
Journal of Computations & Modelling, vol.2, no.4, 2012, 149-165

ISSN: 1792-7625 (print), 1792-8850 (online)

Scienpress Ltd, 2012

Scanning solution set of inequality system

by a combined code

Ferenc Kálovics1

Abstract

Numerical methods often reduce the solving of a complicated prob-

lem to a set of elementary problems. In previous papers, the author

reduced some problems of numerical analysis (e.g. the computation of

integral value with error bound) to computing solution boxes of one in-

equality. The paper contains a new algorithm for application of solution

boxes of one inequality. This algorithm can be useful in itself and can

be used as the base of other investigations. Nevertheless, the real worth

of the paper is that the first completely automatic, effective code in the

topic is given here by connecting a Maple 13 code and a Visual C++

2008 code.
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1 Introduction

Illustrate the basic idea of our algorithm on a two-dimensional, drawable
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problem. Let the inequality system

f1(x) = ln x1 + |sin x1| − x2 ≥ 0, f2(x) = x2 − 0.2(x1 − 7) |x1 − 2| ≥ 0

be given and suppose that x = (x1, x2) ∈ Dom = ([1, 11], [−2, 8]) . Try to give

a solution box (SB) or a non-solution box (NB) around the point c = (2, 4).

Since f1(c) < 0 and f2(c) ≥ 0, the continuity of f1 on Dom guarantees an NB

around the point (2, 4). Using the addition rule of our program (that comes

from [2]) for f1(x), the sufficient condition

ln x1 < 1.8919, |sin x1| − x2 < −1.8919

is obtained. It is obvious that this is a sufficient condition indeed, furthermore

(because of ln 2 < 1.8919 and |sin 2| − 4 < −1.8919) these inequalities can be

satisfied around c. Now use the subtraction rule of our program ([2] does not

give subtraction rule, it use the identity a− b = a+(−1)b instead of the direct

rule) for the second inequality. Then the sufficient condition

|sin x1| < 1.5087, x2 > 3.4006

is obtained. Naturally these inequalities can also be satisfied around c. If the

composite function rule of our program (or [2]) is used for the first inequality,

then the evident sufficient condition

sin x1 > −1.5087, sin x1 < 1.5087

is obtained. Now the four elementary inequalities

ln x1 < 1.8919, x2 > 3.4006, sin x1 > −1.5087, sin x1 < 1.5087

determine an NB in Dom around c, i.e. our problem is reduced to simple

problems by using three decomposition rules. The evaluation of the elementary

inequalities requires only simple mathematical analysis knowledge, and the

result is

([1, 6.6321], [3.4006, 8]) ⊂ Dom.

The volume (the area) of this NB is 25.9043 units, which is the 25.9043

percentage of the volume of Dom. After this lucky choice, try to give an SB or

NB around the point c = (5, 1). Since f1(c) ≥ 0 and f2(c) ≥ 0, the continuity

of f1 and f2 guarantees an SB around the point (5, 1). Using the addition,
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subtraction and composite function rules (as 3 decomposition rules) for f1(x),

the elementary inequalities

ln x1 ≥ 0.8253, x2 ≤ 1.3921, sin x1 ≤ −0.5668

are obtained. After evaluation of the elementary inequalities the solution box

to f1(x) ≥ 0 around c in Dom is ([3.7443, 5.6805], [−2, 1.3921]). Using the

subtraction, constant multiplication, multiplication, composite function and

constant addition rules (as 5 decomposition rules) for f2(x), the elementary

inequalities

x2 ≥ −0.1, x1 ≤ 6.4227, x1 ≤ 7, x1 ≥ 2.8660

are obtained. The evaluation is evident here, and the solution box to f2(x) ≥ 0

around c in Dom is ([2.8660, 6.4227], [−0.1, 8]). The SB to the original inequal-

ity system around c in Dom is the intersection of these two boxes, which is

([3.7443, 5.6805], [−0.1, 1.3921]) ⊂ Dom.

The volume (the area) of this SB is 2.8891 units, which is the 2.8891 per-

centage of the volume of Dom. (The real numbers rounded to 4 digits came

from much more precise values.) For the points c = (2, 4), c = (5, 1), c = (8, 2)

and c = (10,−1), SB or NB are illustrated in the Figure 1.

Figure 1: SB or NB around points

The aim of this paper is to give a completely automatic, effective code for

scanning the solution set (and the non-solution set) of an inequality system
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by using the outlined ‘box technics’. Note this box technics (based on [2])

is not a part of the technics used in the so-called interval methods (see e.g.

the classic books [1, 6]). The handling and application of these two tools

require a highly different mathematical and computational background. The

algorithm of Section 3 is a strongly improved version of the algorithm of [5],

made suitable for ‘serious scanning’. But the actual problem is the creation of

the computer code. The ideal program language for this algorithm should have

the expression handling of Maple for using decomposition rules, the speediness

of Fortran or C++ in numerical computations for evaluation of elementary

inequalities, the numerous standard functions of Fortran and the concise code

writing of C++. The programs based on box technics (e.g. in [3, 5]) operate

with 3-4 Fortran subroutines or 3-4 C++ function segments and require manual

data preparation, i.e. they are not completely automatic codes. The ‘almost

ideal’ program of the paper use one Maple 13 procedure for preparation and

one connected C++ 2008 function segment for the essential computation. On

the other hand, this paper can be considered as a continuation of paper [4].

2 Numerically coded form

Let the (nonlinear) inequality system

fi(x1, x2, ..., xm) ≥ 0, x = (x1, x2, ..., xm) ∈ Dom ⊂ R
m, i = 1, 2, ..., n

be given. We assume that the multivariate real functions fi are continuous

on the closed box Dom and are built by using the 7 function operations (con-

stant addition (+c), constant multiplication (∗c), addition (+), subtraction

(−), multiplication (∗), division (/), composition of functions (◦)) from the 12

univariate real elementary functions

xr, ex, ln x, |x| , sin x, cos x, tan x, cot x, arcsin x, arccos x, arctan x, arccot x.

It is supposed that r of xr is a positive integer or negative integer or the

reciprocal of a positive integer. This is only a formal restriction because of

xk/n =
(

xk
)1/n

, ∀k, n ∈ N
+. The functions ax, loga x, sinh x, etc. can be used

by the identities ax = ex ln a, loga x = ln x/ ln a, sinh x = (ex − e−x)/2, etc., re-

spectively. When the author introduced the decomposition of expressions seen
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in the introducing example, the process was followed by a Maple program.

This code computed a box to one expression very similarly to how it is done

in our numerical example. The program utilized to a high extent the ability

of Maple to give the type of an expression by the function type(e, t) where e

is an expression and t is a type name, furthermore to give operands from an

expression by the function op(i, e) where i is a position index and e is an ex-

pression. The use of our Maple program was very convenient because we must

only give the function (the expression) in a customary form. Unfortunately,

the program is rather slow. The conventional program languages (e.g. Fortran,

C++) have no similar functions, but they can follow the decomposition if a

numerically coded form of the expression (see [2]) used. This form is built of

triples of integer or real numbers. The first number in a triple is the so-called

operation code (using the order of rules and elementary functions):

+ c ⇔ 1, ∗c ⇔ 2, + ⇔ 3, − ⇔ 4, ∗ ⇔ 5, / ⇔ 6,

xr ⇔ 7, exp ⇔ 8, ln ⇔ 9, abs ⇔ 10,

sin ⇔ 11, cos ⇔ 12, tan ⇔ 13, cot ⇔ 14,

arcsin ⇔ 15, arccos ⇔ 16, arctan ⇔ 17, arccot ⇔ 18.

The second number in the triples is minus i if an elementary function uses

the argument xi (the minus sign identifies the elementary funcions). If the

operation given by the first number of a triple uses a former triple as the

first operand, then the ordinal number of this triple is the second number in

the actual triple. The third number in the triples is the given constant or

the exponent if the constant addition, constant multiplication or the power

function is used, respectively. If the operation given by the first number of the

triple uses a former triple as a second operand (cases of +,−, ∗, /), then the

ordinal number of this triple is the third number in the actual triple. If the

operation given by the first number of the triple is exp, ln, ..., arccot (the first

number in the triple is between 8 and 18), then the third number in the actual

triple is 0. Demonstrate the description on the first expression

f1(x1, x2) = ln x1 + |sin x1| − x2

of our sample problem. The three elementary functions used in the build-up

of f1(x1, x2) (the elementary boxes belong to these functions after the decom-

position) are ln x1, sin x1, and x2 = (x2)
1. Their descriptions are

ln x1 = (9,−1, 0), sin x1 = (11,−1, 0), x2 = (7,−2, 1).
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Now we have the sequence of triples

(9,−1, 0), (11,−1, 0), (7,−2, 1).

Using the 2nd element of this sequence, the expression |sin x1| can be obtained

in the form (10, 2, 0), and this triple is the 4th element of the sequence. Since

the last 2 operations (+ and −) can be written in form (3, 1, 4) and (4, 5, 3),

the complete description of f1(x1, x2) is:

(9,−1, 0), (11,−1, 0), (7,−2, 1), (10, 2, 0), (3, 1, 4), (4, 5, 3).

Our Maple 13 procedure triples requests the number of functions (nof) and

the functions (fs) as input parameters and the output parameter is the two-

dimensional array FF.More exactly, FF [i, 1] and FF [i, 2], where i = 1, ..., nof,

inform that the triples of the expression fi(x1, ..., xm) are placed from the

FF [i, 1]th row to the FF [i, 2]th row in FF , i.e. the first nof rows contain

index bounds, then the triples of the 1st, 2nd,..., nofth expressions are placed,

respectively. The complete Maple 13 code is as follows.

> triples:=proc(nof::integer, fs::Array, FF::Array)

local x,com,tri,ii,v,i,j,k,g,ind,nt,res;

x:=array(1 .. 10); com:=array(1 .. 10); tri:=array(1 .. 10, 1 .. 3);

ii:=array(1 .. 10); v:=array(1 .. 3); res:=array(1 .. 10, 1 .. 3);

# OPERANDS, TRIPLES

FF[0, 1]:=nof: FF[0, 2]:=nof:

for j from 1 to nof do

i:=0: nt:=1: com[1]:=fs[j]:

while i<nt do

i:=i+1: g:=com[i]:

if type(g, name) then v:=[0, op(1, g), 0]: fi:

if type(g,‘+‘) then

if type(op(1,g),numeric) then v:=[1,g-op(1,g),op(1,g)]:

elif type(g-op(1,g),numeric) then v:=[1,op(1,g),g-op(1,g)]:

else v:=[3,op(1,g),g-op(1,g)]: if op(1,op(2,g))=-1 then v:=[4,op(1,g),op(1,g)-g]: fi: fi: fi:

if type(g,‘*‘) then

if type(op(1,g),numeric) then v:=[2,g/op(1,g),op(1,g)]:

elif type(g/op(1,g),numeric) then v:=[2,op(1,g),u/op(1,g)]:

else v:=[5,op(1,g),g/op(1,g)]:

if type(op(2,g),‘ˆ‘) and op(2,op(2,g))<0 then v:=[6,op(1,g),op(2,g)ˆ(-1)]: fi: fi: fi:

if type(g, ‘ˆ‘) then v:=[7, op(1, g), op(2, g)]: fi:

if type(g,function) then

if op(0, g) = exp then v:=[8, op(1, g), 0]: fi:

if op(0, g) = ln then v:=[9, op(1, g), 0]: fi:

if op(0, g) = abs then v:=[10, op(1, g), 0]: fi:

if op(0, g) = sin then v:=[11, op(1, g), 0]: fi:

if op(0, g) = cos then v:=[12, op(1, g), 0]: fi:

if op(0, g) = tan then v:=[13, op(1, g), 0]: fi:
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if op(0, g) = cot then v:=[14, op(1, g), 0]: fi:

if op(0, g) = arcsin then v:=[15, op(1, g), 0]: fi:

if op(0, g) = arccos then v:=[16, op(1, g), 0]: fi:

if op(0, g) = arctan then v:=[17, op(1, g), 0]: fi:

if op(0, g) = arccot then v:=[18,op(1,g),0]: fi: fi:

if v[1] = 0 then tri[i,1]:=7: tri[i, 2]:=-v[2]: tri[i, 3]:=1: fi:

if v[1]>=7 and v[1]<=18 then

if type(v[2],name) then tri[i,1]:=v[1]: tri[i,2]:=-op(1,v[2]): tri[i,3]:=v[3]:

else nt:=nt+1: com[nt]:=v[2]: tri[i,1]:=v[1]: tri[i,2]:=nt: tri[i,3]:=v[3]: fi: fi:

if v[1] = 1 or v[1] = 2 then nt:=nt+1:

com[nt]:=v[2]: tri[i, 1]:=v[1]: tri[i, 2]:=nt: tri[i, 3]:=v[3]: fi:

if v[1]>=3 and v[1]<=6 then nt:=nt+1:

com[nt]:=v[2]: nt:=nt+1: com[nt]:=v[3]: tri[i,1]:=v[1]: tri[i,2]:=nt-1: tri[i,3]:=nt: fi:

od:

# NEW INDEXES

ind := 1:

for i to nt do if tri[i, 2]<0 then ii[i] := ind: ind := ind+1: fi: od:

for i from nt by -1 to 1 do if tri[i,2] >0 then ii[i] := ind: ind := ind+1: fi: od:

# TRIPLE FORM OF THE j-th FUNCTION

for ind from 1 to nt do

for i from 1 to nt do

if ii[i]=ind then res[ind,1]:=tri[i,1]:

if tri[i,2]<0 then res[ind,2] := tri[i,2]: res[ind,3] := tri[i,3]: fi:

if tri[i,2]>0 then res[ind,2]:=ii[tri[i,2]]:

if tri[i,1]>=3 and tri[i,1]<=6 then res[ind,3]:=ii[tri[i,3]]: else res[ind,3]:=tri[i,3]:

fi: fi: fi:

od: od:

FF[j, 1] := FF[j-1, 2]+1: FF[j, 2] := FF[j-1,2]+nt: FF[j, 3] := 0:

for i to nt do for k to 3 do FF[i+FF[j, 1]-1, k] := res[i, k]: od: od:

od:

end proc:

Considering the capability of our personal computer, the declarations of

arrays in this procedure and in the following C++ function segment suppose

that the number of inequalities is less than 10 (nof < 10), furthermore ev-

ery inequality can be coded by at most 30 triples (FF [i, 2] − FF [i, 1] < 30,

where i = 1, 2, ..., nof). If the procedure is called with the data of our sam-

ple problem, then FF [1, 1] = 3, FF [1, 2] = 8 and FF [2, 1] = 9, FF [2, 2] =

17, i.e. the 6 triples of f1(x) = ln x1 + |sin x1| − x2 are placed from the

3rd row to the 8th row in FF and the 9 triples of f2(x) = x2 − 0.2(x1 −

7) |x1 − 2| are placed from the 9th row to the 17th row in FF. The triples

are (9,−1, 0), (7,−2, 1), (11,−1, 0), (10, 3, 0), (4, 4, 2), (3, 1, 5) and (7,−2, 1),

(7,−1, 1), (7,−1, 1), (1, 3,−2), (10, 4, 0), (1, 2,−7), (5, 6, 5), (2, 7,−0.2), (3, 1, 8).

The first result differs from our previous one formally because the procedure

does not use the left-right rule, but they are equivalent in essence. The second

result has a redundance (the 2nd and 3rd triples are the same), but it does
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not damage the production. This code shows some similarity with the Maple

code of [4], but essential differences are the followings. (1) Paper [4] (and all

previous programs) avoided the subtraction rule (because of some Maple dif-

ficulties), therefore the coded forms are different there as a matter of course.

(2) Paper [4] gives the numerically coded form of one expression only. (3)

Paper [4] does not give a procedure, it uses a simple command sequence and

the results (the triples) are handled manually.

3 Scanning solution set and non-solution set

Let the (nonlinear) inequality system

fi(x1, x2, ..., xm) ≥ 0, x = (x1, x2, ..., xm) ∈ Dom ⊂ R
m, i = 1, 2, ..., n

be given (with the conditions seen at the beginning of Section 2). The amplifi-

cations are based on the following four principles. (1) Now we have a suitable

form of expressions fi(x1, x2, ..., xm) to make a fast C++ code for the algo-

rithm illustrated in Section 1. (2) The scanning of the solution set S gives an

approximation of the volume of S and the scanning of the complementary set

Dom−S also facilitates computation of an error bound to the coverage. (3) If

U and T are m-dimensional boxes, then the set U − T can be divided into (at

most) 2m boxes easily. (4) Too small boxes are ignored by the simple condition

vol(B) > bou, where vol(B) is the volume of B. Naturally, the bound bou has

a strong influence on the available error bound. Usually only one property of

solution box (SB) or non-solution box (NB) is utilized in computation.

For example, the volume of the box is utilized in computing the integral

value with error bound (see [3]) and a vertex of the box is utilized in comput-

ing the global minimum of a strictly increasing objective function over Dom.

Therefore only a selected set of SBs and NBs is stored for output by the condi-

tion vol(B) > sel, where sel ≥ bou. The algorithmic description of the method

is as follows.

(a) Define the first element of an interval (box) sequence {Ik} by I1 = Dom.

Let nob = 1, nsb = 0, nnb = 0, nign = 0, nsel = 0, vsb = 0, vnb = 0,

vign = 0, vsel = 0, where nob, nsb, nnb, nign, nsel, vsb, vnb, vign, vsel
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denote the number of boxes in the sequence {Ik}, the number of SBs,

the number of NBs, the number of ignored boxes, the number of selected

boxes, the volume of SBs, the volume of NBs, the volume of ignored

boxes, the volume of selected boxes, respectively.

(b) Compute the box SNB (it is SB or NB) around the centre c of Inob.

(b1) If SNB is SB and vol(SNB) > bou then let nsb = nsb + 1, vsb =

vsb+ vol(SNB).

(b2) If SNB is NB and vol(SNB) > bou then let nnb = nnb+ 1, vnb =

vnb+ vol(SNB).

(b3) If vol(SNB) ≥ sel then let nsel = nsel+1, vsel = vsel+vol(SNB),

Bsel(nsel, 1) = 1 or −1, Bsel(nsel, 2) = vol(SNB), Bsel(nsel, 2i+

1) = SNB(i, 1), Bsel(nsel, 2i+2) = SNB(i, 2), where i = 1, 2, ...,m.

(c) If the set Inob − SNB is empty, then do nothing and let nb = 0. If the

set Inob − SNB is not empty and vol(SNB) ≤ bou, then divide the

set Inob in two halves along the longest side and let nb = 2. If the set

Inob − SNB is not empty and vol(SNB) > bou, then divide the set

Inob − SNB in nb ‘almost disjunct’ boxes, where 1 ≤ nb ≤ 2m. Filter

(ignore) the ‘unimportant’ (too small) boxes by the condition vol(box)

> bou and let nign = nign + 1, vign = vign + vol(SNB) for every

ignoring. Place the nb∗ ≤ nb new boxes into the box sequence {Ik} as

nobth, (nob+1)th,...,(nob+nb∗−1)th elements and let nob = nob+nb∗−1.

If nob > 0, then go to (b). If nob = 0, then load the values nsb, nnb,

nign, nsel, vsb, vnb, vign, vsel in the 0th row of the array Bsel and go

to the calling point.

C++ code uses the above ‘reminding names’ and {Ik} ⇔ Ise. The essential

two cases of the dividing algorithm of (c) form = 2 are illustrated in the Figure

2.

Our C++ 2008 function segment scanning requests the number of variables

(m), the number of inequalities (n), the domain of inequality system (Dom),

the numerically coded form (F ) of fi(x1, x2, ..., xm), i = 1, 2, ..., n, the bound

bou for ignoring and the bound sel for selecting as input parameters and the

output parameter is the two-dimensional array Bsel. (It is supposed that

nsel < 1000.) The complete C++ 2008 code is as follows.
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Figure 2: New boxes by dividing algorithm

#include ”math.h”

double Ise[100000][10][3];

void scanning

(int m,int n,double Dom[10][3],double F[300][4], double bou,double sel,double Bsel[1000][20])

{ double G[30][4],B[10][3],BB[10][3],SNB[10][3],c[10],fv[30], ne[30][5],el[30][5],ax[10][3];

double vsb,vnb,vign,vsel,vol,vo,al,be,ga,de,ep,x,y,w,alf,per; const double Pi=3.14159265;

int ind[10],nob,nsb,nnb,nign,nsel,i,j,k,l,ii,jj,kk,nn,nt,ine,iel,s,poi;

/*INITIAL VALUES*/

for (i=1; i<=m; i++) {Ise[1][i][1]=Dom[i][1]; Ise[1][i][2]=Dom[i][2];}

nob=1; nsb=0; nnb=0; nign=0; nsel=0; vsb=0; vnb=0; vign=0; vsel=0;

while (nob>0)

{ for (i=1; i<=m; i++) {SNB[i][1]=Ise[nob][i][1]; SNB[i][2]=Ise[nob][i][2];

c[i]=(Ise[nob][i][1]+Ise[nob][i][2])/2; BB[i][1]=c[i]; BB[i][2]=c[i];}; vol=0; poi=1;

/*SOLUTION BOX OR NON-SOLUTION BOX AROUND A POINT*/

for (nn=1; nn<=n; nn++) { nt=F[nn][2]-F[nn][1]+1;

for (i=1; i<=nt; i++) for (ii=1; ii<=3; ii++) G[i][ii]=F[(int)F[nn][1]+i-1][ii];

/*FUNCTION VALUES TO COMPONENTS OF nn-th FUNCTION*/

for (i=1; i<=nt; i++)

{ j=G[i][1]; k=G[i][2]; l=G[i][3]; w=G[i][3];

if (k<0) x=c[-k]; else x=fv[k]; if (j>=3 && j<=6) y=fv[l];

switch (j)

{ case 1:fv[i]=x+w;break; case 2:fv[i]=x*w;break; case 3:fv[i]=x+y;break;

case 4:fv[i]=x-y;break; case 5:fv[i]=x*y;break; case 6:fv[i]=x/y;break;

case 7:fv[i]=pow(x,w);break; case 8:fv[i]=exp(x);break; case 9:fv[i]=log(x);break;

case 10:fv[i]=fabs(x);break; case 11:fv[i]=sin(x);break; case 12:fv[i]=cos(x);break;

case 13:fv[i]=tan(x);break; case 14:fv[i]=1/tan(x);break; case 15:fv[i]=asin(x);break;

case 16:fv[i]=acos(x);break; case 17:fv[i]=atan(x);break;

case 18:fv[i]=Pi/2-atan(x);break;}}

if (fv[nt]<0) poi=-1;

/*DECOMPOSITION BY USING THE 7 RULES*/

for (i=1; i<=3; i++) ne[1][i]=G[nt][i]; ne[1][4]=0; ine=1; iel=0; i=0;

while (i<ine && nt>1)

{ i++; j=ne[i][1]; k=ne[i][2]; l=ne[i][3]; w=ne[i][3]; al=ne[i][4]; s=0;

switch (j)

{ case 1:be=al-w;s=1;break;

case 2:be=al/w;s=1;break;

case 3:be=(al+fv[k]-fv[l])/2;ga=al-be;s=2;break;

case 4:be=(al+fv[k]+fv[l])/2;ga=be-al;s=2;break;

case 5: if (al==0||fv[k]*fv[l]*al<0) {be=0;ga=0;s=2;}

if (al!=0 && fv[k]==0 && fv[l]==0) {be=sqrt(fabs(al));ga=be;de=-be;ep=de;s=4;}

if (al!=0 && fv[k] !=0 && fv[l]==0) {be=2*fv[k];ga=al/be;de=0;s=3;}

if (al!=0 && fv[k]==0 && fv[l]!=0) {ga=2*fv[l];be=al/ga;de=be;ep=0;s=4;}
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if (fv[k]*fv[l]*al>0) {be=fv[k]/fabs(fv[k])*sqrt(al*fv[k]/fv[l]);

ga=fv[l]/fabs(fv[l])*sqrt(al*fv[l]/fv[k]);de=0;s=3;};break;

case 6: if (al==0) {be=0;s=1;}

if (al !=0) {ga=(al*fv[k]+fv[l])/(1+al*al);be=al*ga;s=2;};break;

case 7: if (w>0 && (l+1)/2*2==l+1) {be=pow(al,1/w); s=1;}

if (w>0 && l/2*2==l && al>=0) {be=pow(al,1/w);ga=-be;s=2;}

if (w<0 && (l-1)/2*2==l-1 && al !=0) {be=pow(al,1/w);s=1;}

if (w<0 && l/2*2==l && al>0) {be=pow(al,1/w);ga=-be;s=2;}

if (w>0 && w<1 && al>=0) {be=pow(al,1/w);s=1;};break;

case 8: if (al>0) {be=log(al);s=1;};break;

case 9:be=exp(al);s=1;break;

case 10: if (al>= 0) {be=al;ga=-al;s=2;};break;

case 11:

if (fabs(al)<=1) {x=asin(fabs(al));per=2*Pi*(int)(fv[k]/2/Pi);

if(fv[k]<0) per=per-2*Pi; if (al>=0) {be=x+per;ga=Pi-x+per;}

if (al<0) {be=Pi+x+per;ga=2*Pi-x+per;}; if (ga<fv[k]) {y=be;be=ga;ga=y+2*Pi;}

if (be>fv[k]) {y=ga;ga=be;be=y-2*Pi;}; s=2;};break;

case 12:

if (fabs(al)<=1) {x=acos(fabs(al));per=2*Pi*(int)(fv[k]/2/Pi);

if(fv[k]<0) per=per-2*Pi; if (al>=0) {be=x+per;ga=2*Pi-x+per;}

if (al<0) {be=Pi-x+per;ga=Pi+x+per;}; if (ga<fv[k]) {y=be;be=ga;ga=y+2*Pi;}

if (be>fv[k]) {y=ga;ga=be;be=y-2*Pi;}; s=2;};break;

case 13:x=atan(fabs(al)); per=2*Pi*(int)(fv[k]/2/Pi); if(fv[k]<0) per=per-2*Pi;

if (al>=0) {be=x+per;ga=Pi+x+per;}; if (al<0) {be=Pi-x+per;ga=2*Pi-x+per;}

if (ga<fv[k]) {be=ga;ga=be+Pi;}; if (be>fv[k]) {ga=be;be=ga-Pi;};s=2;break;

case 14:x=Pi/2-atan(fabs(al)); per=2*Pi*(int)(fv[k]/2/Pi); if(fv[k]<0) per=per-2*Pi;

if (al>=0) {be=x+per;ga=Pi+x+per;}; if (al<0) {be=Pi-x+per;ga=2*Pi-x+per;}

if (ga<fv[k]) {be=ga;ga=be+Pi;}; if (be>fv[k]) {ga=be;be=ga-Pi;};s=2;break;

case 15: if (fabs(al)<=Pi/2) {be=sin(al);s=1;};break;

case 16: if (al>=0 && al<=Pi) {be=cos(al);s=1;};break;

case 17: if (fabs(al)<Pi/2) {be=tan(al);s=1;};break;

case 18: if (al>0 && al<Pi) {be=1/tan(al);s=1;};break;}

for (ii=1; ii<=s; ii++)

{ switch (ii)

{ case 1:alf=be;kk=k;break; case 2: alf=ga; if (j>=3 && j<=6) kk=l;break;

case 3:alf=de;kk=k;break; case 4: alf=ep; if (j>=3 && j<=6) kk=l;break;}

if (G[kk][2]<0) {iel++; for (jj=1; jj<=3; jj++) el[iel][jj]=G[kk][jj];el[iel][4]=alf;}

if (G[kk][2]>0) {ine++; for (jj=1; jj<=3; jj++) ne[ine][jj]=G[kk][jj];ne[ine][4]=alf;}}}

if (nt==1) {for (ii=1; ii<=4; ii++) el[1][ii]=ne[1][ii];iel=1;}

/*EVALUATION OF THE ELEMENTARY INEQUALITIES, 12 CASES*/

for (i=1; i<=m; i++) {B[i][1]=Ise[nob][i][1]; B[i][2]=Ise[nob][i][2];}

for (i=1; i<=iel; i++)

{ j=el[i][1]; k=-el[i][2]; l=el[i][3]; w=el[i][3]; al=el[i][4]; s=0;

switch (j)

{ case 7: if (w>0 && (l+1)/2*2==l+1) {be=pow(al,1/w);s=1;}

if (w>0 && l/2*2==l && al>=0) {be=pow(al,1/w);ga=-be;s=2;}

if (w<0 && (l-1)/2*2==l-1 && al!=0) {be=pow(al,1/w);s=1;}

if (w<0 && l/2*2==l && al>0) {be=pow(al,1/w);ga=-be;s=2;}

if (w>0 && w<1 && al>=0) {be=pow(al,1/w);s=1;};break;

case 8: if (al>0) {be=log(al);s=1;};break;

case 9:be=exp(al);s=1;break;

case 10:if (al>= 0) {be=al;ga=-al;s=2;};break;

case 11:
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if (fabs(al)<=1) {x=asin(fabs(al));per=2*Pi*(int)(c[k]/2/Pi);

if(c[k]<0) per=per-2*Pi; if (al>=0) {be=x+per;ga=Pi-x+per;}

if (al<0) {be=Pi+x+per;ga=2*Pi-x+per;}; if (ga<c[k]) {y=be;be=ga;ga=y+2*Pi;}

if (be>c[k]) {y=ga;ga=be;be=y-2*Pi;}; s=2;};break;

case 12:

if (fabs(al)<=1) {x=acos(fabs(al)); per=2*Pi*(int)(c[k]/2/Pi);

if(c[k]<0) per=per-2*Pi; if (al>=0) {be=x+per;ga=2*Pi-x+per;}

if (al<0) {be=Pi-x+per;ga=Pi+x+per;}; if (ga<c[k]) {y=be;be=ga;ga=y+2*Pi;}

if (be>c[k]) {y=ga;ga=be;be=y-2*Pi;}; s=2;};break;

case 13:x=atan(fabs(al)); per=2*Pi*(int)(c[k]/2/Pi); if(c[k]<0) per=per-2*Pi;

if (al>=0) {be=x+per;ga=Pi+x+per;}; if (al<0) {be=Pi-x+per;ga=2*Pi-x+per;}

if (ga<c[k]) {be=ga;ga=be+Pi;}; if (be>c[k]) {ga=be;be=ga-Pi;};s=2;break;

case 14:x=Pi/2-atan(fabs(al)); per=2*Pi*(int)(c[k]/2/Pi); if(c[k]<0) per=per-2*Pi;

if (al>=0) {be=x+per;ga=Pi+x+per;}; if (al<0) {be=Pi-x+per;ga=2*Pi-x+per;}

if (ga<c[k]) {be=ga;ga=be+Pi;}; if (be>c[k]) {ga=be;be=ga-Pi;};s=2;break;

case 15: if (fabs(al)<=Pi/2) {be=sin(al);s=1;};break;

case 16: if (al>=0 && al<=Pi) {be=cos(al);s=1;};break;

case 17: if (fabs(al)<Pi/2) {be=tan(al);s=1;};break;

case 18: if (al>0 && al<Pi) {be=1/tan(al);s=1;};break;}

for (ii=1; ii<=s; ii++) { alf=be; if (ii==2) alf=ga;

if (alf<c[k] && alf>B[k][1]) B[k][1]=alf; if (alf>c[k] && alf<B[k][2]) B[k][2]=alf;}}

/*SOLUTION BOX OR NON-SOLUTION BOX FOR THE nn-th FUNCTION*/

if (poi==1)

{ for (i=1; i<=m; i++) {if (B[i][1]>SNB[i][1]) SNB[i][1]=B[i][1];

if (B[i][2]<SNB[i][2]) SNB[i][2]=B[i][2];}}

if (fv[nt]<0)

{ vo=1; for (i=1; i<=m; i++) vo=vo*(B[i][2]-B[i][1]);

if (vo>vol) {vol=vo; for (i=1; i<=m; i++) {BB[i][1]=B[i][1];BB[i][2]=B[i][2];}}}}

/*THE RESULT: 1 OR -1, VOLUME, SOLUTION BOX OR NON-SOLUTION BOX*/

if (poi==1) {SNB[0][1]=poi; vo=1;

for (i=1; i<=m; i++) vo=vo*(SNB[i][2]-SNB[i][1]); SNB[0][2]=vo;}

if (poi==-1) {SNB[0][1]=poi;

for (i=1; i<=m; i++) {SNB[i][1]=BB[i][1];SNB[i][2]=BB[i][2];};SNB[0][2]=vol;}

/*HANDLING RESULT: SERIAL NUMBERS, VOLUMES, LARGE BOXES*/

if (SNB[0][1]==1 && SNB[0][2]>=bou) {nsb=nsb+1; vsb=vsb+SNB[0][2];}

if (SNB[0][1]==-1 && SNB[0][2]>=bou) {nnb=nnb+1; vnb=vnb+SNB[0][2];}

if (SNB[0][2]>=sel)

{ nsel=nsel+1; vsel=vsel+SNB[0][2]; Bsel[nsel][1]=SNB[0][1]; Bsel[nsel][2]=SNB[0][2];

for (i=1; i<=m; i++) {Bsel[nsel][2*i+1]=SNB[i][1]; Bsel[nsel][2*i+2]=SNB[i][2];}}

/*NEW BOXES: DIVIDING ALGORITHM*/

for (i=1; i<=m; i++) {ax[i][1]=Ise[nob][i][1]; ax[i][2]=Ise[nob][i][2];}; nob=nob-1;

for (i=1; i<=m; i++) {j=1;

for (k=1; k<=m; k++) if (ax[k][2]-ax[k][1]>ax[i][2]-ax[i][1]) j=j+1;

for (k=1; k<=m; k++) if (ax[k][2]-ax[k][1]==ax[i][2]-ax[i][1] && k<i) j=j+1; ind[j]=i;}

if (SNB[0][2]<bou) {for (i=1; i<=m; i++) {SNB[i][1]=ax[i][1]; SNB[i][2]=ax[i][2];};

SNB[ind[1]][1]=c[ind[1]]; SNB[ind[1]][2]=c[ind[1]];}

for (i=1; i<=m; i++) {j=ind[i];

if (ax[j][1]<SNB[j][1]) {nob=nob+1; for (k=1; k<=m; k++)

{Ise[nob][k][1]=ax[k][1]; Ise[nob][k][2]=ax[k][2];}; Ise[nob][j][2]=SNB[j][1];

ax[j][1]=SNB[j][1]; vo=1; for (k=1; k<=m; k++) vo=vo*(Ise[nob][k][2]-Ise[nob][k][1]);

if (vo<bou) {nob=nob-1; nign=nign+1; vign=vign+vo;}}

if (ax[j][2]>SNB[j][2]) {nob=nob+1; for (k=1; k<=m; k++)

{Ise[nob][k][1]=ax[k][1]; Ise[nob][k][2]=ax[k][2];}; Ise[nob][j][1]=SNB[j][2];
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ax[j][2]=SNB[j][2]; vo=1; for (k=1; k<=m; k++) vo=vo*(Ise[nob][k][2]-Ise[nob][k][1]);

if (vo<bou) {nob=nob-1; nign=nign+1; vign=vign+vo;}}}}

/*FINAL RESULT: NUMBERS OF DIFFERENT BOXES, VOLUMES, SELECTED BOXES*/

Bsel[0][1]=nsb; Bsel[0][2]=nnb; Bsel[0][3]=nign; Bsel[0][4]=nsel;

Bsel[0][5]=vsb; Bsel[0][6]=vnb; Bsel[0][7]=vign; Bsel[0][8]=vsel;}

It is practical that the large array Ise is defined outside the function seg-

ment scanning. Since the equality vsb + vnb + vign = vol(Dom) has to be

valid, we have a simple ‘control’ for the correct computation. This code shows

some similarity with previous Fortran and C++ codes of the author, but fun-

damental differences are the followings. (1) All previous programs avoided the

subtraction rule, therefore the coded forms are different there as a matter of

course. (2) Previous programs use a separated segment for computing func-

tion values from numerically coded forms. This segment is eliminated from

our code by a single new command. (3) Previous programs use a separated

segment for dividing algorithm. A simplified and modified version of this seg-

ment is built in here. (4) The parameter list here, which produces connection

to the Maple program, is very different from the previous ones.

If the file triples.m is made from the file triples.mpl with the command

save triples, ”triples.m”

and the file scanning.dll is made from the file scanning.cpp with the command

cl −Gz scanning.cpp − link − dll − export : scanning − out : scanning.dll

then the two processes can be called very easily from a Maple 13 work-sheet.

The calling (main) segment with the inequality system of our sample problem

(using the very modest values bou = 0.3, sel = 0.3) is as follows.

> read ”triples.m”:

> nof:=2:

> fs:=Array([ln(x[1])+abs(sin(x[1]))-x[2], x[2]-(.2*(x[1]-7))*abs(x[1]-2)],datatype = algebraic):

> FF:=Array(0 .. 299, 0 .. 3): fs:=convert(fs, rational):

> triples(nof, fs, FF):

> Mscanning := define external(’scanning’, m0::(integer[4]), n0::(integer[4]),

Dom0::(ARRAY(0 .. 9, 0 .. 2, float[8])), F0::(ARRAY(0 .. 299, 0 .. 3, float[8])),

bou0::(float[8]), sel0::(float[8]), Bsel0::(ARRAY(0.. 99, 0 .. 19, float[8])), LIB = ”scanning.dll”):

> Dom:=Array(0 .. 9, 0 .. 2, datatype = float[8], order = C order):

> F:=Array(0 .. 299, 0 .. 3, datatype = float[8], order = C order):

> Bsel:=Array(0 .. 99, 0 .. 19, datatype = float[8], order = C order):

> m:=2: n:=2: Dom[1, 1]:=1: Dom[1, 2]:=11: Dom[2, 1]:=-2: Dom[2, 2]:=8:

> for i to FF[n, 2] do for k to 3 do F[i, k]:=FF[i, k]: od: od: bou:=0.3: sel:=0.3:

> Mscanning(m, n, Dom, F, bou, sel, Bsel):
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> printf(”Box numbers: %.0f %.0f %.0f %.0f \n”, Bsel[0, 1], Bsel[0, 2], Bsel[0, 3], Bsel[0, 4]);

> printf(”Volumes: %.6f %.6f %.6f %.6f \n”, Bsel[0, 5], Bsel[0, 6], Bsel[0, 7], Bsel[0, 8]);

> for i to Bsel[0, 4] do printf(”Box: %.0f %.4f %.2f %.2f %.2f %.2f \n”,

Bsel[i, 1], Bsel[i, 2], Bsel[i, 3], Bsel[i, 4], Bsel[i, 5], Bsel[i, 6]): od:

Box numbers: 14 29 98 43

Volumes: 10.065621 71.029243 18.905136 81.094864

Data of 43 boxes are in the following 43 rows.

The commands of the first 5 rows activate the procedure triples and the

commands of the next 9 rows activate the function scanning. The commands

of the last 4 rows provide the printout of the result. Hence 14 solution boxes

(with volume 10.065621), 29 non-solution boxes (with volume 71.029243), 98

ignored boxes (with volume 18.905136) and 43 (14 + 29) selected boxes (with

volume 81.094864) are produced and 10.065621+71.029243+18.905136 = 100.

This modest scanning is illustrated in Figure 3.

Figure 3: A scanning of 81.094864%

If the values bou = 10−4, sel = 5 are used in the calling segment, then the

result is:
Box numbers: 1810 1787 5339 7

Volumes: 19.263489 80.395691 0.340820 46.179833

Data of 7 boxes are in the following 7 rows.

Since the sum of the first 3 volumes is 100, we have a scanning of (100 −

0.340820)% = 99.659180%. If the values bou = 10−6, sel = 5 are used in the

calling segment, then the result is:
Box numbers: 17729 17839 54312 7

Volumes: 19.416344 80.549397 0.034259 46.179833
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Data of former 7 boxes are in the following 7 rows.

Since the sum of the first 3 volumes is 100, we have a scanning of (100 −

0.034259)% = 99.965741%. The 7 largest (non-solution) boxes give a covering

of 46.179833% in both cases.

For a comparison of running times, choose a more demanding problem.

Try to give a good approximation value with guaranted error bound for the

integral value
∫ ∫ ∫

V

(x2
2 + x2

3)dx1dx2dx3,

where V is described by the inequality

(2− x3)
2 − 4x2

1 − 4x2
2 ≥ 0, x3 ∈ [0, 2].

The computation of a triple integral for a cone region (the radius of the

base circle is 1 unit, the altitude is 2 units) is the problem now. The volume

of the solution set of the inequality system

(2− x3)
2 − 4x2

1 − 4x2
2 ≥ 0

x2
2 + x2

3 − x4 ≥ 0

x = (x1, x2, x3, x4) ∈ Dom = ([−1, 1], [−1, 1], [0, 2], [0, 5])

gives the required value (consider the geometrical meaning of simple and double

integrals). The input data nof = 2, f1(x) = (2 − x3)
2 − 4x2

1 − 4x2
2 and

f2(x) = x2
2 + x2

3 − x4 to Maple 13 procedure triples need to be placed in

the 2nd and 3rd rows of the calling segment and the input data m = 4,

n = 2, Dom = ([−1, 1], [−1, 1], [0, 2], [0, 5]) to C++ 2008 function segment

scanning need to be placed in the 12th row of the calling segment. If the

values bou = 10−6, sel = 40 = vol(Dom) are used in the 13th row of the

calling segment, then the result is:
Box numbers: 51191 57314 390993 0

Volumes: 1.024918 38.726149 0.248933 0.000000

There are not selected boxes here.

Since the sum of the first 3 volumes is 40, the value 1.024918 is a guaranted

lower bound and 1.024918+0.248933 = 1.273851 is a guaranted upper bound to

the integral value. Furthermore the value 1.024918+0.248933∗0.5 = 1.149385

is an approximating value to the integral value and 0.248933 ∗ 0.5 = 0.124467

is a guaranted error bound to this value. The exact value of the triple integral

(which can be obtained by using cylinder coordinates) is 11π/30 ≈ 1.151917,
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thus the real error of the approximating value is only 0.002532. The result

comes from a scanning of 99.377667%, the running time (on our PC of two 2.2

GHz processors) is 2.3 sec . If the function segment scanning is called from a

C++ main segment (triples are handled manually), i.e. exe file is used instead

of dll file, then the above result comes after 2.4 sec. The code based on the

algorithm of [5] is unsuitable for such a computation. The original code based

on the algorithm of [3] contains five Fortran 90 segments and uses some ‘special

tricks’, among others the above correction by utilization of the lower and upper

bounds. The input parameters are m, n, Dom, F (triples are used manually)

and Eb (an upper bound for number of examined boxes). The C++ ‘mirror

version’ of this code with Eb = 60000 gives the result:

Integral value, error bound: 1.154199 0.210647.

The real error is 0.002282, the result comes from a scanning of 98.946765%

and the running time (on our PC of two 2.2 GHz processors) is 3.2 sec . The

application of our connected code is convenient as using one Maple segment

(numerically coded form of inequality system does not appear) and the running

time is as good as that of a complete C++ code, i.e. our aim is fulfilled. The

author would gladly send the Maple and C++ codes of the paper to interested

readers in e-mail as an attached file.
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