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Abstract 

We prove a general theorem on the continuous dependence of solutions of 

boundary value of boundary value problems for delay differential equations with a 

nonlinear problems boundary condition. The proof is based on the continuity of 

the Brouwer topological degree. Appropriate remarks on the convergence of 

sequences of functions improve some known results. 
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1  Introduction  

In this work we consider the most general boundary value problem for 

delay differential equations. In particular we study boundary value problems of the 

form 

1 Department of Mathematics, University of Athens, GR-15784, Panepistimiopolis,  
  Athens, Greece. E-mail: eathan@math.uoa.gr 
 
Article Info: Received : July 1, 2013. Revised : August 30, 2013. 
                       Published online : December 1, 2013. 

                                                           

mailto:eathan@math.uoa.gr
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𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡),   𝑇(𝑥) = 𝑎, 

where 𝑓 is a vector function, 𝑇 is a continuous operator and 𝑎 is constant vector. 

We prove a general theorem about continuous dependence of solutions of the 

above boundary value problem. 

Existence, uniqueness and continuous dependence of solutions of 

boundary value problems of this type have been proved in [1], [2] and [3]. 

Corresponding results for boundary value problems for ordinary differential 

equations are included in [4], [5] and [6].More details for problems of this type 

can be find in the books [7], [8], [9] for ordinary differential equations and 

[7],[10], [11] and [12] for delay differential equations. 

The proof here is quite different from the method, in the papers [1] and [2], 

where the Schauder’s theorem is employed. In our work the continuity of the 

Brouwer topological degree is applied [13], [14]. In [1] the results are proved in 

the space of continuous functions but in [2] this space have been replaced by the 

space of Lipschitzian functions. 

In [1] and [2] the theorems require the hypothesis of “unrestricted uniqueness” 

that is a condition which fulfills the function 𝑓 such that the corresponding 

boundary value problem has exactly one solution. This condition is needed only 

for the limit problem. In this paper we will use the continuous dependence of the 

Brouwer topological degree [13], [14]. Also we will apply some properties of the 

convergences of sequences of functions in order to generalize known results. 

 

 

2  Preliminaries and notations 

Let 𝜏 be a positive number. The space of all continuous functions 

𝜑: [−𝜏, 0] → ℝ𝛮 , 

will be denoted by 𝐶0 = 𝐶0([−𝜏, 0],ℝ𝛮) endowed with the supremum norm 

‖𝜑‖𝐶0 = sup{|𝜑(𝑡)|: 𝑡 ∈ [−𝜏, 0]}. 
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For a function 𝑥: [−𝜏, 𝑏] → ℝ𝛮 , 𝑏 > 0and 𝑡 ∈ [0, 𝑏], we define the function 

𝑥𝑡: [−𝜏, 0] → ℝ𝛮 by 𝑥𝑡(𝑠) = 𝑥(𝑡 + 𝑠), 𝑠 ∈ [−𝜏, 0]. Especially the condition 

𝑥0 = 𝜑 is equivalent to 𝑥(𝑠) = 𝜑(𝑠), 𝑠 ∈ [−𝜏, 0]. 

Let 𝐴 = 𝐴([0, 𝑏],ℝ𝛮)be the space of absolutely continuous functions from 

[0, 𝑏] into ℝ𝛮 endowed with the supremum norm. We denote by 𝐶(𝐴,ℝ𝑁) the 

space of continuous operators from 𝐴 to ℝ𝛮. We say that a function 𝑓: [0, 𝑏] ×

𝐶0 → ℝ𝛮 satisfies the Carathéodory conditions if the following are valid: 

(i) for every fixed 𝜑, 𝑓 is measurable with respect to 𝑡, 

(ii) for every fixed 𝑡, 𝑓 is continuous with respect to 𝜑 and 

(iii) for every bounded set 𝐷 ⊂ 𝐶0 there exists an integrable function 𝑚 such 

that 

|𝑓(𝑠,𝜑)| ≤ 𝑚(𝑠), 

for𝑠 ∈ [0, 𝑏],𝜑 ∈ 𝐷. A family 𝛷 of the functions 𝑓: [0, 𝑏] × 𝐶0 → ℝ𝛮 we 

say that satisfies the Carathéodory conditions uniformly if every function 𝑓 

fulfils the conditions (i), (ii) and also 

(iv)  for every bounded set 𝐷 ⊂ 𝐶0 there exists an integrable function 𝑀such 

that 

|𝑓(𝑠,𝜑)| ≤ 𝑀(𝑠) 

for every 𝑠 ∈ [0, 𝑏], 𝜑 ∈ 𝐷 and 𝑓 ∈ 𝛷.With 𝒞 we will denote the space of 

functions 

𝑓: [0, 𝑏] × 𝐶0 → ℝ𝛮 

which satisfy the Carathéodory conditions.  

Now we present some new results regarding 𝑎 −convergence or 

continuous convergence that we will need. 

Let (𝑋,𝑑), (𝑌,𝜌) be arbitrary metric spaces. In particular 𝑋 = [0, 𝑏] × 𝐶0𝑌 =

ℝ𝑁 in our case. Also for the remaining of this section, let 𝑓𝑛, 𝑓:𝑋 → 𝑌,𝑛 = 1,2, …. 

We recall the following definitions (See also [15], [16]). 
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(a) We say that (𝑓𝑛)converges 𝑎 to 𝑓 �𝑓𝑛
𝑎
→ 𝑓� iff, for each 𝑥 ∈ 𝑋 and for each 

sequence (𝑥𝑛)in 𝑋, with 𝑥𝑛 → 𝑥 it holds that 𝑓𝑛(𝑥𝑛) → 𝑓(𝑥). 

(b) We say that the sequence (𝑓𝑛) is exhaustive, iff 

∀ 𝑥 ∈ 𝑋  ∀ 𝜀 > 0 ∃ 𝛿 = 𝛿(𝑥, 𝜀) > 0 ∃ 𝑛0 = 𝑛0(𝑥, 𝜀): 

𝑑(𝑥, 𝑡) < 𝛿 ⇒ 𝜌�𝑓𝑛(𝑥),𝑓𝑛(𝑡)� < 𝜀,   𝑓𝑜𝑟 𝑛 ≥ 𝑛0. 

(c) We say that (𝑓𝑛) is weakly-exhaustiveiff, 

∀ 𝑥 ∈ 𝑋  ∀ 𝜀 > 0 ∃ 𝛿 = 𝛿(𝑥, 𝜀) > 0 ∶ 

𝑑(𝑥, 𝑡) < 𝛿 ⇒ ∃ 𝑛𝑡 ∈ ℕ: 𝜌�𝑓𝑛(𝑥),𝑓𝑛(𝑡)� < 𝜀,   𝑓𝑜𝑟 𝑛 ≥ 𝑛𝑡 . 

Obviously if (𝑓𝑛) is exhaustive then (𝑓𝑛) is weakly-exhaustive. It is not hard to 

see that the inverse implication fails ([15]). 

Now, we formulate some new results on 𝑎 −convergence. The proofs of 

Propositions 2.1 and 2.2 can be found in [15] and the proof of Propositions 2.3 and 

2.4 in [16]. 

 

Proposition 2.1 The following are equivalent. 

(a) 𝑓𝑛
𝑎
→ 𝑓, 

(b) (𝑓𝑛)convergespointwise to𝑓and(𝑓𝑛) is exhaustive. 

 

Proposition 2.2 Suppose that(𝑓𝑛)converges pointwiseto𝑓. Then the following are 

equivalent. 

(a) 𝑓is continuous, 

(b) (𝑓𝑛)is weakly exhaustive. 

We note that the functions 𝑓𝑛, 𝑛 = 1,2, … need not to be continuous in the above 

theorem. Also as a corollary from proposition 2.1, 2.2 we get that the 𝑎 −limit of 

any sequence of functions is necessarily continuous. With the next theorems we 

see how 𝑎 −convergence and uniform convergence are related. 

Proposition 2.3 Suppose that𝑓𝑛
𝑎
→ 𝑓. Then(𝑓𝑛)converges uniformly to 𝑓 on 

compact subsets of 𝑋. 
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For details and concrete examples regarding the difference of 𝑎 −convergence and 

uniform local convergence see [16].In the inverse direction, the continuity of the 

functions𝑓𝑛, 𝑛 = 1,2, …is necessary. 

 

Proposition 2.4 Suppose that {𝑓𝑛} ⊆ 𝐶(𝑋,𝑌) ≔ {𝑓:𝑋 → 𝑌|𝑓 is continuous}. If for 

each 𝑥 ∈ 𝑋 there is a neighborhood 𝐴 of 𝑥 such that (𝑓𝑛) converges uniformly to 

𝑓on 𝐴, then, 

𝑓𝑛
𝑎
→ 𝑓. 

In case that 𝑋 is locally compact and {𝑓𝑛} ⊆ 𝐶(𝑋,𝑌) as a corollary from 

propositions 2.3 and 2.4 we get that 

𝑓𝑛
𝑎
→ 𝑓 ⇔ (𝑓𝑛) converges uniformly on compacta to 𝑓. 

In view of the above propositions, some comments are in order: 

(a) Suppose {𝑓𝑛:𝑛 = 1,2, … } ⊆ 𝒞 and that 𝑓𝑛
𝑎
→ 𝑓. Then by propositions 2.1 

and 2.2 it follows that  𝑓 is continuous, hence 𝑓 ∈ 𝒞. 

(b) In theorems on continuous dependence of solutions e.g. theorem 5.1 of 

Hale [11], we require that 𝑓𝑛(𝑡,⋅)
𝑎
→ 𝑓(𝑡,⋅) for each 𝑡 ∈ [0, 𝑏]. From 

propositions 2.1 and 2.2, it follows again that 𝑓(𝑡,⋅) is continuous for each 

𝑡 ∈ [0, 𝑏]. Also, since  

𝑓𝑛(𝑡,𝜑) → 𝑓(𝑡,𝜑), 𝑛 → ∞ we get that 𝑓(⋅,𝜑)is measurable for each 

𝜑 ∈ 𝐶0. Hence condition (𝑖) and (𝑖𝑖) are automatically satisfied by 𝑓. 

 

 

3  Continuous dependence 

In this section we prove a general theorem on continuous dependence of 

solutions of boundary value problems for differential equations with delay. 

We consider the following boundary value problem 

 𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡), (1) 
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 𝑇(𝑥) = 𝑎, (2) 

where𝑓 ∈ 𝒞 and 𝑇 ∈ ℒ. 

The continuous function 𝑥: [−𝜏, 𝑏] → ℝ𝑁 and 𝑎 ∈ ℝ𝑁is called the solution of 

(1) in Carathéodory sense if 𝑥 satisfies (1) almost everywhere on [0, 𝑏], 𝑥 is 

constant on [−𝜏, 0]and 𝑥 is absolutely continuous on [0, 𝑏]. The same function is 

called the solution of boundary value problem (1), (2) if this is a solution of 

equation (1) in Carathéodory sense and satisfies boundary condition (2). 

From Theorem 3.1, Theorem 5.1 and §7 of Hale [11] (see also Theorem 3.2 of 

[8]) with some modifications we get the following Theorem 3.1 and Theorem 3.2. 

 

Theorem 3.1 If 𝑓 ∈ 𝒞, then for each (𝑡,𝜑) ∈ [0, 𝑏] × 𝐶0 with 𝜑 constant, there is 

a solution of (1) passing through (𝑡,𝜑). 

 

Theorem 3.2Let 𝑓, 𝑓𝑛 ∈ 𝒞, 𝜑,𝜑𝑛 ∈ 𝛢, 𝑛 = 1,2, … with 𝜑𝑛
𝑝.𝑤
��𝜑,{𝑓𝑛: 𝑛 ∈ ℕ} 

satisfies uniformly Carathéodory conditions and𝑓𝑛
𝑎
→𝑓. If 𝑥𝑛 is any solution of the 

problem 𝑥′(𝑡) = 𝑓𝑛(𝑡, 𝑥𝑡), 𝑥0 = 𝜑𝑛, and the problem 𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡), 𝑥0 = 𝜑 

has unique solution, let 𝑥, then 𝑥𝑛 converges uniformly to 𝑥. 

 

Now we prove a general theorem on the continuous dependence of boundary 

value problems for delay differential equations of type (1), (2). 

 

Theorem 3.3Let 𝑓0,𝑓𝑛 ∈ 𝒞 and 𝑇0,𝑇𝑛 ∈ 𝐶(𝐴,ℝ𝑁), 𝑛 = 1,2, …. Also we suppose 

that {𝑓𝑛:𝑛 ∈ ℕ} satisfies uniformly Carathéodory conditions. 

(i) 𝑓𝑛
𝑎
→𝑓0 and  𝑇𝑛

𝑎
→𝑇0. 

(ii) The boundary value problem 

𝑥′(𝑡) = 𝑓𝑛(𝑡, 𝑥𝑡),   𝑥0 = 𝑢 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛),  

where 𝑢 ∈ ℝ𝑁, has at most one solution for every 𝑢 ∈ ℝ𝑁, 𝑛 = 0,1,2 … 

(iii) The boundary value problem 
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𝑥′(𝑡) = 𝑓0(𝑡, 𝑥𝑡),   𝑇0(𝑥) = 𝑟,  

has at most one solution for each𝑟 ∈ ℝ𝑁. 

Let 𝑣, 𝑣𝑛 ∈ ℝ𝑁with 𝑙𝑖𝑚𝑛→∞ 𝑣𝑛 = 𝑣. If 𝑥0 ≡ 𝑥0(𝑡,𝑓, 𝑣,𝑇) is the solution of 

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡),   𝑇(𝑥) = 𝑣, 

then for each 𝜀 > 0 there exists 𝑛0 = 𝑛0(𝜀) such that for 𝑛 ≥ 𝑛0 the boundary 

value problem 

𝑥′(𝑡) = 𝑓𝑛(𝑡, 𝑥𝑡),   𝑇𝑛(𝑥) = 𝑣𝑛 

has a solution 𝑥𝑛 ≡ 𝑥𝑛(𝑡,𝑓𝑛, 𝑣𝑛,𝑇𝑛)  satisfying  

‖𝑥𝑛 − 𝑥0‖ < 𝜀. 

Proof. Let 𝜀 > 0 . We consider the following problem 

�𝑃𝑛(𝑢)�: 𝑥′(𝑡) = 𝑓𝑛(𝑡, 𝑥𝑡),   𝑥0 = 𝑢,  

where 𝑢 ∈ ℝ𝑁, 𝑛 = 0,1,2, … .  

Assertion: 

There exist a neighborhood 𝑉 of 𝑥0(0) in ℝ𝑁 and 𝑚 ∈ ℕ such that for 

every 𝑢 ∈ 𝑉, 𝑛 ≥ 𝑚 the problem �𝑃𝑛(𝑢)� has a solution 𝑢𝑛 satisfying  

 ‖𝑢𝑛 − 𝑥0‖ < 𝜀. 

Proof of Assertion: 

Suppose not, then in view of Theorem 3.1, it follows that for each 𝑚, there is 

𝑢𝑚 ∈ 𝐵 �𝑥0(0), 1
𝑚
� and 𝑛𝑚 ≥ 𝑚 such that the solution 𝑢𝑛𝑚  of problem 

�𝑃𝑛𝑚(𝑢𝑚)� satisfies ‖𝑢𝑛𝑚 − 𝑥0‖ ≥ 𝜀. But, since 𝑢𝑚 → 𝑥0(0), as 𝑚 → ∞, it 

follows from Theorem 3.2 that 𝑢𝑛𝑚  converges uniformly to 𝑥0. Hence, we arrive 

to a contradiction. 

We observe that if 𝑓𝑛 = 𝑓0 for 𝑛 = 1,2, … then the conclusion of the assertion 

holds for the solutions of 𝑃0(𝑢) on some neighbourhood of 𝑥0(0). 

Now let (𝑉,𝑚) be a pair satisfying the Assertion where 𝑉 satisfies also the 

above observation. For each 𝑢 ∈ 𝑉 we set 𝜎𝑛𝑢 to be the solution of problem 

�𝑃𝑛(𝑢)� such that 
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 ‖𝜎𝑛𝑢 − 𝑥0‖ ≤ 𝜀  𝑓𝑜𝑟  𝑛 ≥ 𝑚,   𝑜𝑟  𝑛 = 0. (3) 

We fix a ball 𝐵1 with centre𝑥0(0) in ℝ𝑁 such that 𝐵1 ⊆ 𝑉 and define 

𝐹𝑛:𝐵1 → ℝ𝑁 ,𝐹𝑛(𝑢) = 𝑇𝑛(𝜎𝑛𝑢)(𝑛 = 0,1, … ). 

We observe that, if 𝑢𝑛 → 𝑢0, 𝑢𝑛 ∈ 𝐵1,𝑛 = 1,2, … then by Theorem 3.2 it follows 

that 𝜎𝑛
𝑢𝑛  converges uniformly to 𝜎0

𝑢0. 

Hence by hypothesis (i) we get that 

𝐹𝑛
𝑎
→𝐹0 , 

and Proposition 2.3 implies the uniform convergence of 𝐹𝑛 to 𝐹0, 

 𝐹𝑛
𝑢
→𝐹0. (4) 

Also by the uniqueness of solution (hypothesis (ii)), it follows again from 

Theorem 3.2 that each 𝐹𝑛(𝑛 = 0,1, … ) is continuous (since the mapping 𝑢 → 𝜎𝑛𝑢 

is continuous).                                                                                                          □ 

 

In view of (iii),  𝐹 is injective and we have 𝑣 ∉ 𝐹0(𝜕𝐵1). Hence 

𝑑𝑖𝑠𝑡(𝐹0(𝜕𝐵1),𝑣) = 𝑑 > 0, 

since𝐹0(𝜕𝐵1) is closed. Taking into account that 𝑣𝑛 → 𝑣 and (4), we get the 

existence of 𝑛0 ∈ ℕ, such that 

𝑑𝑖𝑠𝑡(𝐹𝑛(𝜕𝐵1),𝑣𝑛) ≥ 𝑑 3⁄ , 

for 𝑛 ≥ 𝑛0. Consequently, the Brouwer topological degree deg(𝐹𝑛,𝐵1, 𝑣𝑛) is well 

defined for 𝑛 ≥ 𝑛0 and in view of the continuous dependence of topological 

degree there is 𝑛1 ∈ ℕ, 𝑛1 ≥ 𝑛0 such that deg(𝐹𝑛,𝐵1,𝑣𝑛) = deg(𝐹0,𝐵1, 𝑣) for 

𝑛 ≥ 𝑛1. Since 𝐹0 is injective, we have (see [13], [14]) deg(𝐹0,𝐵1,𝑣) = ±1. Hence 

for 𝑛 ≥ 𝑛1 we have 

deg(𝐹𝑛,𝐵1,𝑣𝑛) = ±1 

for𝑛 ≥ 𝑛1and the equation 𝐹𝑛(𝑢) = 𝑣𝑛 has at least one solution𝑢𝑛 in 𝐵1. From 

property (3) of the solution of the problem �𝑃𝑛(𝑢𝑛)� it follows that the solution 

𝑥𝑛 ≔ 𝜎𝑛
𝑢𝑛fulfils the condition ‖𝑥𝑛 − 𝑥‖ < 𝜀, that means the Theorem is proven 

by taking 𝑛0 = 𝑛1.                                                                                                   □ 
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Now from Theorem 3.2 we have the following. 

 

Corollary 3.3 Under the assumptions of Theorem 3.2 we assume additional that 

the boundary value problem 

𝑥′(𝑡) = 𝑓𝑛(𝑡, 𝑥𝑡),   𝑇𝑛(𝑥) = 𝑢𝑛 

has a unique solution 𝑥𝑛. Then we have 𝑙𝑖𝑚𝑛→∞ 𝑥𝑛 = 𝑥 uniformly on [0, 𝑏]. 

Proof. It follows directly from Theorem 3.3.                                                           □ 

 

Corollary 3.4 If the problems corresponding to equation 𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡) have 

local uniqueness and if the boundary value problem 

 𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡),   𝑇(𝑥) = 𝑣 (5) 

have at most one solution for every 𝑣 ∈ ℝ𝑁, then the set 𝑉 of all 𝑣 ∈ ℝ𝑁 for which 

(5) has at most one solution is an open subset of ℝ𝑁. 

Proof. If 𝑣0 ∈ 𝑉 it is not an interior point of 𝑉, then there exists  a sequence (𝑣𝑛), 

𝑛 = 1,2, … in ℝ𝑁 such that lim𝑛→∞ 𝑣𝑛 = 𝑣 and 

𝑥′(𝑡) = 𝑓(𝑡, 𝑥𝑡),   𝑇(𝑥) = 𝑣𝑛 

has no solution. This contradicts the conclusion of Theorem 3.3 by taking 𝑓𝑛 = 𝑓0, 

𝑇𝑛 = 𝑇0.                                                                                                                    □ 
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