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Abstract 

This paper introduces theoretical and practical study on embedding Hamiltonian 

cycle in the Extended OTIS-n-Cube. A generalized Algorithm is also presented for 

embedding Hamiltonian cycle in the Extended OTIS-n-Cube. The recently 

proposed network has many good topological features such as regular degree, 

semantic structure, low diameter, and ability to embed graphs and cycles. 

Embedding Hamiltonian cycle is an important characteristic for any topology due 

to the usefulness of undertaking different types of broadcasting messages within 

interconnection networks. The proposed algorithm is capable to form a 

Hamiltonian cycle starting from any node in the network. Examples are presented 

on different network sizes showing complete paths of Hamiltonian cycles. 
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1  Introduction  

In the last decade, there has been an increasing interest in a class of 

interconnection networks called Optical Transpose Interconnection Systems 

“OTIS-networks” [4, 21, 24, 27]. Marsden et al were the first to propose the 

OTIS-networks [16]. Extensive studies and modeling results for the OTIS have 

been reported in [8, 9, 15, 29]. The achievable terabit throughput at a reasonable 

cost makes the OTIS a strong competitor to the electronic alternatives [5, 13, 16, 

18]. These encouraging findings prompt the need for further testing of the 

suitability of the OTIS for real-world parallel applications.   

The advantage of using the OTIS as optoelectronic architecture lies in its 

ability to manoeuvre the fact that free space optical communication is superior in 

terms of speed and power consumption when the connection distance is more than 

a few millimetres [13]. In the OTIS, shorter (intra-chip) communication is realized 

by electronic interconnects while longer (inter-chip) communication is realized by 

free space interconnects. In our topology, the hypercube; or cube for short; has 

been used for its attractive properties [17, 20, 23]. 

OTIS technology processors are partitioned into groups, where each group is 

realized on a separate chip with electronic inter-processor connects. Processors on 

separate chips are interconnected through free space interconnects. The 

philosophy behind this separation is to utilize the benefits of both the optical and 

electronic technologies.  

Processors within a group are connected by a certain interconnecting 

topology, while transposing group and processor indexes achieve inter-group 

links. Using n-cube as a factor network will yield the OTIS-n-Cube in denoting 

this network.  

OTIS-n-Cube is basically constructed by "multiplying" a cube topology by 

itself. The set of vertices is equal to the Cartesian product on the set of vertices in 

the factor cube network. The set of edges E in the OTIS-n-Cube consists of two 

subsets, one is from the factor cube, called cube-type edges, and the other subset 
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contains the transpose edges. The OTIS approach suggests implementing 

cube-type edges by electronic links since they involve intra-chip short links and 

implementing transpose edges by free space optics. Throughout this paper the 

terms “electronic move” and the “OTIS move” (or “optical move”) will be used to 

refer to data transmission based on electronic and optical technologies, 

respectively. 

Although the OTIS-n-Cube network has many attractive topological 

properties it suffers from having limited optical links between the different groups. 

When source and destination nodes are in two different groups, the fact that only 

one optical link connects two distinguished groups directly create a congestion 

problem to most of the shortest paths that have to pass through this particular 

optical link. Furthermore, alternative paths are too long compared to the short path 

because they have to be routed via a third group which required passing via two 

optical links in addition to the electronic moves in each group to reach the 

destination. 

The Extended OTIS-n-Cube is a proposed interconnection network based on 

the “OTIS-n-Cube” network [1, 2]. In [1] we proposed the new topology and 

presented the topological properties of the network; e.g size, regularity, and 

diameter. In [2], we presented a fault tolerant routing algorithm using unsafety 

vectors for the new topology. Recently, the initial idea of embedding a 

Hamiltonian cycle in the Extended OTIS Cube is proposed in [3]. 

Embedding of topologies with regular structure and also irregular structure 

has been broadly investigated in the literature, e.g [6, 10, 11, 25]. Embedding 

structures and other topologies is one of the key features of interest in 

interconnection networks. The load of an embedding is the maximum number of 

nodes in a graph assigned to any node in the embedded graph. We are interested in 

this research only in one-to-one mappings to embed a Hamiltonian cycle, so the 

load of any embedding is one [28]. 

In the mathematical field of graph theory, a Hamiltonian path is a path in an 
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undirected graph which visits each node exactly once. A Hamiltonian cycle is a 

cycle in an undirected graph which visits each node exactly once and also returns 

to the starting node. Determining whether such paths and cycles exist in graphs is 

the Hamiltonian path problem [11, 12, 25]. 

The Hamiltonian path seeks whether there is a route in a directed network 

from a beginning node to an ending node, visiting each node exactly once. The 

Hamiltonian path problem is NP complete, achieving astonishing computational 

complexity. This challenge has inspired researchers to broaden the definition of 

computer computations. The Hamiltonian problem arises in many real world 

applications including DNA applications [25]. 

This paper proposes a theoretical study on the routing properties in general 

and embedding Hamiltonian cycle in specific for the Extended OTIS-n-Cube due 

to its attractive properties. Section 2 presents notations and preliminary 

definitions. Section 3 describes the Extended OTIS-n-Cube topology. Details of 

embedding a Hamiltonian cycle in the Extended OTIS-n-Cube topology will be 

discussed in section 4. Section 5 concludes the paper.  

 

 

2  Notations and Definitions 

The n-dimensional undirected graph binary n-cube is one of the well known 

networks which have been used in real life systems [14, 17, 19, 22]. 

Definition 1: The undirected graph n-cube with n2  vertices, representing nodes, 

which are labeled by the n2  binary digits of length n. The binary system consists 

of two bits; 0 and 1. Two nodes are connected by a direct edge if, and only if, their 

labels differ in exactly one bit position. 

The Extended OTIS-n-Cube is constructed by "multiplying" a cube topology 

by itself. The vertex set is equal to the Cartesian product on the original vertex set 

in the factor cube network. The initial step is similar to OTIS-n-Cube construction; 
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this is why we named it Extended OTIS-n-Cube. 

Definition 2: Let 〈g1, p1〉 be group and processor addresses of a node in an 

Extended OTIS-n-Cube labelled as series of bits 〈xn…x2x1〉, 〈yn…y2y1〉 

consequently where each bit is either 0 or 1. A node 〈g2, p2〉 is called an opposite 

of node 〈g1, p1〉 if and only if they differ only in the first bit position of g1 and g2 

labels, and also in the first bit position of p1 and p2 labels. They differ only in x1 

and y1, e.g. node 〈00, 00〉 is an opposite node of 〈01, 01〉. The edge between two 

opposite nodes is called and opposite edge. 

Definition 3: The two nodes 〈g1, p1〉 and 〈g2, p2〉 are connected via a transpose 

edge if and only if g1= p2 and g2= p1. 

The edge set consists of electronic edges from the factor network and two new 

types of edges called the transpose and opposite edges, both types of transpose and 

opposite edges are considered optical edges. The formal definition of the Extended 

OTIS-n-Cube is given below. 

Definition 4: Let n-cube = (V0, E0) be an undirected graph representing an 

n-cube network where n is the cube degree. The Extended OTIS-n-Cube = (V, E) 

network is represented by an undirected graph obtained from n-cube as follows V 

= {〈g, p〉 | g, p ∈ V0} and E = {(〈g, p1〉, 〈g, p2〉) | if (p1, p2)∈E0} ∪ {(〈g, p〉, 〈p, g〉) | 

g, p ∈ V0} ∪ {(〈g, g〉, 〈p, p〉) | g, p ∈ V0 ∩ g is an opposite of p}. 

Definition 5: Let d(p, g) be the number of bit positions differ between  p and g 

labels. The shortest path between the two nodes 〈g1, p1〉 and 〈g2, p2〉 contains an 

odd number of optical moves if 2),(),( 1),(),( 21211221 ++≤++ ggdppdgpdgpd , 

otherwise it contains an even number of optical moves [7, 21]. 

Definition 6: A path in a topology is a sequence of distinct edges so that there is 

an edge joining successive nodes, starting at the first node and ending at the last 

node. 
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Definition 7: A cycle (or circuit) is a path where there is an edge joining the first 

and last nodes of this path. 

Definition 8: A Hamiltonian path in a topology is a path that contains every node 

of the network exactly once. 

Definition 9: A Hamiltonian cycle is a Hamiltonian path with an edge from the 

last node of the path to the first node. Hamiltonian cycles are useful in 

interconnection networks as they can be used to easily undertake many-to-many 

broadcasts [26]. 

Figure 1: 16-processor Extended OTIS-2-cube 

 

 

3  The Extended OTIS-n-Cube Graph Structure  

In the Extended OTIS-n-Cube, the address of a node u = 〈g, p〉 from V is 

composed of two components. Figure 1 shows a 16 processor Extended 

OTIS-2-Cube, solid arrows represent transpose edges while dashes arrows 

represent opposite edges. The notation 〈g, p〉 is used to refer to the group and 
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processor addresses respectively, two nodes 〈 g1, p1〉 and 〈 g1, p2〉 are connected by 

a direct edge if one of the following cases occurs: 

1- If g1 = g2 and (p1, p2)∈E0 where E0 is the set of edges in n-cube network, in 

this case the two nodes are connected by an electronic edge if their labels 

differ only by one bit position. 

2- If g1 = p2 and p1 = g2, in this case the two nodes are connected by a 

transpose edge. 

3- If g1 = p1, g2 = p2, and g1 is an opposite of g2, then the two nodes are 

connected by an opposite edge. 

 

The distance in the Extended OTIS-n-Cube is defined as the shortest path 

between any two nodes, 〈g1, p1〉 and 〈g2, p2〉, and this path involves one of the 

following forms: 

i- When g1 = g2 then the path involves only electronic moves from source 

node to the destination node. 

ii- When g1 is opposite of g2, and if the number of optical moves is an odd 

number of moves, then the paths can be compressed into a shorter path of 

the form:  

〈g1, p1〉 →E 〈g1, g1〉 →O 〈g2, g2〉 →E 〈g2, p2〉 

 or 〈g1, p1〉 →E 〈g1, g2〉 →O 〈g2, g1〉 →E 〈g2, p2〉; whichever is shorter, 

where the symbols O and E stand for optical and electronic moves 

respectively. 

iii- When p2op = g1or p1op = g2, and the path involves an odd number of 

optical moves. In this case the paths can be compressed into a shorter 

path of 1),(),( 1221 ++ gpdgpd  or one of the following two cases:  

• 〈g1, p1〉 →E 〈g1, g1〉 →O 〈 p2, p2〉 →E 〈 p2, g2〉 →O 〈g2, p2〉 if p2op= g1. 
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• 〈g1, p1〉 →O 〈p1, g1〉 →E 〈p1, p1〉 →O 〈g2, g2 〉 →E 〈g2, p2〉 if p1op= g2, 

where op means opposite. 

iv- When g1 ≠ g2 and if the number of optical moves is an even number of 

moves, then the paths can be compressed into a shorter path of the form: 

 〈g1, p1〉 →E 〈g1, p2〉 →O 〈p2, g1〉 →E 〈p2, g2〉 →O 〈g2, p2〉  

v- When g1 ≠ g2, and the path involves an odd number of optical moves. In 

this case the paths can be compressed into a shorter path of the form:  

〈 g1, p1〉 →E 〈 g1, g2〉 →O 〈 g2, g1〉 →E 〈 g2, p2〉. 

 

 

4 Hamiltonian Cycle Structure in the Extended OTIS-n-Cube 

This section presents a Hamiltonian cycle structure within the recently 

proposed Extended OTIS-n-Cube interconnection topology. First, we introduce 

some routing topological properties of the Extended OTIS-n-Cube which are 

needed to show the Hamiltonian cycle formation in this topology. 

Theorem 1. If the cube factor degree is n, then any node in the Extended 

OTIS-n-Cube is regular and the node degree is n+1. 

Proof. Every node has n electronic edges based on the properties of the n-cube 

factor. Also every node; 〈g, p〉; has an additional optical edge based on the 

Extended OTIS-n-Cube topology rule: {(〈g, p〉, 〈p, g〉) | g, p ∈ V0} ∪ {(〈g, g〉, 〈p, 

p〉) | g, p ∈ V0 ∩ g is an opposite of p} 

so if  g= p then  〈g, p〉 →O  〈gop, gop〉 else 〈g, p〉 →O  〈p, g〉. 

Since every node has an n number of electronic, in addition to one optical edge, 

then by definition the topology is regular. 
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Theorem 2. Let 〈g1, p1〉 and 〈g2, p2〉 be two different nodes in the Extended 

OTIS-n-Cube. The length of shortest path from the source node 〈g1, p1〉 to the 

destination node 〈g2, p2〉 is defined mutually exclusive as in the following order: 
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Where d(p1, p2) is the number of bit positions differ between  p1 and p2 labels. 

Proof. By following one of the five possible paths shown in sections; i, ii, iii, iv, 

and v. The length of the shortest path between the nodes 〈g1, p1〉 and 〈g2, p2〉 can be 

as follows: 

If both nodes are in the same group then the shortest path is guaranteed by 

generating electronic moves toward the destination; d(p1, p2). 

- If g1= g2op and ),(),(),(),( 21212111 pgdgpdpgdgpd  op +≤+ it means that one 

optical move is needed to move toward the destination group via a group opposite 

edge otherwise minimal path must contains a transpose edge which will be 

explained in the next points. To reach the destination, some electronic moves 

might be needed first at one source group to reach 〈g1, g1〉 then one optical move 

to reach the destination group; finally other electronic moves at the destination 

group might be needed to reach the destination node. 

- If p1= p2, g1= g2, and ),(),( 2121 ggdggd op < it means that two optical moves in 

addition to some electronic moves are needed to reach the destination group 

through an intermediate group g1 op. One of the two optical moves is an opposite 

move. First an opposite move is required to reach 〈g1op, p1op〉, and then some 

electronic moves to reach 〈g1op, g2〉, then an optical move to reach 〈g2, g1op〉, and 

finally other electronic moves to reach the destination node 〈g2, p2〉 at minimal 
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distance. It’s worth it to mention that all diameter distances are considered under 

this category 

- If opop p or gpg 1221 == and 1),(),()),(),( 21212121 ++≤+ pgdgpdggdppd , it 

means that two optical moves are needed to reach the destination group through an 

intermediate group equal to p1opif p1op = g2or equal to p2 if p2op = g1. This requires 

some electronic moves to perform the two optical moves, and finally to reach the 

destination node at minimal distance. 

- Otherwise we choose the shortest path based on the factor optical moves [7]. 

Theorem 3. The Extended OTIS-n-Cube graph is Hamiltonian.  

Proof. Hamiltonian is a cycle in an undirected graph which visits each node 

exactly once and also returns to the starting node. In each group, there are 2n 

nodes which are connected via the factor network topology, we can visit all local 

nodes by exchanging a bit position of the current node to make a move to the next 

node, and this bit position is selected in a sequential order on the n positions of the 

process address. This process is performed 2n-1 times at each group to visit the 2n 

local nodes. If we follow the same concept on the group addresses then we can 

verify the visiting of all 2n groups. The only difference is that there are two types 

of optical moves, opposite and transpose. 

We can construct such a cycle based on the following algorithm: 
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The 2n-1 factor moves at each of the 2n visited groups from the first node <gs, ps> 

towards a potential neighboring node <gc, pc> is done by complementing the ith bit 

in the factor label, where 1 <= i <=n. This sequential order is repeated again to 

visit all local nodes of a group by increasing i by 1 modulus n. The same 

perspective is done among the group addresses to visit all groups. The algorithm 

starts the permutation from the first position; i=1; to conduct an opposite move if 

the opposite group has not been visited yet. 

 Algorithm HamiltonianRouting 

{ Let node <gs, ps> be the starting node; 

 Let <gc, pc> = <gs, ps> // current node 

for Groups=1 to 2n do   

{ for loop= 0 to n-1 do 

        if gc xor 2loop ≠ Already visited Group 

        {  Ng = gc xor 2loop // Ng is next group 

            exit for loop } 

  if Groups=2n then Ng = gs 

if  Ng = gc opposite 

 { if Groups=1 then  

visit only local nodes of a path from <gs, ps> to <gs, gs>  

    else 

    visit all 2n-1 local nodes from <gc, pc> to <gc, gc> 

Make an opposite optical move from <gc, gc> to <gc opposite, gc opposite> 

} 

else 

  { if Groups=1 then  

visit only local nodes of a path from <gs, ps> to <gs, Ng>  

else 

visit all 2n-1 local nodes from <gc, pc> to <gc, Ng> 

Make a transpose optical move from <gc, Ng> to <Ng, gc> 

 }  

}// for Groups 

Finally, visit the unvisited local nodes from <gs, Ng> to <gs, ps>  // a complete Hamiltonian 
cycle 
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In the following examples, the dots represent 2n-1 factor moves of the 

corresponding nodes within each group; every arrow represents an optical move. 

Example 1: Hamiltonian cycle within an Extended OTIS-2-Cube topology, Figure 

2 shows a representation of such a Hamiltonian cycle. The starting node is 

<00,01>. The cycle starts by visiting all of the local nodes at the first group 

towards  <gs, ps opposite> based on the cube routing properties, Then through an 

optical move to the second group and so on. The final group to be visited before 

returning back to the starting group is the ps opposite group 

 

Figure 2:  A Hamiltonian cycle in an Extended OTIS-2-Cube 

 

Example 2: Presenting a Hamiltonian cycle within an Extended OTIS-3-Cube 

graph, Figures 3 and 4 show that the algorithm is capable to form Hamiltonian 

cycles regardless of the starting node. There is no precise condition on the starting 

node in the algorithm. 
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Figure 3: A Hamiltonian Cycle in an Extended OTIS-3-Cube starting at node   
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Figure 4: A Hamiltonian Cycle in an Extended OTIS-3-Cube starting at node  

          <100,101> 

 

We can state from the above two cases that the algorithm is capable to build a 

Hamiltonian cycle from any starting node using both opposite and transitive 

moves.  

Example 3: A Hamiltonian cycle within an Extended OTIS-4-Cube graph, Figure 

5 shows a representation of such a Hamiltonian cycle where the starting node is 

<0000,0001>. 

To present a complete path cycle, figure 6 shows such a cycle in the 

Extended OTIS-3-Cube topology graph where the bold arrows represent this 

complete Hamiltonian cycle path starting from node <000,001>. The reader may 

follow the number of each arrow to observe how this cycle has been formulated. 

Theorem 4. If a Hamiltonian cycle contains opposite links then the number of 

opposite links must be even. A Hamiltonian cycle can’t contain odd number of 

opposite links.  

Proof. To complete a Hamiltonian cycle in an extended OTIS- n-Cube, all 2n 

groups of the network have to be visited one and only one time. This is done by 

exchanging the permutations of the group label in a certain order to guarantee 

exchanging all the n bits of the label.  This order is accomplished by performing 
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optical moves to visit the groups. An optical move is either an opposite or a 

transpose move. 
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Figure 5: A Hamiltonian Cycle in an Extended OTIS-4-Cube 

 

When a transpose move occurs then a permutation on the group label is done 

by exchanging a group label with its processor label. Performing a transpose move 

after visiting all local nodes at each group will lead to performing the 2n 

permutations. At every time an opposite move occurs, the permutation order will 

be affected, to sort out this influence and go back to the order, another opposite 

group must occur. So there is always an even number of opposite moves in a 

Hamiltonian cycle. 

Example 4. To show that a Hamiltonian cycle must contain an even number of 

opposite links by using extended edges, Figure 7 shows A Hamiltonian cycle with 

opposite links in an Extended OTIS-3-Cube. There are 4 opposite links within the 

Hamiltonian cycle. Figures 5 and 6 also contain 4 and 8 opposite links 

consequently. 
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Figure 6: Extended OTIS-3-Cube 

 

 

Figure 7: A Hamiltonian cycle contains opposite links 
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5  Conclusion 

This paper presented a theoretical study on embedding Hamiltonian cycle in 

the Extended OTIS-n-Cube. Embedding a Hamiltonian cycle is an important 

property for any topology due to the usefulness of undertaking many-to-many 

broadcast messages within interconnection networks. The paper proposed a 

generalized algorithm to form a Hamiltonian cycle in the extended OTIS-n-Cube 

interconnection network. We also showed that the algorithm is capable to form a 

Hamiltonian cycle starting from any node in the network. Examples are presented 

on different network sizes to show complete paths of Hamiltonian cycles. Finally 

some related theoretical theorems were also presented in this paper.  
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