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Abstract

We present a single server subject to random breakdowns followed
by a repair and Bernoulli scheduled server vacation. The customers ar-
rive in batches and whose service being provided one by one according
to first come first served discipline. Upon completion of a service, the
server will go for vacation with probability p or remain staying back in
the system for providing the service to the next customer with proba-
bility 1-p, if any. Both service time and vacation time follow general
(arbitrary) distribution. The system may experience breakdown at ran-
dom time and the breakdowns occur according to Poisson stream. Once
the server breakdown, it must be send to repair process immediately.
The most realistic aspect in modeling of a unreliable server, multi op-
tional repair may be required. If the server could not be repaired or
restored with the first essential repair, subsequent repairs are needed
for the restoration of the server. Both essential and optional repair
times follow exponential distribution. We obtain the time dependent
probability generating functions in terms of their Laplace transforms
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and the corresponding steady state results explicitly. Also we derive
the average number of customers in the queue and the average waiting
time in closed form.
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Keywords: Bernoulli vacation; probability generating function; first essential
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1 Introduction

Queueing modeling is being used enormously and effectively in congestion

problems which are encountered in real life such as waiting lines at airports,

railway stations, banks as well as industrial situations which includes computer

systems, web services and communication networks etc. There is a vast liter-

ature in the research of queueing theory, because of its wide applicability in

modeling over congestion problems. The queueing model with server vacations

(server absences) has been well studied and successfully applied in many areas

such as production, servicing, computer and communication network systems.

A remarkable and excellent surveys on the earlier works of vacation models

have been reported by Doshi (1986), Takagi (1991). Many authors including

Choudhury and Madhan (2004), Anabosi et al.(2003) incorporated the concept

of Bernoulli scheduled server vacation on non-Markovian queues.

In queueing theory parlance, temporary periods of unavailability of service

are referred to as server vacations, server interruptions or server breakdowns.

Server break down is a great issue as it makes negative impact on the system

performance. So it is important to have a reliable server in order to maintain

the quality of service. Maraghi et al.(2009) have obtained steady state solu-

tion of batch arrival queueing system with random breakdowns and Bernoulli

schedule server vacations having general vacation time. The most realistic as-

pect in modeling of a unreliable server, multi optional repair which have been

discussed by Madhu jain et al.(2011). When server could not be repaired or

restored by the first essential repair, subsequent repairs are needed to restore
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the server. Hsieh, Yi-Chih and Andersl(1995) studied a queueing model in

which the server is subject to several types of breakdowns, and each type has

two possible stages of repair. Gray, Wang and Scott(2004) studied a queue-

ing Model with multiple types of server breakdowns in which each type of

breakdown requires a finite random number of stages of repair.

In this paper we consider a queueing system wherein the customers arrive

in batches and the server provides service one by one in FCFS basis. As soon

as the service of a customer is completed, the server may go for a vacation with

probability p or continue staying in the system to provide service to a next

customer, if any, with probability 1−p. On account of, the system may subject

to breakdowns during busy time, the breakdowns occur according to Poisson

process with mean break down rate α(> 0). Once the system breakdown, it

is immediately sent for repair wherein the repairman or repairing apparatus

provides the first essential repair (FER). After the completion of FER, the

server may opt for second optional repair (SOR) with probability r or may

join the system with complementary probability 1-r to render the service to

the customers. After the completion of the required repair, the server provides

service with the same efficiency as before failure according to FCFS discipline.

Both first essential and second optional repair follow exponential with mean 1
β1

and 1
β2

respectively. After the repair process complete, the server resumes its

work immediately. Also whenever the system meet a break down, the customer

whose service is interrupted goes back to the head of the queue.

The rest of the paper is organized as follows. The mathematical description

of our model is in Section 2 and equations governing the model are given in

Section 3. The time dependent solution have been obtained in Section 4, the

corresponding steady state results have been derived explicitly in Section 5

and the concluding remarks is in 6.

2 Mathematical Description of the model

We assume the following to describe the queueing model of our study.

• Customers arrive at the system in batches of variable size in a compound

Poisson process. Let λci4t (i=1,2,3,....) be the first order probability that

a batch of i customers arrives at the system during a short interval of time
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(t, t +4t), where 0≤ci≤ 1 and
∑∞

i=1 ci = 1 and λ > 0 is the mean arrival rate

of batches. The customers are served one-by-one on a ”first come-first served”

basis.

• Each customer undergoes service provided by a single server on a first

come first served basis. The service time follows different general (arbitrary)

distributions with distribution function B(v) and the density function b(v).

• Let µ(x)dx be the conditional probability of completion of the service

during the interval (x, x+ dx] given that elapsed service time is x, so that

µ(x) =
b(x)

1−B(x)
(1)

and therefore,

b(v) = µ(v)e
−

∫ v

0

µ(x)dx
(2)

•As soon as, service of a customer is completed, the server may go for a

vacation of random length V with probability p (0 ≤ p ≤ 1) or it may continue

to serve the next customer (1− p).

•The vacation time also follow general (arbitrary) distribution with distri-

bution function V(s) and the density function v(s). Let γ(x)dx be the condi-

tional probability of a completion of a vacation during the interval (x, x + dx]

given that the elapsed vacation time is x, so that

γ(x) =
v(x)

1− V (x)
(3)

and therefore,

v(s) = γ(s)e
−

∫ s

0

γ(x)dx
(4)

• On returning from vacation the server instantly starts serving the cus-

tomer at the head of the queue, if any.

• The system may break down at random and breakdowns are assumed to

occur according to a Poisson stream with mean breakdown rate α > 0.
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•As soon as the server is broken down, it is immediately sent for repair

wherein the repairman or repairing apparatus provides the first essential repair

(FER). After the completion of FER, the server may opt for second optional

repair (SOR) with probability r or may join the system with complementary

probability 1-r to render the service to the customers.

• The repair process provides two types of repair in which the first type of

repair is essential and the second type of repair is optional. Both exponentially

distributed with mean 1
β1

. and 1
β2

. After the completion of the required repair,

the server provides service with the same efficiency as before failure according

to FCFS discipline.

• Various stochastic processes involved in the system are assumed to be

independent of each other.

3 Definitions and equations governing the sys-

tem

We let,

(i) Pn(x, t) = Probability that at time ’t’ the server is active providing ser-

vice and there are ’n’ (n ≥ 0) customers in the queue excluding the one

being served and the elapsed service time for this customer is x. Con-

sequently Pn(t) denotes the probability that at time ’t’ there are ’n’

customers in the queue excluding the one customer in the service irre-

spective of the value of x.

(ii) Vn(x, t) = probability that at time ’t’ the server is on vacation with

elapsed vacation time x, and there are ’n’ (n ≥ 0) customers waiting in

the queue for service. Consequently Vn(t) denotes the probability that at

time ’t’ there are ’n’ customers in the queue and the server is on vacation

irrespective of the value of x.
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(iii) R
(1)
n (t) = Probability that at time t, the server is inactive due to break-

down and the system is under first essential repair while there are ’n’

(n ≥ 0) customers in the queue.

(iv) R
(2)
n (t) = Probability that at time t, the server is inactive due to break-

down and the system is under second optional repair while there are ’n’

(n ≥ 0) customers in the queue.

(v) Q(t) = probability that at time ’t’ there are no customers in the system

and the server is idle but available in the system.

The queueing model is then, governed by the following set of differential-

difference equations:

∂

∂t
Pn(x, t) +

∂

∂x
Pn(x, t) + (λ + µ(x) + α)Pn(x, t)

= λ

n−1∑
i=1

ciPn−i(x, t), n ≥ 1 (5)

∂

∂t
P0(x, t) +

∂

∂x
P0(x, t) + (λ + µ(x) + α)P0(x, t) = 0 (6)

∂

∂t
Vn(x, t) +

∂

∂x
Vn(x, t) + (λ + γ(x))Vn(x, t)

= λ

n−1∑
i=1

ciVn−i(x, t) n ≥ 1 (7)

∂

∂t
V0(x, t) +

∂

∂x
V0(x, t) + (λ + γ(x))V0(x, t) = 0 (8)

d

dt
R(1)

n (t) = −(λ + β1)R
(1)
n (t) + λ

n∑
i=1

ciR
(1)
n−i(t) + α

∫ ∞

0

Pn−1(x, t)dx (9)

d

dt
R

(1)
0 (t) = −(λ + β1)R

(1)
0 (t) (10)

d

dt
R(2)

n (t) = −(λ + β2)R
(2)
n (t) + λ

n∑
i=1

ciR
(2)
n−i(t) + rβ1R

(1)
n (t) (11)

d

dt
R

(2)
0 (t) = −(λ + β2)R

(2)
0 (t) + rβ1R

(1)
0 (t) (12)

d

dt
Q(t) = −λQ(t) + (1− r)β1R

(1)
0 (t) + β2R

(2)
0 (t)

+ (1− p)

∫ ∞

0

P0(x, t)µ(x)dx +

∫ ∞

0

V0(x, t)γ(x)dx (13)
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Equations (5) to (13) are to be solved subject to the following boundary con-

ditions.

P0(0, t) = c1λQ(t) + (1− r)β1R
(1)
1 (t) + β2R

(2)
1 (t) +

∫ ∞

0

V1(x, t)γ(x)dx

+ (1− p)

∫ ∞

0

P1(x, t)µ(x)dx (14)

Pn(0, t) = cn+1λQ(t) + (1− r)β1R
(1)
n+1(t) + β2R

(2)
n+1(t)

+

∫ ∞

0

Vn+1(x, t)γ(x)dx + (1− p)

∫ ∞

0

Pn+1(x, t)µ(x)dx (15)

Vn(0, t) = p

∫ ∞

0

Pn(x, t)µ(x)dx, n ≥ 0 (16)

We assume that initially there are no customers in the system and the

server is idle. So the initial conditions are

Pn(0) = 0; n = 0, 1, 2..., ; V0(0) = Vn(0) = 0; Q(0) = 1 (17)

4 Probability Generating functions of the queue

length: The time-dependent solution

We define the probability generating function

Pq(x, z, t) =
∞∑

n=0

znPn(x, t); Pq(z, t) =
∞∑

n=0

znPn(t) (18)

Vq(x, z, t) =
∞∑

n=0

znVn(x, t); Vq(z, t) =
∞∑

n=0

znVn(t) (19)

R(1)
q (z, t) =

∞∑
n=0

znR(1)
n (t); R(2)

q (z, t) =
∞∑

n=0

znR(2)
n (t) (20)

C(z) =
∞∑

n=1

cnzn, (21)

which are convergent inside the circle given by |z| ≤ 1 and define the Laplace

transform of a function f(t) as

f̄(s) =

∫ ∞

0

f(t)e−stdt (22)
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Taking Laplace transforms of equations (5) to (13)

∂

∂x
P̄n(x, s) + (s + λ + µ(x) + α)P̄n(x, s) = λ

n−1∑
i=1

ciP̄
(1)
n−i(x, s) n ≥ 1 (23)

∂

∂x
P̄0(x, s) + (s + λ + µ(x) + α)P̄0(x, s) = 0 (24)

∂

∂x
V̄n(x, s) + (s + λ + γ(x))V̄n(x, s) = λ

n−1∑
i=1

ciV̄n−i(x, s) (25)

∂

∂x
V̄0(x, s) + (s + λ + γ(x))V̄0(x, s) = 0 (26)

(s + λ + β1)R̄
(1)
n (s) = λ

n−1∑
i=1

ciR̄
(1)
n−i(s) + α

∫ ∞

0

P̄n−1(x, s)dx (27)

(s + λ + β1)R̄
(1)
0 (s) = 0 (28)

(s + λ + β2)R̄
(2)
n (s) = λ

n−1∑
i=1

ciR̄
(2)
n−i(s) + rβ1R̄

(1)
n (s) (29)

(s + λ + β2)R̄
(2)
0 (s) = rβ1R̄

(1)
0 (s) (30)

(s + λ)Q̄(s) = 1 + (1− r)β1R̄
(1)
0 (s) + β2R̄

(2)
0 (s) +

+

∫ ∞

0

V̄0(x, s)γ(x)dx + (1− p)

∫ ∞

0

P̄0(x, s)µ(x)dx (31)

for the boundary conditions

P̄0(0, s) = (1− p)

∫ ∞

0

P̄1(x, s)µ(x)dx +

∫ ∞

0

V̄1(x, s)γ(x)dx

+ (1− r)β1R̄
(1)
1 (s) + β2R̄

(2)
1 (s) + λc1Q̄(s) (32)

P̄ (1)
n (0, s) = (1− p)

∫ ∞

0

P̄n+1(x, s)µ(x)dx +

∫ ∞

0

V̄n+1(x, s)γ(x)dx

+ (1− r)β1R̄
(1)
n+1(s) + β2R̄

(2)
n+1(s) + λcn+1Q̄(s) (33)

V̄n(0, s) = p

∫ ∞

0

P̄n(x, s)µ2(x)dx; n = 0, 1, 2, ... (34)

Now multiplying equation (23) by zn and summing over n from 1 to ∞,

adding to equation (24) and using the definition of probability generating func-

tion defined in equation (18), we obtain

∂

∂x
P̄q(x, z, s) + (s + λ− λC(z) + µ(x) + α)P̄q(x, z, s) = 0. (35)
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Performing similar operations on equations (25) to (30)

∂

∂x
V̄q(x, z, s) + (s + λ− λC(z) + γ(x))V̄q(x, z, s) = 0 (36)

(s + λ− λC(z) + β1)R̄
(1)
q (z, s) = αz

∫ ∞

0

P̄q(x, z, s)dx (37)

(s + λ− λC(z) + β2)R̄
(2)
q (z, s) = rβ1R̄

(1)
q (z, s). (38)

For the boundary conditions, multiply both sides of equation (32) by z,

multiply both sides of equation (33) by zn+1, summing over 1 to ∞, adding

the two results and using the definition of probability generating function, we

get,

zP̄q(0, z, s) = (1− p)

∫ ∞

0

P̄q(x, z, s)µ(x)dx +

∫ ∞

0

V̄q(x, z, s)γ(x)dx

+ (1− sQ̄(s)) + λ(C(z)− 1)Q̄(s) + (1− r)β1R̄
(1)
q (z, s)

+ β2R̄
(2)
q (z, s) (39)

Performing similar operation on equation (34) we obtain

V̄q(0, z, s) = p

∫ ∞

0

P̄q(x, z, s)µ(x)dx. (40)

Integrating the equation (35) from 0 to x yields

P̄q(x, z, s) = P̄q(0, z, s)e
−(s+λ−λC(z)+α)x−R x

0 µ(t)dt, (41)

where P̄q(0, z, s) is given by equation (39).

Again integrating equation (41) by parts with respect to x yields

P̄q(z, s) = P̄q(0, z, s)

[
1− B̄(s + λ− λC(z) + α)

(s + λ− λC(z) + α)

]
(42)

where

B̄(s + λ− λC(z) + α) =

∫ ∞

0

e−(s+λ−λC(z)+α)xdB(x) (43)

is Laplace - Stieltjes transform of the service time B(x). Now multiplying both

sides of equation (41) by µ(x) and integrating over x, we get
∫ ∞

0

P̄q(x, z, s)µ(x)dx = P̄q(0, z, s)B̄(s + λ− λC(z) + α) (44)

Similarly, on integrating equation (36) from 0 to x, we get

V̄q(x, z, s) = pV̄q(0, z, s)e−(s+λ−λC(z)x−R x
0 γ(t)dt, (45)
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where V̄q(0, z, s) are given by equations (40).

Again integrating equations (45) by parts with respect to x yields

V̄q(z, s) = pV̄q(0, z, s)

[
1− V̄ (s + λ− λC(z))

(s + λ− λC(z))

]
(46)

where

V̄ (s + λ− λC(z)) =

∫ ∞

0

e−(s+λ−λC(z)xdV (x) (47)

is Laplace - Stieltjes transform of the vacation time V (x).

Now multiplying both sides of equation (45) by γ(x) and integrating over

x,we get
∫ ∞

0

V̄ q(x, z, s)γ(x)dx = pV̄q(0, z, s)V̄ (s + λ− λC(z)) (48)

Now using equations (44), equation(40) can be written as

V̄q(0, z, s) = pP̄q(0, z, s)B̄(s + λ− λC(z) + α) (49)

Using above equation (49), equation (46) becomes

V̄q(z, s) = pP̄q(0, z, s)B̄(s + λ− λC(z))

[
1− V̄ (s + λ− λC(z))

(s + λ− λC(z))

]
(50)

Using equations (44) equation (37) becomes

R̄(1)
q (z, s) = αzP̄q(0, z, s)

[
1− B̄(s + λ− λC(z) + α)

(s + λ− λC(z) + α)(s + λ− λC(z) + β1)

]
(51)

Using equation (51), equation (38) becomes

R̄(2)
q (z, s) =

[
rβ1αzP̄q(0, z, s)

(
1− B̄(s + λ− λC(z) + α)

)

(s + λ− λC(z) + α)(s + λ− λC(z) + β1)(s + λ− λC(z) + β2)

]
(52)

Now using equations (44), (48), (51) and (52) in equation (39) and solving

for P̄q(0, z, s) we get

P̄q(0, z, s) =
f1(z)f2(z)f3(z)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(53)

where

Dr = f1(z)f2(z)f3(z)
{
z − [(1− p) + pV̄ (s + λ− λC(z))]B̄[f1(z)]

}

− αz[(1− r)β1f3(z) + rβ1β2][1− B̄[f1(z)]] (54)
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f1(z) = s + λ− λC(z) + α

f2(z) = s + λ− λC(z) + β1

f3(z) = s + λ− λC(z) + β2

Substituting the value of P̄q(0, z, s) from equation (53) in to equation (42),

(50), (51) and (52) we get

P̄q(z, s) =
f2(z)f3(z)[(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)][1− B̄[f1(z)]]

Dr
(55)

V̄q(z, s) = (56)

pf1(z)f2(z)f3(z)B̄[f1(z)][(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]
[

1−V̄ (s+λ−λC(z))
(s+λ−λC(z))

]

Dr

R̄(1)
q (z, s) = f3(z)

αz[1− B̄[f1(z)]][(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
(57)

R̄(2)
q (z, s) = rβ1αz

[1− B̄[(z)]][(1− sQ̄(s)) + λ(C(z)− 1)Q̄(s)]

Dr
, (58)

where Dr is given by equation (54).

5 The steady state analysis

In this section we shall derive the steady state probability distribution for

our queueing model. To define the steady state probabilities, suppress the

argument’t’ where ever it appears in the time dependent analysis.

By using well known Tauberian property

Lts→0sf̄(s) = Ltt→∞f(t), (59)

multiplying both sides of equation (55), (56), (57) and (58) by s and applying

property (59) then simplifying, we get

Pq(z) =
f2(z)f3(z)[λ(C(z)− 1)][1− B̄[f1(z)]]Q

Dr
(60)
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Vq(z) = p
[f1(z)f2(z)f3(z)B̄[f1(z)]][V̄ (λ− λC(z))− 1]Q

Dr
(61)

R(1)
q (z) = λαz

f3(z)(C(z)− 1)[1− B̄[f1(z)]]Q

Dr
(62)

R(2)
q (z) =

rλαβ1z(C(z)− 1)[1− B̄[f1(z)]]Q

Dr
(63)

Let Wq(z) denotes the probability generating function of queue size irre-

spective of the state of the system. Then adding (60), (61), (62) and (63) we

get

Wq(z) = Pq(z) + +Vq(z) + R(1)
q (z) + R(2)

q (z) (64)

Wq(z) =
f2(z)f3(z)[λ(C(z)− 1)][1− B̄[f1(z)]]Q

Dr

+ p
[f1(z)f2(z)f3(z)B̄[f1(z)]][V̄ (λ− λC(z))− 1]Q

Dr

+ λαz
f3(z)(C(z)− 1)[1− B̄[f1(z)]]Q

Dr

+
λαβ1(C(z)− 1)[1− B̄[f1(z)]]Q

Dr
(65)

In order to obtain Q, we use the normalization condition

Wq(1) + Q = 1 (66)

We see that at z = 1, Wq(z) is indeterminate of the form 0/0. We apply

L’Hospital’s rule in equation (65) where B̄(0) = 1; V̄ (0) = 1,−V ′(0) = E[V ]

the mean vacation time.

Now

Pq(1) =
λβ1β2Q[1− B̄(α)]E(I)

dr
(67)

Vq(1) = p
λαβ1β2QB̄(α)E(I)E(V )

dr
(68)

R(1)
q (1) =

λαβ2QE(I)(1− B̄(α)))

dr
(69)

R(2)
q (1) = r

λαβ1QE(I)(1− B̄(α))

dr
(70)
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Wq(1) =
λQE(I)

{
(rαβ1 + β1β2 + β2α)[1− B̄(α)] + αβ1β2pB̄(α)E(V )

}

dr
(71)

where

dr = αβ1β2B̄(α)− λE(I)[(rαβ1 + β1β2 + β2α)[1− B̄(α)]]

− pαβ1β2E(I)E(V )B̄(α) (72)

Q = 1− λE(I)

[
r

β2B̄(α)
+

1

αB̄(α)
+

1

β1B̄(α)
− r

β2

− 1

α
− 1

β1

+ pE(V )

]
(73)

and the the utilization factor ρ of the system is given by,

ρ = λE(I)

[
r

β2B̄(α)
+

1

αB̄(α)
+

1

β1B̄(α)
− r

β2

− 1

α
− 1

β1

+ pE(V )

]
(74)

where ρ < 1 is the stability condition under which the steady state exists,

equation (73) gives the probability that the server is idle. Substitute Q from

equation (73) in equation (65), Wq(z) have been completely and explicitly

determined which is the the probability generating function of the queue size.

5.1 The average queue size

Let Lq denote the mean number of customers in the queue under the steady

state, then

Lq =
d

dz
Wq(z) |z=1

since this formula gives 0/0 form, we write

Wq(z) =
N(z)

D(z)
,

where N(z) and D(z) are the numerator and denominator of the right hand

side of equation (65) respectively, then we use

Lq =
D′(1)N ′′(1)−N ′(1)D′′(1)

2[D′(1)]2
(75)
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where primes and double primes in equation (75) denote first and second

derivation at z = 1 respectively. Carrying out the derivatives at z = 1, we

have

N ′(1) = λE(I)Q{(rαβ1 + β1β2 + β2α)

+ B̄(α)[pαβ1β2E(V )− (rαβ1 + β1β2 + β2α)] } (76)

N ′′(1) = 2Q[λE(I)]2
{

(
α

λE(I)
− 1) + B̄(α)

[1− α

λE(I)
− prαβ1E(V )− pβ1β2E(V )− pαβ2E(V )

+
1

2
pαβ1β2E(V 2) ]

+B̄
′
(α)[(rαβ1 + β1β2 + β2α)− pαβ1β2E(V )]

}

+ λQE(I(I − 1)) {(rαβ1 + β1β2 + β2α)

+ B̄(α)[pαβ1β2E(V )− (rαβ1 + β1β2 + β2α)] } (77)

D′(1) = −λE(I)(rαβ1 + β1β2 + β2α) + B̄(α) {αβ1β2+

+λE(I)(rαβ1 + β1β2 + β2α)− pαβ1β2E(I)E(V )} (78)

D′′(1) = 2[λE(I)]2
{

(1− rαβ1 + β1β2 + β2α

λE(I)
) + B̄(α)

[(−1− pE(V ))(rαβ1 + β1β2 + β2α)− 1

2
αβ1β2E(V 2)]

+B̄
′
1(α)[−αβ1β2

λE(I)
− (rαβ1 + β1β2 + β2α) + αβ1β2pE(V )]

}

+ λE(I(I − 1)) {−(rαβ1 + β1β2 + β2α)

+B̄(α)[(rαβ1 + β1β2 + β2α)− αβ1β2pE(V )]
}

(79)

where E(V 2) is the second moment of the vacation time and Q has been found

in equation (73). Then if we substitute the values of N ′(1), N ′′(1), D′(1) and

D′′(1) from equations (76), (77), (78) and (79) in to (75) equation we obtain

Lq in a closed form.

Mean waiting time of a customer could be found

Wq =
Lq

λ
(80)

by using Little’s formula.
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6 Concluding Remarks

We have investigated a single server with Bernoulli scheduled vacation and

random break down. When the server is under repair, the first essential repair

is followed by second optional repair. The probability generating function of

transient solutions are obtained explicitly and along with this the steady state

has also been analyzed. Further performance measures like average number

of customers in the queue and the average waiting time of a customer in the

queue are obtained.

Acknowledgements. The authors are very much grateful to the esteemed
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in this present form.
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