universal metric properties of nonlinear

transformations, Journal of Statistical Physics, 21, (1979), 669-706.

[30] M. J. Feigenbaum, Universal behaviour in nonlinear systems, Los Alamos

Science, 1, (1980), 4-27.

[31] J. Fridrich, Symmetric ciphers based on two-dimensional chaotic maps,

International Journal of Bifurcation and Chaos, 8, (1998), 1259-1264.

[32] Q. Zhou, K. W. Wong, X. Liao, T. Xiang and Y. Hu, Parallel image

encryption algorithm based on discretized chaotic map, Chaos Solitons &

Fractals, 38, (2008), 1081-1092.

136 Chaotic Random Bit Generator Realized with a Microcontroller

[33] R. Tenny and L. S. Tsimring, Additive mixing modulation for public key

encryption based on distributed dynamics, IEEE Transactions on Circuits

and Systems I, 52, (2005), 672-679.

[34] G. Jakimoski and L. Kocarev, Block encryption ciphers based on chaotic

maps, IEEE Transactions on Circuits and Systems I, 48, (2002), 163-169.

[35] Y. Wang, X. Liao and K. Wong, One-way hash function construction based

on 2D coupled map lattices, Information Sciences, 178, (2008), 1391-1406.

[36] J. Von Neumann, Various techniques used in connection with random digits,

G.E. Forsythe (eds.), Applied Mathematics Series, National Bureau of

Standards, 12, (1951), 36-38.

[37] Arduino, www.arduino.cc.

[38] NIST, Security Requirements for Cryptographic Modules, FIPS PUB 140-2,

http://csrc.nist.gov/publications/fips/fips140-2/ fips1402.pdf, 2001.

[39] G. Marsaglia, DIEHARD Statistical Tests, http://stst.fsu.edu/pub/diehard,

1995.

[40] H. Gustafson, H.E. Dawson, L. Nielsen and W. Caelli, A computer package

for measuring the strength of encryption algorithms, Journal of Computer

Security, 13, (1994), 687-697.

[41] D. Knuth, The art of computer programming: Semiemperical algorithms,

Addison Wesley, Reading, USA, 1998.

[42] A.M. Fraser, Information and entropy in strange attractors, IEEE

Transactions on Information Theory, 35(2), (1989), 245-262.

http://www.arduino.cc/

