Two-machine Flow Shop Scheduling Problem with a Single Server and Equal Processing Times

Shi ling ${ }^{1}$ and Cheng xue-guang ${ }^{2}$

Abstract

We study the problem of two-machine flow-shop scheduling with a single server and equal processing times, we show that this problem is $N P$-hard in the strong sense.

Mathematics Subject Classification : 90B35
Keywords: two-machine, flow-shop, single server, complexity, $N P$-hardness

1 Introduction

In this paper, we consider the problem in which we have two machines M_{1}, M_{2}, a single server M_{s} and n jobs J_{j} with equal processing times

[^0]Article Info: Received : September 24, 2012. Revised : October 18, 2012
Published online : November 20, 2012
$p_{1, j}=p_{2, j}=p$ and server times $s_{1, j}, s_{2, j}$ on machine M_{1} and M_{2}, respectively. The problem can be described as the $F 2, S 1\left|p_{i, j}=p\right| C_{\max }$ problem.

It is well known, S.M. Johnson [1], the $F 2\left|\mid C_{\text {max }}\right.$ problem has a maximal polynomial solvable. P. Brucker [2] shows that the $F 2, S 1\left|p_{i, j}=p\right| C_{\max }$ problem is $N P$-hard in the binary sense. In this paper, we will show that this problem is $N P$-hard in the strong sense.

2 Main result

Lemma 1 [3] Consider the $F 2, S 1\left|p_{i, j}=p\right| C_{\text {max }}$ problem with processing times $p_{i, j}$ and server times $s_{i, j}$, where $i=1,2$ and $j=1,2, \ldots, n$. Then

$$
\begin{equation*}
C(\sigma, \tau)=\max _{1 \leq k \leq n}\left\{\sum_{j \leq \sigma^{-1}(k)}\left(s_{1, \sigma(j)}+p_{1, \sigma(j)}\right)+\sum_{j \geq \tau^{-1}(k)}\left(s_{2, \tau(j)}+p_{2, \tau(j)}\right)\right\} \tag{1}
\end{equation*}
$$

where $\sigma^{-1}(k)$ and $\tau^{-1}(k)$ denote the positions of job k in sequence σ and τ, respectively. For a schedule S, let $I_{i, j}(S) \quad(i=1,2 ; j=1,2, \ldots, n)$ denote the total idle times of job J_{j} on machine M_{i}, we have that

$$
\begin{equation*}
C_{\max }(S)=\max \left\{\sum_{j=1}^{n}\left(s_{1, j}+p_{1, j}\right)+I_{1, j}(S), \sum_{j=1}^{n}\left(s_{2, j}+p_{2, j}\right)+I_{2, j}(S)\right\} \tag{2}
\end{equation*}
$$

Theorem 1 The $F 2, S 1\left|p_{i, j}=p\right| C_{\max }$ problem is $N P$-hard in the strong sense.
Proof. We prove that the $F 2, S 1\left|p_{i, j}=p\right| C_{\max }$ problem is $N P$-hard in the strong sense through a reduction from the 3 - Partition problem [4], which is known to be $N P$-hard in the strong sense, to the $F 2, S 1\left|p_{i, j}=p\right| C_{\text {max }}$ problem. The 3-Partition problem is then stated as:

3 - Partition : Given a set of positive integers $X=\left\{x_{1}, x_{2}, \ldots, x_{3 r}\right\}$, and a positive integer b with:

$$
\begin{equation*}
\sum_{j=1}^{3 r} x_{j}=r b, \quad b / 4<x_{j}<b / 2, \quad \forall j=1,2, \ldots, r \tag{3}
\end{equation*}
$$

Decide whether there exists a partition of X into r disjoint 3-element subset $\left\{X_{1}, X_{2}, \ldots, X_{r}\right\}$ such that

$$
\begin{equation*}
\sum_{j \in X_{i}} x_{j}=b \quad(i=1,2, \ldots, r) \tag{4}
\end{equation*}
$$

Given any instance of the 3 -Partition problem, we define the following instance of the $F 2, S 1\left|p_{i, j}=p\right| C_{\max }$ problem with two types of jobs:
(1) P-job: $s_{1, j}=x_{j}, p_{1, j}=b, s_{2, j}=0, p_{2, j}=b \quad(j=1,2, \ldots, 3 r)$
(2) U-job: $s_{1, j}=0, p_{1, j}=b, s_{2, j}=b, p_{2, j}=b \quad(j=1,2, \ldots, r)$

The threshold $y=5 b r+4 b$ and the corresponding decision problem are: Is there a schedule S with makespan $C(S)$ not greater than $y=5 b r+4 b$?

Observe that all processing times are equal to b.To prove the theorem we show that in this constructed instance of the $F 2, S 1\left|p_{i, j}=p\right| C_{\max }$ problem a schedule S_{0} satisfying $C_{\max }\left(S_{0}\right) \leq y=5 b r+4 b$ exists if and only if the $3-$ Partition problem has a solution.
Suppose that the 3 -Partition problem has a solution, and $X_{j}(j=1,2, \ldots, r)$ are the required subsets of set X. Notice that each set X_{j} contains precisely elements, since $b / 4<x_{j}<b / 2$, and $\sum_{j=1}^{3 r} x_{j}=r b$ for all $j=1,2, \ldots, r$.

Let σ denotes a sequence of the elements of set X for which $X_{j}=\{\sigma(3 j-2), \sigma(3 j-1), \sigma(3 j)\}$, for $j=1,2, \ldots, r$. The desired schedule S_{0} exists and can be described as follows. No machine has intermediate idle time. Machine M_{1} process the P-jobs and U-jobs in order of the sequence σ, i.e., in the sequence

$$
\sigma=\left(P_{\sigma(1,1)}, P_{\sigma(1,2)}, P_{\sigma(1,3)}, U_{1,1}, P_{\sigma(1,4)}, P_{\sigma(1,5)}, P_{\sigma(1,6)}, U_{1,2}, \ldots, P_{\sigma(1,3 r-2)}, P_{\sigma(1,3 r-1)}, P_{\sigma(1,3 r)}, U_{1, r}\right)
$$

While machine M_{2} process the P-jobs and U-jobs in the order of sequence τ,
i.e., in the sequence

$$
\tau=\left(U_{2,1}, P_{\sigma(2,1)}, P_{\sigma(2,2)}, P_{\sigma(2,3)}, U_{2,2}, \ldots, U_{2, r}, P_{\sigma(2,3 r-2)}, P_{\sigma(2,3 r-1)}, P_{\sigma(2,3 r)}\right)
$$

Then, these sequences σ and τ fulfills $C(\sigma, \tau) \leq y$.
Conversely, assume that this flow-shop scheduling problem has a solution σ and τ with $C(\sigma, \tau) \leq y$. By setting $\sigma(j)=j \quad(j=1,2,3)$ in (1), we get for all sequences σ and τ :

$$
C(\sigma, \tau) \geq\left(s_{1,1}+p_{1,1}+s_{1,2}+p_{1,2}+s_{1,3}+p_{1,3}\right)+\sum_{\lambda=1}^{n}\left(s_{2, \tau_{\lambda}}+p_{2, \tau_{\lambda}}\right)=5 r b+4 b=y
$$

Thus, for sequences σ and τ with $C(\sigma, \tau)=y$. We may conclude that
(a) Machine M_{1} process jobs in the interval [$0,5 r b$], without idle times. In the interval $[5 j b,(5 j+4) b](j=0,1, \ldots, r-1)$, machine M_{1} process P-jobs, in the interval [4jb,5jb] $(j=1,2, \ldots, r)$ machine M_{1} process U-jobs,
(b) Machine M_{2} process jobs in the interval [$\left.4 b, 5 r b+4 b\right]$, without idle times. In the interval $[(6+5 j) b,(9+5 j) b] \quad(r=0,1, \ldots, r-1)$, machine M_{2} process P-jobs, in the interval $[(4+5 j) b,(6+5 j) b] \quad(j=0,1, \ldots, r-1)$ machine M_{2} process U-jobs. Now, we will prove that the $\sum_{j \in X_{i}}\left(s_{1, i}+p_{1, i}\right)=4 b$.
If $\sum_{j \in X_{i}}\left(s_{1, i}+p_{1, i}\right) \geq 4 b$, then U_{21}-job cannot start processing at time $4 b$, which contradicts (2).
If $\sum_{j \in X_{i}}\left(s_{1, i}+p_{1, i}\right) \leq 4 b$, then there is idle time before machine M_{1} process job $U_{1,1}$, which contradicts (1). Thus, we have $\sum_{j \in X_{i}}\left(s_{1, i}+p_{1, i}\right)=4 b$.

Since $p_{1,1}=p_{1,2}=p_{1,3}=b, s_{1, i}=x_{i}$, then

$$
\begin{aligned}
& \sum_{j \in X_{i}}\left(s_{1, i}+p_{1, i}\right)=\left(s_{1,1}+p_{1,1}+s_{1, i}+p_{1,2}+s_{1,3}+p_{1,3}\right)=3 b+\sum_{j \in X_{i}} x_{j}=4 b, \\
& \sum_{j \in X_{i}} x_{j}=b
\end{aligned}
$$

The set X_{1} give a solution to the 3 -Partition problem.
Analogously, we show that the remaining sets $X_{2}, X_{3}, \ldots, X_{r}$ separated by the jobs
$1,2, \ldots, r$ contain 3 -element and fulfill $\sum_{j \in X_{i}} X_{j}=b$ for $j=1,2, \ldots, r$. Thus, $X_{1}, X_{2}, \ldots, X_{r}$ define a solution of the 3 -Partition problem.

References

[1] S.M. Johnson. Optimal two-and-three-stage production schedules with set-up times included, Naval Res. Quart., 1, (1954), 61-68.
[2] P. Brucker, S. Knust, G.Q. Wang, et al., Complexity of results for flow-shop problems with a single server, European J. Oper. Res., 165(2), (2005), 398-407.
[3] W.C. Yu, The two-machine flow shop problem with delays and the one machine total tardiness problem, Technische Universiteit Eindhoven, 1996.
[4] P.C. Gilmore and R.E. Gomory, Sequencing a one-state variable machine: A solvable case of the traveling salesman problem, Operations Research, 12, (1996), 655-679.

[^0]: ${ }^{1}$ Department of Mathematics, Hubei University for Nationalities, Enshi 445000, China, e-mail: shiling59@126.com
 ${ }^{2}$ School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China, e-mail: chengxueguang6011@msn.com

