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Abstract

In this paper, we present a multi-scale method with a splitting ap-

proach based on iterative operator splitting methods, which takes into

account the disparity of the macro- and microscopic scales. We couple

the Navier–Stokes and the Molecular Dynamics equations, while tak-

ing into account their underlying scales. The underlying ideas are to

save computational costs by decoupling complicated systems. Combin-

ing relaxation methods and averaging techniques we can optimize the

computational effort. The motivation arose from modeling fluid trans-

port under the influence of a multiscale problem, which has to be solved

with smaller time scales, e.g., non-Newtonian flow problem. The appli-

cations include colloid damper or fluid–solid problems, where we study

an area where the Navier–Stokes equations have less information about

the stream field and we need at least the Boltzmann equation to obtain

enough information about the whole density field. A novel research field

is, e.g., Carbon Nanotubes, where we have to couple macro- and micro-

models and obtain a fluid–solid area which uses the Lennard–Jones fluid

model.
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The proposed method for solving such delicate problems enables sim-

ulations in which the continuum flow aspects of the flow are described by

the Navier–Stokes equations at time-scales appropriate for this level of

modeling, while the viscous stresses within the Navier–Stokes equations

are the result of Molecular Dynamics simulations, with much smaller

time-scales. The main benefit of the proposed method is that the time-

dependent flows can then be modeled with a computational effort which

is significantly smaller than if the complete flow were to be modeled at

the molecular level, as a result of the different time-scales at the con-

tinuum and molecular levels, enabled by the application of the iterative

operator-splitting method.

We discuss the convergence analysis of these splitting methods, see

also [26].

Finally we present numerical results for the modified methods and

applications to real-life flow problems.
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Keywords: Navier–Stokes equation, Molecular dynamics simulation, iterative
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1 Introduction

We motivate our study of combining multiple scale problems with time-

decomposition methods. In the last few years, the solving of multi-scale prob-

lems has been a large topic. Solver methods to couple large scales are impor-

tant, see [18] for lattice Boltzmann models, [2] for fluid dynamical problems.

Numerically, the delicate coupling of continuous and discrete levels is discussed

in [24].

In our paper we concentrate on optimizing the coupling process using a

new method called iterative splitting. Iterative and relaxed splitting methods

have their benefits in coupling time-scales, see [11] and [10]. For coupling the
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Navier–Stokes equations and the equations of Molecular Dynamics, which in-

volve different time-scales, one can employ averaging and density ideas, see

[2]. Here we present different algorithmic schemes to accelerate the solver pro-

cess. We propose a new idea in considering splitting methods as simultaneous

coupling schemes, and consider the benefits of replacing expensive MD sim-

ulations with a a micro-scale viscous flux, which can be embedded into fixed

point iteration schemes.

This paper is organized as follows. The mathematical model based on

the coupled Navier–Stokes and molecular dynamical equations is introduced

in Section 2. The iterative splitting method for the nonlinear equation is

given in Section 3. The computation of the molecular-level shear stress is

given in Section 4. The implicit dual-time stepping method is discussed in

Section 5. We introduce the numerical results in Section 6. Finally we discuss

perspectives for future research in the area of splitting and decomposition

methods for multi-scale problems.

2 Mathematical Model

Our model equations come from fluid dynamics.

The macro-scale equation is given by the Navier–Stokes equation for in-

compressible continuum flow:

ρ∂tu+ ρ(u · ∇)u− µ∆u+∇p = ρ f, inΩ× (0, T ), (1)

∇ · u = 0, inΩ× (0, T ), (2)

u(0) = u0, onΩ,

u = 0, on∂Ω× (0, T ),

The unknown flow vector u = u(x, t) is assumed to lie in Ω × (0, T ). In the

above equations, ρ and p represent the fluid density and pressure, respectively.

Here, µ represents the dynamic viscosity of the fluid. In the momentum equa-

tion, i.e., Equation (1), the term f on the right-hand side represents a volume

source term. Equation (2) constrains the velocity field to be divergence-free,

which is consistent with the assumption of incompressible flow.
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The microscopic equation is given by Newton’s equation of motion for each

individual molecule i for a sample of N molecules,

mi∂ttxi = Fi, i = 1, . . . , N, (3)

where Fi denotes the force acting on each molecule, and is the result of the

inter-molecular interaction of molecule i with the neighboring molecules within

a finite interaction range. In the present paper, we assume that the inter-

particle forces are based on the well-known Lennard–Jones interaction poten-

tial [20], i.e., we assume the the microscopic flow is that of a Lennard–Jones

fluid, details of which are given in a later section.

The coupling between the macro-scale equation (1) and micro-scale equa-

tion (3) is assumed to take place through the exchange of the viscous stresses

in the momentum equation (1). The underlying idea is to replace the viscous

stresses based on the continuum Newtonian equations in Equation (1) with a

viscous stress evaluated by Molecular Dynamics simulations of the micro-scale

fluid with the velocity gradient at macro-scale level imposed on the micro-

scale fluid, through the use of Lees–Edwards boundary conditions [19]. The

molecular-level viscosity is evaluated using the Irving–Kirkwood relation [15].

The viscous stress contribution µ∆v in Equation (1) can be generalized

for a non-Newtonian flow to be ∂σij/∂xj , using Einstein’s summation conven-

tion. In the present paper, this non-Newtonian viscous stress contribution is

reformulated in the following form.

∂σij/∂xj = µapparent∂
2vi/∂x

2
j (4)

where the ‘apparent’ viscosity can be a general function of the imposed velocity

gradients in each spatial direction, i.e., this expression can represent general

non-continuum and non-Newtonian flow conditions. The viscous stresses in

Equation (1) can now be replaced by molecular level viscous stresses by intro-

ducing a constant approximate viscosity µapprox and taking into account the

deviation of the molecular-level viscous stresses from this approximate viscos-

ity through a volumetric source term.

Finally, we obtain the coupled multi-scale equations:

ρ∂tv + ρ(v · ∇)v − µapprox∆v +∇p = f, inΩ× (0, T ), (5)

fi = ∂σij/∂xj|molecular − µapprox∆vi
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where Einstein’s summation convention is used for the volumetric source term

f , which accounts for the deviation of the viscous stresses evaluated at the

molecular level from the approximate Newtonian relation µapprox∆v. The

molecular-level viscous stresses can be further reformulated using the apparent

viscosity, as demonstrated in Equation (4).

3 Iterative Splitting Method

The following algorithm is based on an iteration with fixed splitting dis-

cretization step-size τ . The splitting scheme can be formulated as a predictor

corrector scheme or as a three steps method. On the time interval [tn, tn+1],

we solve the following sub-problems consecutively for i = 1, 2, . . .M .

∂ci(t)

∂t
= Aci(t) + Bpi−1(t), with ci(t

n) = cn (6)

i = 1, 2, . . . , j , (7)

Bpi+1(t) = f(ci) , (8)

i = j + 1, j + 2, . . . ,m , (9)

∂ci+2(t)

∂t
= Aci(t) + Bpi+1(t), with ci+2(t

n) = cn (10)

i = m+ 1,m+ 2, . . . ,M , (11)

where we assume the operator A has a large time scale and B has a small time

scale.

Here we decouple the different time-scales and stabilize the scheme with

averaging functions f .

Theorem 3.1. Let us consider the abstract Cauchy problem in a Banach

space X:

∂tc(t) = Ac(t) +Bp(t), 0 < t ≤ T, (12)

Bp = f(c), (13)

c(0) = c0, (14)



6 Splitting Approach to Coupled Navier-Stokes

where A,B,A+ B :X → X are given linear operators which generate the C0-

semigroup, and c0 ∈ X is a given element. Then the iteration process (6)–(8)

is convergent and the rate of the convergence is of higher order.

The proof can be found in [11].

In more detail, we can consider the iterative operator splitting method as

a waveform relaxation form with multiple steps. This helps to understand the

algorithmic implementation of the schemes, see applications in [21].

So let us consider the following scheme.

Waveform Relaxation Method:

dui

dt
= Pui +Qui−1 + f, (15)

ui(t
n) = u(tn), (16)

where A = P +Q, e.g., P is the diagonal part of A (Jacobi method).

Here, the splitting method is made abstractly with respect to the matrix

A. This method is considered an effective solver method with respect to the

underlying matrices.

Iterative Operator Splitting Method:

dui

dt
= Pui +Qui−1 + f, (17)

ui(t
n) = u(tn), (18)

dui+1

dt
= Pui +Qui+1 + f, (19)

ui+1(t
n) = u(tn), (20)

where P,Q are matrices given by spatial discretization, e.g., P is the convection

part of Q the diffusion part.

But we can also perform an abstract decomposition, take into account

A = P +Q, where P is a matrix with small eigenvalues and Q is a matrix with

large eigenvalues.
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4 Molecular-Level Shear Stress Computation

In the present paper, the microscopic model is given by Newton’s equations

for the motion of the individual molecules, for which the well-known Molecular

Dynamics (MD) method [1] is used. The MD method simulates the dynamics

of a system of N interacting molecules by temporal integration of Newton’s

equations of motion, for which the velocity Verlet algorithm [27], which is

second-order accurate in time, is used,

x
¯
(n+1)
i = x

¯
(n)
i + δtv

¯
(n)
i −

δt2

2mi

∇U
(n)
i i = 1, . . . , N

v
¯
(n+1)
i = v

¯
(n)
i +

δt

2mi

∇U
(n)
i i = 1, . . . , N (21)

In the present paper, the Lennard–Jones fluid is used as a model, i.e., an

atomic medium with an inter-particle potential given by

ULJ(rij) = 4εij

[

(

σij

rij

)12

−

(

σij

rij

)6
]

, (22)

where rij is the distance between particles i and j, εij is the depth of the

potential well, and σij is the (finite) distance greater than which the inter-

particle potential becomes zero. The Lennard–Jones potential combines a

strong repulsion at short distances with a weak attraction at longer distances.

In the above equation, σi as well as εi are assumed identical for i = 1, . . . , N .

Furthermore, a cut-off distance rc is defined.

To model hydrodynamics using the MDmethod, the following steps are typ-

ically employed. First, a number of microscopic domains are initialized with

randomly-placed particles with a the number density consistent with the pre-

scribed fluid density. Secondly, using an appropriate time-integration method,

coupled with a thermostat to control the temperature, the microscopic solu-

tions are integrated for a sufficiently long time to reach an equilibrium solution

at the prescribed density and temperature. Following this initial equilibration

phase, the microscopic equations are further integrated in time. In this phase,

the particle positions and velocity are used to perform an averaging in space

and time, as well as ensemble averaging when multiple microscopic solutions

are considered.

Figure 1 presents the results from a large number of Molecular Dynamics

simulations for a cubic domain of dimension 12σ with a 1382 particles, i.e.,
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the density in Lennard–Jones units is 0.8. For a range of velocity gradients

imposed linearly on this domain, the shear stresses are presented. The results

are compared for ensemble averaging over 4, 8 and 16 independent realizations

and for sampling durations of 100τ and 200τ . The time-steps in the MD

simulations are 0.001τ .
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Figure 1: Effect of the number of independent realizations and sampling du-

ration on the statistical scatter in the predicted apparent viscosity. Lennard–

Jones fluid at 0.80σ−3 and T = 1.50.
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5 Implicit Dual-Time Stepping Method for

Time-Dependent Flows

We start with a first example to use the stable first order splitting as a

pre-step method and then start with the higher order iterative method.

5.1 Governing equations for macro-scale and micro-scale

problems

The Navier–Stokes equations written in integral form for a domain fixed in

time are

d

dt

∫

V (t)

~wdV +

∫

∂V (t)

(

~F (~w)− ~Fv(~w)
)

~ndS = ~S. (23)

They form a system of conservation laws for any fixed control volume V with

boundary ∂V and outward unit normal ~n. The vector of conserved variables

is denoted by ~w = [ρ, ρu, ρv, ρw, ρE]T , where ρ is the density, u, v, w are the

Cartesian velocity components, and E is the total internal energy per unit

mass. ~F and ~Fv are the inviscid and viscous flux, respectively. In the absence

of volume forces and in an inertial frame of reference, the source term ~S = 0.

Assuming that the x-direction is the homogeneous direction, the y direction

is the cross-flow direction, and that the flow is incompressible with vanishing

velocity components in the y and z directions, the governing equation can then

be rewritten as

ρ∂u/∂t− µapprox∂
2u/∂x2 + ∂p/∂x = f, (24)

f = ∂σxy/∂x− µapprox∂
2u/∂x2

using the multi-scale Equation (5).

Equations (23) are discretized using a cell-centered finite volume approach

on structured multi-block grids, which leads to a set of ordinary differential

equations in time of the form

∂

∂t

(

wi,j,kVi,j,k

)

= −Ri,j,k

(

wi,j,k

)

(25)

where w and R are the vectors of cell variables and residuals, respectively.

Here, i, j, k are the cell indices in each block and Vi,j,k is the cell volume.
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In the present paper, the flow problems considered lead to a reduction of

the full Navier–Stokes equations to a set of equations for the velocity field

components. Hence, the vector w in this paper only involves the Cartesian

velocity components, while R represents the residuals of the three moment

equations.

Boundary conditions are imposed by using two layers of halo cells around

each grid sub-domain. Zero-slip conditions at the solid walls are imposed by

extrapolating the halo cell values in such a way that the velocity at the wall

vanishes.

5.2 Dual-time stepping method

For time-accurate simulations, the temporal integration is performed using

an implicit dual-time stepping method. Following the pseudo-time formulation

[16], the updated mean flow solution is calculated by solving the steady state

problems

R∗

i,j,k = Vi,j,k

3wn+1
i,j,k − 4wn

i,j,k +wn−1
i,j,k

2∆t
+Ri,j,k

(

wn+1
i,j,k

)

= 0. (26)

Equation (26) is a nonlinear system of equations for the full set of Navier–

Stokes equations. However, for the reduced system of equations resulting from

the homogeneity and periodicity assumptions, presented in Equation (24), this

system of equations is actually linear. This system is solved by introducing an

iteration through pseudo time τ to the steady state, as given by

w
n+1,m+1
i,j,k −w

n+1,m
i,j,k

∆τ
+

3wn+1,m
i,j,k − 4wn

i,j,k +wn−1
i,j,k

2∆t
+

Ri,j,k

(

w
n+1,m
i,j,k

)

V n+1
i,j,k

= 0, (27)

where the m-th pseudo-time iterate at the real time step n + 1 is denoted by

wn+1,m and the cell volumes are constant during the pseudo-time iteration.

The unknown wn+1
i,j,k is obtained when the first term in Equation (26) con-

verges to a specified tolerance. An implicit scheme is used for the pseudo-time

integration. The flux residual Ri,j,k

(

wn+1
i,j,k

)

is linearized as

Ri,j,k

(

wn+1
)

= Ri,j,k

(

wn
i,j.k

)

+
∂Ri,j,k

(

wn
i,j.k

)

∂t
∆t+O(∆t2)

≈ Rn
i,j,k

(

wn
i,j.k

)

+
∂Rn

i,j,k

∂wn
i,j,k

(

wn+1
i,j,k −wn

i,j,k

)

(28)
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Using this linearization in pseudo-time, Equation (27) becomes a sparse system

of linear equations. For the solution of this system, the Conjugate Gradient

method with a simple Jacobi pre-conditioner is used.

5.3 Time-dependent channel flow simulation

In this section, the flow in a square channel is considered. The mean flow

direction is the x-direction, while the channel’s lower and upper walls are

placed at z = 0σ and z = 40σ, respectively. The flow is assumed constant

in the y-direction. The considered domain is 40σ long in all three coordinate

direction. Although the flow is two-dimensional, a three-dimensional solution

method is used here, hence the use of the constant y-direction. A finite-volume

discretization method is used with a uniform mesh with 10 cells in both the

x− and the y-directions, while a stretched mesh with 20 cells is used in the

z-direction.

The time-dependent problem starts from a steady flow established by a con-

stant pressure gradient dp/dx = −0.005. From t = 100 to t = 500, this

pressure gradient is then linearly increased to dp/dx = −0.010. The time-step

used in the finite-volume method is dt = 2 (macro-scale time units). The

Molecular Dynamics method is used in this example to evaluate the viscous

stresses on the first 4 cell faces near both domain walls, i.e., the cell face on the

solid wall and the first three faces away from the wall. Due to the homogeneity

and periodicity of the flow, these 4 micro-scale solutions are similarly used for

the whole x − y planes for the near-wall cell layers. Due to the symmetry of

the problem, these ‘micro-scale’ viscous are re-used for both the lower and up-

per domain walls. The remaining cell faces use a Newtonian fluid assumption

for the viscous flux formulation, with the viscosity of the medium assumed

constant at µ = 2.0.

For the idealized case in which all cell faces use Newtonian viscous stresses,

the solution of this flow problem is shown as the solid black line in Figure 2(a),

where the velocity in the center of the domain is plotted versus time.

For the Lennard–Jones fluid considered in the Molecular Dynamics method,

the density is assumed to be 0.80σ−3, while the temperature is T = 1.50. For

these conditions, the Lennard–Jones fluid has a viscosity of around 2.03, i.e.,

very close to the assumed constant value in the Newtonian fluid part of the
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computational domain. As discussed previously, the viscous stresses, as func-

tions of the imposed velocity gradients, are computed using the Lees–Edwards

boundary conditions. In the Molecular Dynamics simulations, ensemble aver-

aging as well as temporal averaging is employed. Typically, 4 or 8 indepen-

dent realizations for each shear-rate are constructed, which are then sampled

through a sampling duration of typically 100 Lennard–Jones time units. For

the MD time-step here, i.e., 0.001τ , this involves 100, 000 MD time steps.

5.4 Approximation of the statistical scatter in micro-

scale problems

In the present paper, time-splitting methods are designed which can be

regarded as extensions of the dual-time stepping method described in the pre-

vious sections. To facilitate this algorithm design process, it is important to

reduce the computational cost of the present channel flow simulations, since

in this process many different parameters will have to be evaluated. The most

time-consuming part of the algorithms in the present paper is the micro-scale

Molecular Dynamics shear stress evaluations. To reduce the computational

cost of this investigation, the computationally expensive MD simulations are

actually replaced by a modeled micro-scale viscous flux.

The aim of these model micro-scale problems is to provide an equivalent of the

micro-scale MD viscous stresses for a given velocity gradient with a statistical

scatter sampled from a random distribution. The amplitude of the random

statistical scatter in the predicted micro-scale viscous stresses is derived from

the actual MD data from the simulations of the previous section.

Figures 5 and 6 show the predicted apparent viscosity from the 24 time-steps

at which a full MD viscous stress evaluation was conducted for the 4 cell faces

nearest to the domain walls. The predicted apparent viscosities are plotted

versus the sampling duration. Also shown are the average, as well as the L2,

L4, and L6 norms of the deviation from this average. Based on this data,

an approximate statistical scatter as a function of the sampling duration is

derived based on the L6 norm, as shown in the figures.
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6 Numerical Experiments: Splitting Methods

for Coupled Micro–Macro System of Equa-

tions

In this section, three time-integration methods derived from the implicit

dual-time stepping method are derived and evaluated for the time-dependent

channel flow example problem.

6.1 Method 1: Fixed-interval micro-scale evaluations

In this first example, the coupling with the Molecular Dynamics method

takes place by introducing a correction to the Newtonian shear stresses for

the cell faces with an associated micro-scale MD shear stress evaluation, as

presented in Equation (24). This method has the following steps:

• for time step <= 100, the solution is marched forward in time using the

Newtonian shear stresses evaluation employed throughout the domain

• at time step 20, 40, 60, 80 and 100, micro-scale MD problems are con-

structed for the 4 cell faces nearest to the domain walls. For each cell

face, 4 independent realizations are created, while the viscous stresses

are sampled over 100τ after an initial equilibration stage of 50τ .

• for time steps > 100, the viscous fluxed in the 4 cell faces nearest to

the domain walls are corrected using an apparent viscosity derived from

averaging over the last 5 MD evaluations for each cell face

• every 20 time steps, another set of micro-scale MD problems are con-

structed based on the current cell face velocity gradient, and following

a new set of MD viscous stress evaluations, the ‘averaged apparent’ vis-

cosity is updated.

The above method is a simple method of taking into account the shear-rate

dependence of the apparent viscosity, while greatly reducing the computational

overhead compared to a full set of MD shear stress evaluations computed for

each macro-scale time step. However, for rapidly changing macro-scale velocity
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gradients, using the ‘running’ average of the latest MD predictions with a

number of previous evaluations introduces a potential time-lag in incorporating

the shear-rate dependence of the apparent viscosity.

The method can be summarized as follows:

Algorithm 6.1. On a uniform time grid with tn = t0+n∆t, n = 0, . . . , N ,

(where N is given), the discretized coupled macro- and micro-scale equations

are integrated in time from time level n to n+ 1 using the following scheme:

1) initialize the averaged apparent viscosity µave = µapprox

2) if n < 100 and n is multiple of ninterval go to 3) else go to 4)

3) dual-time step update based on fixed µave

i) for the cell faces with micro-scale fluxes, compute the velocity gra-

dients

ii) construct the viscous flux corrections fi using the updated apparent

viscosity

iii) perform dual-time step update using nNewton relaxation steps.

4) dual-time step update based on updated µave

i) for the cell faces with micro-scale fluxes, compute the velocity gradients

ii) initialize the Molecular Dynamics micro-scale problems with the imposed

velocity gradients from the finite-volume cell faces and integrate these

through the initial equilibration phase (e.g., tequi = 50τ)

iii) integrate micro-scale problems in time through tsample micro-scale time

and average apparent viscosity in time and ensemble average over nensemble

independent realizations

iv) compute new µave as average over last nwindow (including present) Molec-

ular Dynamics solutions

v) construct the viscous flux corrections fi using updated apparent viscosity

vi) perform dual-time step update using nNewton relaxation steps.
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if n < N go to 1)

Figure 2 presents the results for the velocity predicted with the above

method from two independent realizations. Compared to the idealized case

with Newtonian fluxes throughout the domain, the use of MD micro-scale

fluxes leads to a small reduction in the cell center velocity, since the apparent

viscosity predicted by the MD simulations is slightly higher than the constant

viscosity used in the remainder of the domain. Also, by averaging over 5

evaluations, the statistical scatter in the MD micro-scale fluxes leads to only

modest fluctuations in the macro-scale velocity field compared to the fully

Newtonian case.

The predicted apparent viscosity and the resulting ‘running averages’ are

presented in Figure 3, clearly showing the significant reduction of the statistical

scatter in the MD data when such an averaging is used in addition to the

already used temporal and ensemble averaging.

The present dual-time stepping method solves a ‘quasi-steady’ state prob-

lem at each time step. For each of these quasi-steady state problems, an

implicit solution method is used based on an under-relaxed Newtonian relax-

ation process. The convergence of this implicit system for a certain number

of time-steps is presented in Figure 4. In the examples shown, 25 ‘pseudo-

steps’ are used, leading to a reduction of the maximum norm of the residual

(which now includes the ‘unsteady’ flow contribution) of at least 6 orders of

magnitude. When this residual norm is reduced to machine precision, the

only discretization errors due to the time discretization are those due to the

truncation errors in the employed implicit 3-point stencil. With a reduction of

the residual norm of 6 or 7 orders of magnitude, it can be expected that the

additional contributions are much smaller than the truncation errors in the

implicit 3-point stencil.
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Figure 2: Channel flow with time-dependent pressure gradient. Dual-time

stepping method with averaging of apparent viscosity. Finite-volume dis-

cretization method with Molecular Dynamics viscous fluxes on first 4 cells

near lower and upper walls. Lennard–Jones fluid at 0.80σ−3 and T = 1.50.

MD data averaged over 4 realizations, τsample = 100.
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Figure 3: Channel flow with time-dependent pressure gradient. Dual-time

stepping method with averaging of apparent viscosity. Finite-volume dis-

cretization method with Molecular Dynamics viscous fluxes on first 4 cells

near lower and upper walls. Lennard–Jones fluid at 0.80σ−3 and T = 1.50.

MD data averaged over 4 realizations, τsample = 100.
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Figure 4: Channel flow with time-dependent pressure gradient. Dual-time

stepping method with averaging of apparent viscosity. Convergence of ‘inner-

loop’ in dual-time step method. Channel flow with time-dependent pressure

gradient. Lennard–Jones fluid at 0.80σ−3 and T = 1.50. MD data averaged

over 4 realizations, τsample = 100.
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Figure 5: Convergence of predicted apparent viscosities in 4 cell faces as func-

tion of sampling time. Lennard–Jones fluid at 0.80σ−3 and T = 1.50. MD

data averaged over 4 realisations, 10 <= τsample <= 100.
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Figure 6: Convergence of predicted apparent viscosities in 4 cell faces as func-

tion of sampling time. Lennard–Jones fluid at 0.80σ−3 and T = 1.50. MD

data averaged over 4 realizations, 10 <= τsample <= 100.
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6.2 Method 2: Dual-time stepping method with fixed-

point iteration

In this second method, the coupling with the Molecular Dynamics method

takes place by introducing a correction to the Newtonian shear stresses for

the cell faces with an associated micro-scale MD shear stress evaluation, as

presented in Equation (24). In this method, the following steps are used:

• for time step <= 100, the solution is marched forward in time using the

Newtonian shear stresses evaluation employed throughout the domain

• for time steps > 100, the viscous fluxes in the 4 cell faces nearest to the

domain walls are corrected by data derived from Molecular Dynamics

micro-scale problems. For each cell face, 4 independent realizations are

created, followed by an initial equilibration stage of 50τ and an initial

sampling time of 10τ . Using the MD predictions, the dual-time stepping

method is used to create the velocity field for fixed-point iteration 0,

• for fixed-point iteration 1, . . . , n, the MD micro-scale solutions are in-

tegrated for a further 10τ sampling durations. With the updated MD

predictions, the dual-time stepping method is used to create the velocity

field for this fixed-point iteration.

In this method, the number of fixed-point iterations is assumed to be con-

stant. The method can be summarized as follows:

Algorithm 6.2. On a uniform time grid with tn = t0+n∆t, n = 0, . . . , N ,

(where N is given), the discretized coupled macro- and micro-scale equations

are integrated in time from time level n to n+ 1 using the following scheme:

1) For the cell faces with micro-scale fluxes, compute the velocity gradients

2) Initialize the Molecular-Dynamics micro-scale problems with the imposed

velocity gradients from the finite-volume cell faces and integrate these

through the initial equilibration phase (e.g., tequi = 50τ)

3) Dual-time step with fixed-point iteration. Perform the following steps:

i) set fixed point counter iter = 0
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ii) integrate micro-scale problems in time through an additional 10τ

and sample apparent viscosity through total micro-scale sampling

time and ensemble average over nensemble independent realizations

iii) construct the viscous flux corrections fi using updated apparent vis-

cosity

iv) perform dual-time step update using nNewton relaxation steps

v) if iter < nfp, increment iter and go to i)

if n < N go to 1).

In the next section, a more adaptive method is formulated, which adjusts

the number of fixed-point iterations to an appropriate error norm on both

viscous flux corrections and velocity field updates.

In this section, the expensive MD simulations are replaced with a modeled

micro-scale scale prediction for the apparent viscosity.

µapparent = 2.03 + µscatter(tsampling)rand() (29)

The statistical scatter amplitude is shown in Figures 5 and 6, with a linear

continuation to zero scatter for sampling times exceeding 200τ . Clearly, this

is an idealized situation, but allows an initial assessment of the time-splitting

methods developed in the present paper.

In the examples presented here, 10 fixed point iterations lead to a statistical

scatter in the predicted micro-scale viscosities of similar magnitude as the

full MD sampling over 100τ used in the previous section. For 20 fixed point

iterations and more, the statistical scatter is removed completely, leading to a

constant viscous flux correction due to the fact that the modeled value of 2.03

is slightly higher than the constant value used in the Newtonian shear stress

evaluation.
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Figure 7: Channel flow with time-dependent pressure gradient. Dual-time

stepping method with fixed-point iteration in MD sampling of apparent viscos-

ity. Finite-volume discretization method with approximated statistical scatter

of Molecular Dynamics viscous fluxes as function of sampling duration on first

4 cells near lower and upper walls.



24 Splitting Approach to Coupled Navier-Stokes

6.3 Method 3: Adaptive fixed-point iteration

The final method presented here is based on an adaptive splitting approach,

i.e., one which truncates the fixed-point iteration whenever the viscous flux

corrections and/or the velocity field updates relative to the previous fixed

point iterations fall below a certain threshold. In this respect, it is a modified

version of the algorithm used in the previous section. The method can be

summarized as follows:

Algorithm 6.3. On a uniform time grid with tn = t0+n∆t, n = 0, . . . , N ,

(where N is given), the discretized coupled macro- and micro-scale equations

are integrated in time from time level n to n + 1 using the following adaptive

scheme:

1) For the cell faces with micro-scale fluxes, compute the velocity gradients

2) Velocity gradient criterion: max

(∣

∣

∣

∣

(

∂ui

∂xj

)n

micro
−

(

∂ui

∂xj

)last

micro

∣

∣

∣

∣

)

> critgrad,

critgrad ∈ IR+. If criterion is satisfied goto 3) else 4)

3) Dual-time step with fixed-point iteration. Perform the following steps:

i) Using the last estimate of the micro-scale apparent viscosity, com-

pute an estimate of the updated velocity field at the present time

step using dual-time step update.

ii) Compute the velocity normalization factor as: unorm = max(ũi(t
n+1−

ui(t
n), where ũ denotes the estimated velocity from step i)

iii) Compute viscous flux correction normalization fnorm = max(f̃i(t
n+1),

with f̃ the viscous flux correction based on the last apparent viscosity

computation

iv) Store micro-scale velocity gradients:
(

∂ui

∂xj

)last

micro
=

(

∂ui

∂xj

)n

micro

v) Initialize the Molecular-Dynamics micro-scale problems with the im-

posed velocity gradients from the finite-volume cell faces and inte-

grate these through the initial equilibration phase (e.g., tequi = 50τ)

vi) Fixed-point iteration:
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a) integrate micro-scale problems in time through an additional

10τ and sample apparent viscosity through total micro-scale sam-

pling time and ensemble average over nensemble independent re-

alizations

b) construct the viscous flux corrections fi using updated apparent

viscosity

c) perform dual-time step update using nNewton relaxation steps

d) check convergence of fixed-point iteration using the stop crite-

rion
∣

∣ui(t
n+1) − ui−1(t

n+1
∣

∣/unorm ≤ erru, erru ∈ IR+ and/or
∣

∣fi(t
n+1)− fi−1(t

n+1
∣

∣/fnorm ≤ errf , errf ∈ IR+

e) if criterion is satisfied, time step is completed, else go to step

a)

4) Dual-time step without fixed-point iteration.

i) Using the last estimate of the micro-scale apparent viscosity, com-

pute flux corrections fi

ii) Perform dual-time step update using nNewton relaxation steps.

if n < N go to 1).

In the present dual-time step formulation, each fixed-point iteration corre-

sponds to the solution of a ‘pseudo-steady’ state problem using a Newton re-

laxation method, as discussed previously. For each increment of the fixed-point

iteration counter, the micro-scale problem is marched forward by a pre-defined

time-increment (in the present section, 10 Lennard–Jones time units) and the

updated viscous flux correction will be checked with that at the previous it-

eration, while after the solution for the velocity field for iteration, also the

convergence of the velocity field relative to the previous iteration is checked.
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Table 1: Truncation criteria used in method 3
Criterion critgrad erru errf fixed-point truncation

1A 0.05 0.25 0.25 or

1B 0.05 0.25 0.25 and

2A 0.05 0.50 0.50 or

2B 0.05 0.50 0.50 and

7 Conclusions and Discussion

We present an optimization of coupling Navier–Stokes and Molecular Dy-

namics simulation by applying iterative operator-splitting methods. We dis-

cussed different techniques to reduce costly molecular dynamical computations

by averaging, by using microscale models, and by using adaptive iterations.

Iterative and adaptive iterative splitting methods can simplify the coupling

process and yield the same results as from using costly computations. Here

we have presented an accelerated solver with simultaneous coupling schemes.

In the future, we will present more improved algorithms involving multi-grid

schemes and nonlinear schemes.

Acknowledgments. I thank Dr. Rene Steijl for discussions and numerical
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References

[1] M. Allen, D. Tildesly, Computer Simulation of Liquids, Clarendon Press,

Oxford, 1987.

[2] H. Berendsen, J. Postma, W. van Gunsteren, A. Dinola and J. Haak,

Molecular-Dynamics with Coupling to an External Bath, J. Chem. Phys.,

81, (1984), 3684–3690.
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Figure 8: Adaptive fixed-point scheme with truncation criteria 1A. Dual-time

stepping method with adaptive MD sampling time in inner iterations. Finite-

volume discretization with micro-scale viscous fluxes on first 4 cells near lower

and upper walls. Approximate statistical scatter of Molecular Dynamics fluxes.



Jürgen Geiser 31

step

du
dz

0 100 200 300 400 500

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(velocity field

fixed-point iteration

sc
al

ed
vi

co
us

flu
x

co
rre

ct
io

n

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 time step 130
time step 144
time step 158
time step 173
time step 188
time step 204
time step 221
time step 236
time step 254

fixed-point iteration

sc
al

ed
vi

sc
ou

s
flu

x
co

rre
ct

io
n

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 time step 130
time step 142
time step 155
time step 168
time step 182
time step 197
time step 213
time step 229
time step 246
time step 268

(b) run 1 - viscous flux correction (c) run 2 - viscous flux correction

fixed-point iteration

sc
al

ed
ve

lo
ci

ty
up

da
te

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3 time step 130
time step 144
time step 158
time step 173
time step 188
time step 204
time step 221
time step 236
time step 254

fixed-point iteration

sc
al

ed
ve

lo
ci

ty
up

da
te

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3 time step 130
time step 142
time step 155
time step 168
time step 182
time step 197
time step 213
time step 229
time step 246
time step 268

(d) run 1 - velocity update (e) run 2 - velocity update

Figure 9: Adaptive fixed-point scheme with truncation criteria. Dual-time

stepping method with adaptive MD sampling time in inner iterations. Finite-

volume discretization with micro-scale viscous fluxes on first 4 cells near lower

and upper walls. Approximate statistical scatter of Molecular Dynamics fluxes.
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Figure 10: Adaptive fixed-point scheme with truncation criteria 2A. Dual-time

stepping method with adaptive MD sampling time in inner iterations. Finite-

volume discretization with micro-scale viscous fluxes on first 4 cells near lower

and upper walls. Approximate statistical scatter of Molecular Dynamics fluxes.
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(c) run 1 - viscous flux correction (d) run 2 - viscous flux correction
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(e) run 1 - velocity update (f) run 2 - velocity update

Figure 11: Adaptive fixed-point scheme with truncation criteria 2B. Dual-time

stepping method with adaptive MD sampling time in inner iterations. Finite-

volume discretization with micro-scale viscous fluxes on first 4 cells near lower

and upper walls. Approximate statistical scatter of Molecular Dynamics fluxes.


