Two-machine Flow Shop Scheduling Problem with a Single Server and Equal Processing Times

Shi $ling^1$ and Cheng xue-guang²

Abstract

We study the problem of two-machine flow-shop scheduling with a single server and equal processing times, we show that this problem is *NP*-hard in the strong sense.

Mathematics Subject Classification : 90B35

Keywords: two-machine, flow-shop, single server, complexity, NP -hardness

1 Introduction

In this paper, we consider the problem in which we have two machines M_1, M_2 , a single server M_s and n jobs J_j with equal processing times

¹ Department of Mathematics, Hubei University for Nationalities, Enshi 445000, China, e-mail: shiling59@126.com

² School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China, e-mail: chengxueguang6011@msn.com

Article Info: *Received* : September 24, 2012. *Revised* : October 18, 2012 *Published online* : November 20, 2012

 $p_{1,j} = p_{2,j} = p$ and server times $s_{1,j}, s_{2,j}$ on machine M_1 and M_2 , respectively. The problem can be described as the $F2, S1 | p_{i,j} = p | C_{\text{max}}$ problem.

It is well known, S.M. Johnson [1], the $F2||C_{\max}$ problem has a maximal polynomial solvable. P. Brucker [2] shows that the $F2, S1|p_{i,j} = p|C_{\max}$ problem is *NP*-hard in the binary sense. In this paper, we will show that this problem is *NP*-hard in the strong sense.

2 Main result

Lemma 1 [3] Consider the $F2, S1|p_{i,j} = p|C_{max}$ problem with processing times $p_{i,j}$ and server times $s_{i,j}$, where i = 1, 2 and j = 1, 2, ..., n. Then

$$C(\sigma,\tau) = \max_{1 \le k \le n} \{ \sum_{j \le \sigma^{-1}(k)} (s_{1,\sigma(j)} + p_{1,\sigma(j)}) + \sum_{j \ge \tau^{-1}(k)} (s_{2,\tau(j)} + p_{2,\tau(j)}) \}$$
(1)

where $\sigma^{-1}(k)$ and $\tau^{-1}(k)$ denote the positions of job k in sequence σ and τ , respectively. For a schedule S, let $I_{i,j}(S)$ (i=1,2; j=1,2,...,n) denote the total idle times of job J_j on machine M_i , we have that

$$C_{\max}(S) = \max\{\sum_{j=1}^{n} (s_{1,j} + p_{1,j}) + I_{1,j}(S), \sum_{j=1}^{n} (s_{2,j} + p_{2,j}) + I_{2,j}(S)\}$$
(2)

Theorem 1 The $F2, S1 | p_{i,j} = p | C_{max}$ problem is *NP* -hard in the strong sense.

Proof. We prove that the $F2, S1|p_{i,j} = p|C_{max}$ problem is *NP*-hard in the strong sense through a reduction from the 3-*Partition* problem [4], which is known to be *NP*-hard in the strong sense, to the $F2, S1|p_{i,j} = p|C_{max}$ problem. The 3-*Partition* problem is then stated as:

3 – *Partition*: Given a set of positive integers $X = \{x_1, x_2, ..., x_{3r}\}$, and a positive integer *b* with:

$$\sum_{j=1}^{3r} x_j = rb, \ b/4 < x_j < b/2, \ \forall j = 1, 2, ..., r$$
(3)

Decide whether there exists a partition of X into r disjoint 3-element subset $\{X_1, X_2, ..., X_r\}$ such that

$$\sum_{j \in X_i} x_j = b \quad (i = 1, 2, ..., r)$$
(4)

Given any instance of the 3-*Partition* problem, we define the following instance of the $F2, S1|p_{i,j} = p|C_{\text{max}}$ problem with two types of jobs:

- (1) P-job: $s_{1,j} = x_j, p_{1,j} = b, s_{2,j} = 0, p_{2,j} = b$ (j = 1, 2, ..., 3r)
- (2) U-job: $s_{1,j} = 0, p_{1,j} = b, s_{2,j} = b, p_{2,j} = b$ (j = 1, 2, ..., r)

The threshold y = 5br + 4b and the corresponding decision problem are: Is there a schedule *S* with makespan *C*(*S*) not greater than y = 5br + 4b?

Observe that all processing times are equal to b. To prove the theorem we show that in this constructed instance of the $F2, S1|p_{i,j} = p|C_{max}$ problem a schedule S_0 satisfying $C_{max}(S_0) \le y = 5br + 4b$ exists if and only if the 3-Partition problem has a solution.

Suppose that the 3-*Partition* problem has a solution, and X_j (j = 1, 2, ..., r) are the required subsets of set X. Notice that each set X_j contains precisely elements, since $b/4 < x_j < b/2$, and $\sum_{j=1}^{3r} x_j = rb$ for all j = 1, 2, ..., r.

Let σ denotes a sequence of the elements of set X for which $X_j = \{\sigma(3j-2), \sigma(3j-1), \sigma(3j)\}$, for j = 1, 2, ..., r. The desired schedule S_0 exists and can be described as follows. No machine has intermediate idle time. Machine M_1 process the *P*-jobs and *U*-jobs in order of the sequence σ , i.e., in the sequence

 $\sigma = (P_{\sigma(1,1)}, P_{\sigma(1,2)}, P_{\sigma(1,3)}, U_{1,1}, P_{\sigma(1,4)}, P_{\sigma(1,5)}, P_{\sigma(1,6)}, U_{1,2}, \dots, P_{\sigma(1,3r-2)}, P_{\sigma(1,3r-1)}, P_{\sigma(1,3r)}, U_{1,r})$ While machine M_2 process the *P*-jobs and *U*-jobs in the order of sequence τ , i.e., in the sequence

$$\tau = (U_{2,1}, P_{\sigma(2,1)}, P_{\sigma(2,2)}, P_{\sigma(2,3)}, U_{2,2}, \dots, U_{2,r}, P_{\sigma(2,3r-2)}, P_{\sigma(2,3r-1)}, P_{\sigma(2,3r)})$$

Then, these sequences σ and τ fulfills $C(\sigma, \tau) \leq y$.

Conversely, assume that this flow-shop scheduling problem has a solution σ and τ with $C(\sigma, \tau) \leq y$. By setting $\sigma(j) = j$ (j = 1, 2, 3) in (1), we get for all sequences σ and τ :

$$C(\sigma,\tau) \ge (s_{1,1} + p_{1,1} + s_{1,2} + p_{1,2} + s_{1,3} + p_{1,3}) + \sum_{\lambda=1}^{n} (s_{2,\tau_{\lambda}} + p_{2,\tau_{\lambda}}) = 5rb + 4b = y$$

Thus, for sequences
$$\sigma$$
 and τ with $C(\sigma, \tau) = y$. We may conclude that

(a) Machine M_1 process jobs in the interval [0,5rb], without idle times. In the interval [5jb,(5j+4)b] (j=0,1,...,r-1), machine M_1 process P-jobs, in the interval [4jb,5jb] (j=1,2,...,r) machine M_1 process U-jobs,

(b) Machine M_2 process jobs in the interval [4b,5rb+4b], without idle times. In the interval [(6+5j)b,(9+5j)b] (r=0,1,...,r-1), machine M_2 process P-jobs, in the interval [(4+5j)b,(6+5j)b] (j=0,1,...,r-1) machine M_2 process U-jobs. Now, we will prove that the $\sum_{j \in X_i} (s_{1,i} + p_{1,i}) = 4b$.

If $\sum_{j \in X_i} (s_{1,i} + p_{1,i}) \ge 4b$, then U_{21} -job cannot start processing at time 4b, which contradicts (2).

If $\sum_{j \in X_i} (s_{1,i} + p_{1,i}) \le 4b$, then there is idle time before machine M_1 process job $U_{1,1}$, which contradicts (1). Thus, we have $\sum_{j \in X_i} (s_{1,i} + p_{1,i}) = 4b$.

Since $p_{1,1} = p_{1,2} = p_{1,3} = b$, $s_{1,i} = x_i$, then

$$\sum_{j \in X_i} (s_{1,i} + p_{1,i}) = (s_{1,1} + p_{1,1} + s_{1,i} + p_{1,2} + s_{1,3} + p_{1,3}) = 3b + \sum_{j \in X_i} x_j = 4b,$$

$$\sum_{j \in X_i} x_j = b.$$

The set X_1 give a solution to the 3-Partition problem.

Analogously, we show that the remaining sets $X_2, X_3, ..., X_r$ separated by the jobs

1,2,...,*r* contain 3-element and fulfill $\sum_{j \in X_i} x_j = b$ for j = 1,2,...,r. Thus, $X_1, X_2, ..., X_r$ define a solution of the 3-*Partition* problem.

References

- S.M. Johnson. Optimal two-and-three-stage production schedules with set-up times included, *Naval Res. Quart.*, 1, (1954), 61-68.
- [2] P. Brucker, S. Knust, G.Q. Wang, et al., Complexity of results for flow-shop problems with a single server, European J. Oper. Res., 165(2), (2005), 398-407.
- [3] W.C. Yu, *The two-machine flow shop problem with delays and the one machine total tardiness problem*, Technische Universiteit Eindhoven, 1996.
- [4] P.C. Gilmore and R.E. Gomory, Sequencing a one-state variable machine: A solvable case of the traveling salesman problem, *Operations Research*, 12, (1996), 655-679.