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Abstract 

Theoretical Modelling of rectangular concrete beams reinforced internally with 

Glass Fibre Reinforced Polymer (GFRP) reinforcements under pure torsion is 

carried out in this study. Different parameters like grade of concrete, beam 

longitudinal reinforcement ratio and transverse stirrups spacing are considered.   

The basic strength properties of concrete, steel and GFRP reinforcements are 

determined experimentally. Theoretical torque verses twist relationship is 

established for various values of torque and twist using elastic, plastic theories of 

torsion. Finally the ultimate torque is determined using space truss analogy and 

softening truss model for different parameters and based on this study, a good 

agreement is made between the theoretical behaviour GFRP reinforced and 

conventionally reinforced beams.   
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1  Introduction  
Fibre Reinforced Polymer (FRP) materials are becoming a new age 

material for concrete structures. Its use has been recommended in ACI codes. But 

in India its applicability is rare in view of the few manufacturers and lacking in 

commercial viability.  The advantages of the FRP materials lie in their better 

structural performance especially in aggressive environmental conditions in terms 

of strength and durability (Machida 1993; ACI 440R-96 1996; Nanni 1993).  FRP 

materials are commercially available in the form of cables, sheets, plates etc.    But 

in the recent times FRPs are available in the form of bars which are manufactured 

by pultrusion process which are used as internal reinforcements as an alternate to 

the conventional steel reinforcements. These FRP bars are manufactured with 

different surface imperfections to develop good bond between the bar and the 

surrounding concrete. Fibre reinforcements are well recognised as a vital 

constituent of the modern concrete structures.  FRP reinforcements are now being 

used in increasing numbers all over the world, including India. FRP 

reinforcements are preferred by structural designers for the construction of 

seawalls, industrial roof decks, base pads for electrical and reactor equipment and 

concrete floor slabs in aggressive chemical environments owing to their durable 

properties.  

Due to the advantages of FRP reinforcements in mind, many research 

works have been carried out throughout the world on the use of FRP reinforcing 

bars in the structural concrete flexural elements like slabs, beams, etc. (Nawy et al 

1997; Faza and GangaRao 1992; Benmokrane 1995;  Sivagamasundari 2008; 

Deiveegan et al 2011; Saravanan et al 2011).  Therefore the present study 

discusses mainly on the behaviour of beams reinforced internally with GFRP 

reinforcements under pure torsion. The scope of the present study is restricted to 

with the GFRP reinforcements because of their availability in India. First part of 

this study covers the theoretical analysis based on the existing using space truss 

formulation for conventionally reinforced and GFRP reinforced beams. Second 
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part of this study is related to the theoretical formulation using softened truss 

model for steel and GFRP reinforced beams. Finally, the results are summarised 

based on the theoretical analysis and with the existing theories. 

 

 

2  Materials 

2.1 Concrete 

 Normal Strength Concrete (NSC) of grades M20 and M30 are used in this 

study. Ordinary Portland Cement is used to prepare the concrete. The maximum 

size of aggregate used is 20 mm and the size of fine aggregate ranges between 0 

and 4.75 mm. After casting, the specimens are allowed to cure in real 

environmental conditions for about 28 days so as to attain strength. The test 

specimens are generally tested after a curing period of 28 days.  

 
Table 1: Properties of Concrete 

Description 
M 20 grade  

(m1) 
M 30 grade 

(m2) 

Ratio 1:1.75:3.75 1:1.45:2.85 

W/C Ratio 0.53 0.45 

Average Compressive 
Strength of cubes 32.25 MPa 44.14 MPa 

 
 
 
The strength of concrete under uni-axial compression is determined by loading 

‘standard test cubes’ (150 mm size) to failure in a compression testing machine, as 

per IS 516 - 1959. The modulus of elasticity of concrete is determined by loading 

‘standard cylinders’ (150 mm diameter and 200 mm long) to failure in a 

compression testing machine, as per IS 516: 1959.  The mix proportions of the 
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NSC are carried out as per Indian Standards (IS) 10262-1982 and the average 

compressive strengths are obtained from laboratory tests (Sivagamasundari 2008; 

Deiveegan et al 2011; Saravanan et al 2011) and are depicted in Table 1. 

 

 

2.2 Reinforcements 

The mechanical properties of all the types of GFRP reinforcements as per 

ASTM-D 3916-84 Standards and steel specimens as per Indian standards are 

obtained from laboratory tests and the results are tabulated in Table 2.  The tensile 

strength of steel reinforcements (S) used in this study, conforming to Indian 

standards and having an average value of the yield strength of steel is considered 

for this study.  GFRP reinforcements used in this study are manufactured by 

pultrusion process with the E-glass fibre volume approximately 60% and these 

fibres are reinforced with epoxy resins. Previous studies were carried out with 

three different types of GFRP reinforcements (grooved, sand sprinkled & 

threaded) (ACI 440R-96; Sivagamasundari 2008; Deiveegan et al 2011; 

Saravanan et al 2011) with different surface indentations and are designated as Fg, 

Fs and Ft. In this study threaded type GFRP reinforcement is used in place of 

conventional steel. The diameters of the longitudinal and transverse 

reinforcements are 12 mm and 8 mm respectively. The standard minimum 

diameters of the reinforcements as per Indian standards are adopted in this study.    

The tensile strength properties are ascertained as per ACI standards shown in 

Table 1(b) and are validated by conducting the tensile tests at SERC, Chennai. 

The GFRP reinforcements are provided with end grips to avoid the crushing of 

ends. The typical failure pattern of the GFRP reinforcement is shown in Figure 1. 

The stress-strain curve of the reinforcements used in the study are obtained from 

the experimental study is shown clearly in Figure 2. The compressive modulus of 

elasticity of GFRP reinforcing bars is smaller than its tensile modulus of elasticity 

(ACI 440R-96; Lawrence C. Bank  2006; Sivagamasundari 2008). It varies 
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between 36-47 GPa which is approximately 70% of the tensile modulus for GFRP 

reinforcements. Under compression GFRP reinforcements have shown a 

premature failures resulting from end brooming and internal fibre micro-buckling.   

 

      
 

Figure 1: Failure of GFRP reinforcements during tensile test 
 

 

In this study, GFRP stirrups are manufactured by Vacuum Assisted Resin 

Transfer Moulding process, using glass fibres reinforced with epoxy resin (ACI 

440R-96; Sivagamasundari et al 2008; Deiveegan et al 2011; Saravanan et al 

2011). Based on the experimental study, it is observed that the strength of GFRP 

stirrups at the bend location (bend strength) is as low as 50% of the strength 

parallel to the fibres. However, the stirrup strength in straight portion is 

comparable to the yield strength of conventional steel stirrups. Therefore, in this 

study, GFRP stirrups strength is taken as 30% of its tensile strength ie. 150 MPa.   
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Table 2: Properties of reinforcements 
 

Properties  Threaded GFRP 
(Ft) 

Steel Fe 415 (S) 

Tensile strength (MPa) 525 475 

Longitudinal modulus 
(GPa) 63.75 200 

Strain 0.012 0.002 

Poisson’s ratio 0.22  0.3 

   

 
Figure 2: Stress-Strain curve for all the reinforcements involved in the present    
               study 
 
 
 
3  Theoretical Investigation  

Theoretical torque verses twist relationship is established for various values 

of torque and twist using elastic, plastic theories of torsion and also the ultimate 

torque is determined using space truss analogy (Hsu 1968; MacGregor et al 1995;  

Rasmussen et al 1995; Asghar et al 1996; Khaldown et al 1996; Liang et al 2000; 

Luis et al 2008; Chyuan 2010). The theoretical investigation consists different 
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rectangular beams and are designated are as follows; Bp1m1Fe s1 ; Bp1m1Ft s1; 

Bp1m2Fe s1; Bp1m2Ft s1; Bp2m1Fe s1; Bp2m1Ft s1; Bp2m2Fe s1 ; Bp2m2Ft s1, Bp1m1Fe 

s1 ; Bp1m1Ft s1; Bp1m2Fe s1; Bp1m2Ft s1; Bp2m1Fe s1; Bp2m1Ft s1; Bp2m2Fe s1 ; 

Bp2m2Ft s2. These beams are reinforced internally with threaded type Glass Fibre 

Reinforced Polymer Reinforcements and conventional steel reinforcements with 

different grades of concrete and steel reinforcement ratio under pure torsion is 

considered in this study.  The entire concrete beam is supported on saddle supports 

which can allow rotation in the direction of application of torsion as shown in 

Figure 3. 
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Figure 3: Beam supported on saddle support  

 
 
 
Parameters considered for analyzing the GFRP /steel reinforced concrete 

beams are as follows: 

B  =  160 mm; D  =   275 mm; b1 = 118 mm; d1 = 233 mm; EGFRP = 63750 N/mm2; 
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m1 = 32.25 MPa; m2 = 44.14 MPa; Ec1= ckf5000  = 25.325000 = 29395 

N/mm2; Ec1= ckf5000  = 14.445000 = 33219 N/mm2; Al  =  113×6= 678.24 

mm2; At = 2× 50.3 = 100.6 mm2; fGFRP =525 MPa; fGFRP-S =150 MPa; S1 = 75 mm; 

S2 = 50 mm. In the figures the curves to be read as,Exp - Experimental curve; Th-

space = Theoretical- space truss analogy and Th-soft = Theoretical-  softened truss 

model. Table 3 shows the various parameters involved in the present study. 

 
 
 

Table 3: Various Parameters involved 

Parameters Description Designation 

Types of 
reinforcements 

Threaded GFRP Ft 
Conventional Fe 

Concrete grade Two grades of concrete m1  & m2    
Beam size 160 x 275 mm B 

Reinforcement 
ratios 

1. 0.56% (2-12 mm bars top & Bottom)  
2. 0.85% (3-12 mm bars top & Bottom) 

p1 & p2 

Spacing of 
stirrups 75 mm & 50 mm S1 & S2 

 

 

3.1 Space Truss Analogy 

The general theoretical torque twist curve T–θ curves are plotted for three 

stages and are defined by their (θ ;T) coordinates (Hsu 1968; Collins 1973). These 

coordinates are shown in Figure 4. 

Stage 1 represents the beam’s behaviour before cracking. The slope of the 

curve represents the elastic St. Venant stiffness (GC)I). In this stage the curve can 

be assumed as a straight line with origin in the point (0;0) and end in ( elθ ;Tel). The 

theoretical model considered in this study for this stage is based on Theory of 

Elasticity.   
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After cracking, the beams suffers a sudden increase of twist after what it 

resets the linear behaviour. This stage is identified as Stage 2. It starts at ( crθ ;Tcr) 

and ends at a certain level of twist ( crθ ). The slope of stage-2 represents the 

torsional stiffness in cracked stage (GC)II. The model considered for stage-2 is 

based on the space truss analogy with 45° inclined concrete struts and linear 

behaviour for the materials. The points of the T–θ  curve from which, the 

nonlinear behaviour is defined by means of two different criteria. The first one 

corresponds to finding the point for which at least one of the torsion 

reinforcements (longitudinal or transversal) reaches the yielding point. The second 

criterion corresponds to finding the point for which the concrete struts starts to 

behave nonlinearly, due to high levels of loading (this situation may occur before 

any reinforcement bar yields). 

 

 

 
Figure: 4 Typical T-θ curve for a reinforced concrete beam under pure torsion 

where, Tcr  =  Cracking torque; crθ  =  Twist corresponding to Tcr for the stage 1 

(limit for linear elastic analysis in non cracked and cracked stage); Tly = Torque 

corresponding to yielding of longitudinal reinforcement;θ ly = Twist 
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corresponding to Tly; Tty = Torque corresponding to yielding of transversal 

reinforcement;θ ty  = Twist corresponding to Tty; Tul = Ultimate (maximum) 

torque;θ ul = Maximum twist at beam’s failure. (GC)I  = Torsional stiffness of 

Zone 1 (for linear elastic analysis in non cracked stage); (GC)II = Torsional 

stiffness of Zone 2 (for linear elastic analysis in cracked stage). The linear elastic 

torque is clearly depicted in Figure 5. 

Stage 3 of the curve was plotted with non linear behaviour of the materials 

and considering the Softening Effect. In this study, space truss analogy is used to 

the locate the following coordinates ( tyθ ;Tty) & ( ulθ ;Tul). The space truss model 

with softening effect is not considered since it involves iterative procedure. The 

three stages are identified in the T–θ  curve of Figure 4 are characterized 

separately. 

 

Stage: 1 Linear Elastic Torque (Tel, elθ ): 

For rectangular sections using St. Venant theory, the maximum torsional shear 

stress occurs at the middle of the wider face (Hsu 1968), and has a value given by  

Db
T

t 2max,  α
=τ                                                      (1) 

where T is the twisting moment (torque), b (160 mm) and D (275 mm) are the 

cross-sectional dimensions (b being smaller), and α  is a St. Venant coefficient 

whose value depends on the D/b ratio; α  lies in the range 0.21 to 0.29 for D/b 

varying from 1.0 to 5.0 respectively.  Therefore α=0.2243; max,tτ  (MPa units) of 

about ckf2.0  

Elastic torque is given by  

                                       max,
2 tel DbT τ×α=                                                       (2) 
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Figure 5: Torsional shear stresses in a rectangular beam  

 
Using Torque-Twist relationship based on linear elastic analysis is given by  

                                                 
l

G
C

T elel θ×
=                                                  (3) 

From the above, the twist elθ  per unit length of a beam can be expressed as              

                                                    
CG
lT el

el ×
×

=θ                                                     (4) 

where elT  is the elastic torque, GC is the Torsional Rigidity, obtained as a product 

of the Shear Modulus, G and the geometrical parameter C of the section. Since G 

is equal to CE /[2(1 + γ )], where CE  is the Young Modulus of concrete and γ  is 

the Poisson Coefficient, and γ  = 0.25. Therefore G=0.4 CE . The stiffness factor 

C (for a plain rectangular section of size b × D, with b < D), based on ‘St.Venant 

theory is given by the following expression  

                                                     DbC 3β=                                                   (5) 



12                           Study on the behaviour of rectangular concrete beams reinforced… 

where β is a constant which may be calculated, 

363.01 





 −=β

D
b =   3

275
16063.01 






 ×−=β =0.211                                                                

 

Stage: 2 First crack Torque ( cr1T , cr1θ ): (Linear Elastic Analysis in cracked 

phase) 

The strength of a torsionally reinforced member at torsional cracking Tcr is 

practically the same as the failure strength of a plain concrete member under pure 

torsion.  Although several methods have been developed to compute Tcr , the 

plastic theory approach based on Indian standards  is described here. The cracking 

Torque is given by, 

( )32

2

max,
bDbT tcr −τ=⇒                                        (6) 

Studies show that the torsion reinforcement has a negligible influence on the 

torsional stiffness. However the presence of torsion reinforcement does delay the 

cracking point. Hsu, 1968 showed that the effective cracking moment, Tcr, ef, may 

be computed by:  

( ), 1 4cr ef t crT Tρ⇒ = +                                                   (7)   

Where, Al = total area of the longitudinal reinforcement;  At = area of one leg of 

the transversal reinforcement; s = spacing of stirrups; ls = perimeter of the centre 

line of the stirrups. 

Using Torque-Twist relationship based on linear elastic analysis is given by  

                               
l

G
C

T effcreffcr ,, θ×
=                                                            (8) 

From the above, the twist effel ,θ  per unit length of a beam can be expressed by,             

                                 
( )I

effel
effcr GC

lT ×
=θ ,

,                                                           (9) 

Torsional stiffness is given by, 



A. Prabaghar and G. Kumaran                                                                                    13 

IGC)(  = I
tK  =  C50004.0 ×× cuf                                       (10) 

 

 Stage: 3 Ultimate Torque (Tul, ulθ ): 

The use of the thin-walled tube analogy (or) space truss analogy the shear stresses 

are treated as constant over a finite thickness t around the periphery of the 

member, allowing the beam to be represented by an equivalent hollow beam of 

uniform thickness.  Within the walls of the tube, torque is resisted by the shear 

flow q, which has units of force per unit length. In the analogy, q is treated as a 

constant around the perimeter of the tube. To predict the cracking behaviour, the 

concrete tube may be idealized through the special truss analogy proposed by 

Rausch.  The space truss analogy is essentially an extension of the plane truss 

analogy used to explain flexural shear resistance. The ‘space-truss model’ is an 

idealisation of the effective portion of the beam, comprising the longitudinal and 

transverse torsional reinforcement and the surrounding layer of concrete.  It is this 

‘thin-walled tube’ which becomes fully effective at the post-torsional cracking 

phase.  The truss is made up of the corner longitudinal bars as stringers, the closed 

stirrup legs as transverse ties, and the concrete between diagonal cracks as 

compression diagonals. Assuming torsional cracks (under pure torsion) at 45o to 

the longitudinal axis of the beam and considering equilibrium of forces normal to 

section AB.  It is this ‘thin-walled tube’ which becomes fully effective at the post-

torsional cracking phase.  The truss is made up of the corner longitudinal bars as 

stringers, the closed stirrup legs as transverse ties, and the concrete between 

diagonal cracks as compression diagonals (Unnikrishna pillai and Devdoss Menon 

2003).  

110 22 db
T

A
T

q uu ==                                                     (11) 

 11dbAo =                                                         (12) 

where  Ao is the area enclosed by the centre line of the thickness;  b1 and d1 denote 

the centre-to-centre distances between the corner bars in the directions of the 
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width and the depth respectively Assuming torsional cracks (under pure torsion) at 

45o to the longitudinal axis of the beam, and considering equilibrium of forces 

normal to section, the total force in each stirrup is given by qsv tan 45o = qsv 

where sv is the spacing of the (vertical) stirrups.  Further, assuming that the stirrup 

has yielded in tension at the ultimate limit state or (Design stress = φ fy ; φ = 

partial safety factor for steel=0.87; fy = yield strength of steel; Design stress for 

GFRP reinforcements = φ fGFRP ; φ = strength reduction factor for GFRP 

reinforcements = 0.80; fGFRP tensile strength of GFRP reinforcements); it follows 

from force equilibrium that 

vGFRPyt qsfA =) ( /φ                                                        (13) 

where At is the cross-sectional area of the stirrup (equal to Asv /2 for two legged 

stirrups). Substituting eqn. 12 & 13 in eqn. 11, the following expression is 

obtained for the ultimate strength Tu = TuR  in torsion: 

vGFRPytuR sfdbAT ) (2 /11 φ=                                          (14) 

Further, assuming that the longitudinal steel (symmetrically placed with respect to 

the beam axis) has also yielded at the ultimate limit state, it follows from 

longitudinal force equilibrium that (Figure 6): 

)(2
45tan

) ( 11/ dbqfA
oGFRPyl +×=φ                                       (15) 

where Al ≡ the total area of the longitudinal steel/GFRP reinforcements and fyl 

yield strength of steel; fGFRP tensile strength of GFRP reinforcements. Substituting 

eqn. 11 in 15, the following expression is obtained for the ultimate strength Tu = 

TuR in torsion: 

)() ( 11/11 dbfdbAT GFRPyluR += φ                                       (16) 

The two alternative expressions for TuR viz. eqn. 14 and eqn. 16, will give 

identical results only if the following relation between the areas of longitudinal 

steel and transverse steel (as torsional reinforcement) is satisfied: 
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GFRPy

tGFRPyf

v
tGFRPtl fs

db
AA

/

/11
/

)(2 −
− ×

+
×=                                     (17) 

where At ≡ cross sectional area of the 2 legged stirrups; AGFRP-t ≡  cross sectional 

area of the 2 legged GFRP stirrups; fyt ≡ yield strength of steel; fGFRP-t ≡ tensile 

strength of GFRP stirrups. If the relation given by the eqn. 17 is not satisfied, then 

TuR may be computed by combining eqn. 14 and eqn. 16, taking into account the 

areas of both transverse and longitudinal reinforcements: 

87.0
)(2

2
11

11 ×







+
×









=

db
fA

s
fA

dbT yll

v

yt
uR                                      (18) 

 
 

 
sv 

d1 
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Figure 6: Space-truss model for GFRP reinforced beams 
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To ensure that the member does not fail suddenly in a brittle manner after the 

development of torsional cracks, the torsional strength of the cracked reinforced 

section must be at least equal to the cracking torque Tcr (computed without 

considering any safety factor). The ultimate torque Tul may be computed by 

considering the contributions of both transverse and longitudinal reinforcements: 

φ×







+
×











=

)(2
2

11

////
11 db

fA
s

fA
dbT GFRPGFRP

v

GFRPyGFRPt
ul                           (19) 

To predict the cracking behaviour, the concrete tube may be idealized through the 

spaces truss analogy proposed by Rausch in 1929. Based on Hsu, the following 

equation for the torsional stiffness (GC)II   of rectangular sections: 









ρ

+
ρ

+
+

+
=

tl

sII

Ddb
mBDdb

BDdbEGC
11

)(
2)(

)(

11

2
11

2
1

2
1                   (20)            

 

Transverse GFRP reinforcement alone: 

Considering shear –torsion interaction with Vu=0, which corresponds to space 

truss formulation, considering the contribution of the transverse reinforcement 

alone, 

vtGFRPtty sfdbAT )(11 −=                                            (21) 

The values obtained from the space truss analogy for various parameters for the 

conventionally reinforced and GFRP reinforced specimens are shown in Table 4. 

 

 

3.2 Softened Truss Model 

The softening truss model, developed by Hsu & Mo (1985), is similar to the 

space truss model described above, except that it utilizes the full concrete cross 

section and takes the softening of the concrete into consideration. The softening of 
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concrete is based on an assumed effective transverse compressive stress 

component, which is used to predict the torsional behaviour of reinforced 

concrete. The model was developed according to the fundamental principles of the 

mechanics of materials, stress equilibrium, strain compatibility, and the 

constitutive law of materials. In this model, the constitutive law of materials is 

given in terms of the stress-strain curve of the softened concrete shown in Figure 

7.  

The equation for the ascending portion of the stress-strain curve of normal 

strength concrete is modelled as: 

𝑓𝑐 = 𝑓𝑐′ �2 �
𝜀𝑐
𝜀𝑜
� − 1

𝜉
�𝜀𝑐
𝜀𝑜
�
2
�                                                          (22) 

 
where 𝑓𝑐 ≡ stress in concrete corresponding to the strain 𝜀𝑐; 𝑓𝑐′ ≡ compressive 

strength of concrete; 𝜀𝑐 ≡strain in diagonal concrete struts; 𝜀𝑜 ≡ strain at 

maximum concrete compressive stress = 0.002; 𝜉 ≡ Softening coefficient 

                                                𝜉 = 1

�
𝜀𝑙+𝜀𝑠+2𝜀𝑑

𝜀𝑑
−0.3

                                                  (23) 

where 𝜀𝑙 ≡ strain in longitudinal reinforcement; 𝜀𝑠 ≡ strain in stirrups; 𝑓𝑘 ≡ 𝜉𝑓𝑐′ 

peak softened compressive strength; 𝜀𝑘 ≡ 𝜉𝜀𝑜 - softened strain corresponding to 

peak softened compressive strength. 

The equation of the descending portion of the stress-strain curve is given as: 

𝑓𝑐 = 𝑓𝑘 �1 − � 𝜀𝑐−𝜀𝑘
2𝜀𝑜−𝜀𝑘

�
2
�                                                      (24) 

The torque is obtained from equilibrium equations. The detailed derivation of the 

equations and the solution technique for the ultimate torsional capacity can be 

found elsewhere (Hsu & Mo 1985; Hsu 1988). 
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Table 4: Results of space truss analogy for various parametric conditions 

 

Specimens Tel θel Tcr1 θcr1 Teff θeff Tyt θyt Tul θul 

Bp1m1FeS1 1.79 0.051 3.22 0.092 3.61 0.103 12.27 3.29 20.49 5.51 

Bp1m1Ft S1 1.79 0.051 3.22 0.092 3.61 0.103 3.56 3.08 12.11 10.45 

Bp1m2Fe S1 2.09 0.051 3.77 0.092 4.2 0.103 12.27 3.27 20.5 5.51 

Bp1m2Ft S1 2.09 0.051 3.77 0.092 4.2 0.103 3.56 3.1 14.83 12.81 

Bp2m1Fe S1 1.79 0.051 3.22 0.092 3.67 0.105 12.27 3.29 25.12 6.74 

Bp2m1Ft S1 1.79 0.051 3.22 0.092 3.67 0.105 5.18 5.02 14.82 12.82 

Bp2m2Fe S1 2.09 0.051 3.77 0.092 4.29 0.105 12.67 3.27 25.1 6.70 

Bp2m2Ft S1 2.09 0.051 3.77 0.092 4.29 0.105 3.87 3.34 14.83 12.8 

Bp1m1Fe S2 1.79 0.051 3.22 0.092 3.73 0.092 18.41 4.94 25.1 6.74 

Bp1m1Ft S2 1.79 0.051 3.22 0.092 3.73 0.107 5.81 5.03 14.83 12.83 

Bp1m2Fe S2 2.09 0.051 3.77 0.092 4.36 0.108 18.41 4.9 25.1 6.74 

Bp1m2Ft S2 2.09 0.051 3.77 0.092 4.36 0.108 5.81 5.05 14.83 12.8 

Bp2m1Fe S2 1.79 0.051 3.22 0.092 3.8 0.108 18.4 1.01 30.75 8.26 

Bp2m1Ft S2 1.79 0.051 3.22 0.092 3.8 0.108 5.81 5.02 18.16 15.7 

Bp2m2Fe S2 2.09 0.051 3.77 0.092 4.42 0.108 18.4 4.9 30.75 8.25 

Bp2m2Ft S2 2.09 0.051 3.77 0.092 4.42 0.108 5.81 5.01 18.16 15.67 
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Figure 7: Stress- strain curve for softened concrete 
 
 
Equilibrium Equations 

The in-plane equilibrium equations for the rectangular element can be 

expressed as   

𝑓𝑐𝑐𝑜𝑠2𝛼 + 𝐴𝑠/𝐺𝐹𝑅𝑃

𝑎𝑜 𝑡𝑤
𝑓𝑠/𝐺𝐹𝑅𝑃 = 0                                        (25) 

𝑓𝑐𝑠𝑖𝑛2𝛼 + 𝐴𝑠/𝐺𝐹𝑅𝑃−𝑡

𝑠𝑣 𝑡𝑤
𝑓𝑠/𝐺𝐹𝑅𝑃−𝑡 = 0                                            (26) 

−𝑓𝑐𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 = 𝜏                                                   (27) 

where AS/GFRP = total cross sectional area of the longitudinal reinforcements; 

AS/GFRP-t = cross sectional area of the one two legged stirrups; ao = Perimeter of the 

centerline of the shear flow area; sv is the center-to-center spacing of the stirrups; 

fC = Compressive strength of concrete struts; fr = tensile strength of concrete 

which is assumed to zero; α is the angle of inclination of the concrete struts with 

respect to longitudinal axis. 

Based on the equilibrium equation, the torque T is written as,  

𝑇 = 2𝐴𝑜𝜏 𝑡𝑤                                                      (28) 

Based on the compatibility equation, the in-plane deformation the 

rectangular element should satisfy the following three compatibility equations,  
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𝜀𝑠/𝐺𝐹𝑅𝑃 + 𝜀𝑠𝑡/𝐺𝐹𝑅𝑃−𝑡 = 𝜀𝑐 + εr                                         (29) 

𝑡𝑎𝑛2𝛼 = 𝜀𝑠/𝐺𝐹𝑅𝑃−εc
𝜀𝑠𝑡/𝐺𝐹𝑅𝑃−𝑡−εc

                                                (30) 

𝛾 = 2�𝜀𝑠𝑡/𝐺𝐹𝑅𝑃−𝑡 − εc�𝑡𝑎𝑛𝛼                                          (31) 

where, 𝜀𝑠/𝐺𝐹𝑅𝑃 ≡ strain in longitudinal steel/GFRP reinforcements; 𝜀𝑠/𝐺𝐹𝑅𝑃−𝑡 ≡ 

strain in transverse steel/GFRP reinforcements (stirrups); 𝜀𝑐 ≡ compressive strain 

in concrete struts; 𝜀𝑡 ≡ tensile strain in concrete struts; According to thin walled 

tube theory, the relationship between the shear strain 𝛾 and the rate of twist 𝜃 can 

be written as follows: 

𝜃 = 𝑎𝑜
2𝐴𝑜

𝛾                                                         (32) 

when the member is subjected to torsion, twisting also produces warping in the 

wall of the member, which in turn, causes bending in the concrete struts.  This 

relationship is described by 

∅ = 𝜃𝑠𝑖𝑛2𝛼                                                       (33) 

where ∅ = curvature of the concrete struts. Hence the thickness 𝑡𝑤 can be written 

in terms of ∅ and the maximum strain at the outer surface of the wall as follows: 

−𝜀𝑠𝑢
∅

= 𝑡𝑤                                                             (34) 

The above equation is valid assuming the strain distribution through the thickness 

is linear. 𝜀𝑠𝑢 extreme fibre strain of the section which is taken as 0.0035. The 

average strain 𝜀𝑎𝑣𝑔 defined as the strain corresponding to the place at which the 

stress resultant is located is assumed to be 
𝜀𝑠𝑢
2

= 𝜀𝑎𝑣𝑔                                                          (35) 

Combining equations (27) & (28)  

𝑇 = −𝑓𝑐𝐴𝑜𝑡𝑤𝑠𝑖𝑛2𝛼                                                       (36) 

Combining equations (33) & (34)  

− 𝜀𝑠𝑢
𝑠𝑖𝑛2𝛼×𝑡𝑤

= 𝜃                             (37) 

Substituting in equation (37), yields  

𝜀𝑠𝑢 = 𝑝𝑜𝑡𝑤
2𝐴𝑜

𝛾𝑠𝑖𝑛2𝛼                             (38) 
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Using equations (30) and (31) 

𝛾 = 2(𝜀𝑠/𝐺𝐹𝑅𝑃 − 𝜀𝑐)𝑐𝑜𝑡𝛼                             (39)                                         

Substituting (39) in (38) 

𝜀𝑠𝑢 = 2𝑡𝑤𝑝𝑜
𝐴𝑜

(𝜀𝑠/𝐺𝐹𝑅𝑃 − 𝜀𝑎𝑣𝑔)𝑐𝑜𝑠𝛼2                             (40) 

Using Equation (25) and (35) 

𝜀𝑠/𝐺𝐹𝑅𝑃 = 𝜀𝑎𝑣𝑔 + 𝐴𝑜𝑓𝑎𝑣𝑔
𝐴𝑠/𝐺𝐹𝑅𝑃×𝑓𝑠/𝐺𝐹𝑅𝑃

𝜀𝑎𝑣𝑔                             (41) 

Using Equation (31) and (38) yields, 

𝜀𝑠𝑢 = −2𝑡𝑤𝑝𝑜
𝐴𝑜

(𝜀𝑠/𝐺𝐹𝑅𝑃−𝑡 − 𝜀𝑐)𝑠𝑖𝑛𝛼2                              (42)                    

Using Equation (26) and (35) yields 

𝜀𝑠𝑢 = 𝜀𝑐 + 𝐴𝑜𝑓𝑎𝑣𝑔𝑆
𝑝𝑜𝐴𝑠/𝐺𝐹𝑅𝑃−𝑡×𝑓𝑠/𝐺𝐹𝑅𝑃−𝑡

𝜀𝑐                             (43)         

 

Constitutive Laws of Concrete Struts and Steel 

Let the uni-axial stress-strain curve of the concrete struts be expressed by a 

parabolic curve 

𝑓 = −𝛽𝑓𝑐𝑦 �2
𝜀
𝜀𝑐
− � 𝜀

𝜀𝑐
�
2
�                                            (44) 

where 𝜀𝑐= -0.002; 𝑓𝑐𝑦= cylindrical strength of concrete; 𝛽 factor representing the 

softening parameter proposed by Vecchico and Collins (1986) is used in this 

study, which takes the form as 

𝛽 = 1
0.8+170𝜀𝑡

≤ 1                                             (45) 

where 𝜀𝑡= principal tensile strain of the concrete struts. Notice the above equation 

may not be accurate when 𝑓𝑐𝑦 > 35 𝑀𝑃𝑎. The concept of stress block still applies 

for the concrete struts. Therefore the average stress of the concrete struts is given 

by   

𝑓𝑎𝑣𝑔 = −𝑘1𝛽𝑓𝑐𝑦                                             (46) 

 

where the nondimensional coefficient k1 is defined as the ratio of the average 
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stress to the peak stress  −𝛽𝑓𝑐𝑦.  

𝑘1 = 𝜀𝑠𝑢
𝜀𝑐
�1 − 𝜀𝑠𝑢

3𝜀𝑐
�                                           (47) 

Finally the resultant per unit width C of the softened compression stress 

block has magnitude = 𝑘1𝛽𝑓𝑐𝑦𝑡𝑤 , and its position is theoretically located at a 

distance of 𝑘2𝑡𝑤 from the extreme fibre. The value of k2 is in the range of 0.4 to 

0.5 but based on Hsu, the assumption of k2 = 0.5 will simplify the model and have 

slight effect on the accuracy. The constitute law of steel is assumed to be elastic-

perfectly plastic. Elastic modulus for both the longitudinal and transverse steel is 

denoted by Es, yield strength by fL, ft respectively, and yield strain by 𝜀𝐿, 𝜀𝑡 

respectively. 

 

Geometry Equations 

𝐴𝑜 = 𝐴𝑐
𝑝𝑐
2
𝑡𝑤 + 𝜉                                                 (48) 

𝑝𝑜 = 𝑝𝑐 − 4𝜉𝑡𝑤                                                (49) 

where 𝐴𝑐 and 𝑝𝑐are the area and perimeter of the cross section respectively. The 

value of 𝜉=1 for rectangular sections it is basically geometry dependent. 

Assuming𝜀𝑠𝑢 = −0.0035; 𝜀𝑠𝑢
2

= 𝜀𝑎𝑣𝑔; Also assuming the initial wall thickness  

𝑡𝑤 = 0.75 𝐴𝑐
𝑝𝑐

 and initial softening coefficient 𝛽 = 0.5. The average stress of the 

concrete struts is given by  𝑓𝑠𝑡 = −𝑘1𝛽𝑓𝑐𝑦; where k1= 35/48. 

 

 

4  Results and Discussion 

The results of the theoretical analysis based on the space truss analogy and 

softened truss model are presented in the form of T-θ curves (Figures 8 – 15) as 

follows: 
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Figure 8: Torque verses twist for Bp1m1Fe S1 and Bp1m1Ft S1 

 

 
 

 
 

Figure 9: Torque verses twist for Bp1m2Fe S1 and Bp1m2Ft S1 
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Figure 10: Torque verses twist for Bp2m1Fe S1 and Bp2m1Ft S1 

 

 

 

 
Figure 11: Torque verses Twist for Bp2m2Fe S1 and Bp2m2Ft S1   
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Figure 12: Torque verses Twist for Bp1m1Fe S2 and Bp1m1Ft S2  
 

 
Figure 13: Torque verses Twist for Bp1m2Fe S2 and Bp1m2Ft S2 
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Figure 14: Torque verses Twist for Bp2m1Fe S2 and Bp2m1Ft S2 

 

 
Figure 15: Torque verses Twist for Bp2m2Fe S2 and Bp2m2Ft S2 
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The results of this study are summarized as follows. 

• The existing theoretical torque-twist relationship based on space truss analogy 

and softening truss model for various parametric beams under pure torque 

condition is utilized for GFRP reinforced concrete beams.  The results in the 

form of torque verses twist diagrams are shown in figures 8 - 15 and the 

results are compared with the steel reinforced beams.   

• The predicted variations of angle of twist with the applied torque for all steel 

reinforced beams show that ductility of the beams in the post cracking stages 

is significantly increased for lower percentage of steel (0.56%). But theses 

variations much higher for GFRP reinforced beams due to higher tensile 

strains despite the brittle nature of reinforcements.  

• The ultimate values of angle of twist and applied torque for parametric 

conditions are derived and compared with the experimental values. Softening 

truss model predicts more accurately for GFRP reinforced beams and the 

variations are less than 10%. 

• Torsional strength and angle of twist increases with the increase in increase of 

grade of concrete and percentage of longitudinal and transverse 

reinforcements. But GFRP reinforced concrete beams show higher angle of 

twist than the conventional reinforcements (Figures 8 - 15). This fact is 

primarily due to higher tensile strain values for GFRP reinforcements than the 

steel reinforcements. 

 
 
5  Conclusions 

The predicted variations of angle of twist with the applied torque for 

steel/GFRP reinforced beams show that a closer and almost similar trend when 

compared to the experimental trend. Therefore the existing theories using space 

truss analogy and softening truss model are more reliable to predict the torsional 

behaviour. It is also noted that the replacing main and transverse steel 
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reinforcements by an equal percentage of GFRP reinforcements, reduced their 

torsional capacities. The ultimate values of torsional strength of beams have 

greater influence on the spacing of stirrups. The minimum spacing of stirrups are 

arrived based on the Indian Standards. An examination of the curves reveals that 

the slope of the curves at the initial stages of loading is mild for GFRP reinforced 

beams whereas for conventional beams it is steeper. This is primarily due lower 

elastic modulus than conventional steel reinforcements.   
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