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Abstract 

In this paper we consider a bulk service Markovian queue with service batch size 

dependent and accessible and non accessible service batches and with server’s 

vacation. The initial batch size is assumed to be one and the size of successive 

batches are governed by Markov chain rule with transition probability matrix 

ijP p , ( , 1, 2, , bi j   ). The server starts service if there is at least one customer 

in the waiting room. Late entries can enter service station without affecting the 

service time, if the size of the batch being served is less than accessible limit 

determined by Markov chain rule. In addition after completion of service if there 

is no customer in queue then the server can avail two types of vacations, multiple 

vacation (Model I) and single vacation (Model II).    
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1     Introduction 

A simple queue model of infinite length with waiting room in which the 

arrival of customers are according to homogenous Poisson process with rate λ to a 

single server which serves in batches according to Markov chain rule with 

transition probability matrix  ijP p , , 1, 2, , bi j   . The maximum accessible 

limit for bulk service is ‘b’ and minimum a single customer is enough to start the 

service. According to Markov chain rule the initial batch size to be served is 

assumed to be 1 and the next consecutive batches are being served if the size of 

the batch is ‘ in ’ where (1 bin  ). Late entries are allowed to join a batch in 

course of ongoing service as long as batch size is less than that determined by 

Markov chain rule. 

According to the general bulk service rule introduced by Neuts (1967), the 

server starts service only when a minimum of ‘a’ customers in the buffer (waiting 

room) and a maximum service capacity is ‘b’. The service rule further allows the 

later entries to join the batch without affecting the service time, of ongoing service 

as long as the number of customers in the batch is less than the maximum 

accessible limit ‘d’ ( a d b  ). The same concept for accessibility in batches 

while receiving service was discussed by Gross and Harris (1985). Ayyappan and 

Renganathan (1997) discussed about the service batch size dependence on bulk 

service Markovian queue.   

Queuing model consists of bulk service has been discussed by several 

authors and the general consideration was if more than ‘b’ customers are waiting 

only the first ‘b’ customers are taken for service and the remaining will have to 

wait. If the number of customers is less than ‘a’ then the server remains idle until 
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the batch size reaches ‘a’. In this paper the server serves according to Markov 

chain rule where there is no minimum batch size required and however it has the 

maximum batch size ‘b’ (1 ≤ X ≤ b), where x is the number of customer waiting in 

queue. In addition to that vacation is introduced for server in two models (Model I 

and Model II) with parameter α.   

 

 

2    Model I 

In this model, after completion of service, the server can avail vacation if 

there is no succeeding customer in the queue and as soon as the server returns 

from vacation succeeding monitors the queue size, again if there is no customer in 

the queue, then the server immediately takes another vacation. Server continues in 

this manner exponentially until the queue size gets at least a single customer for 

service.           

 

 

2.1     Steady State Probability Vector 

The process can be formulated as a continuous time Markov chain with 

state space    

        S = {(0, 0, k); 1 ≤ k ≤ b} U {(0, j, k); 1 ≤ j ≤ k, 1 ≤ k ≤ b } 

        U {(i, 0, k); i ≥ 1, 1 ≤ k ≤ b} U {(i, k, k); 1≤ k ≤ b }                                     (1) 

where i denote number of customer waiting in waiting room at time t, j denotes 

number of customers being in service at time t, k denotes the maximum accessible 

limit for the service for customers being in service at time t (determined by the 

Markov chain rule). If the j = 0 then the server is in vacation otherwise the server 

is in busy state. 

The corresponding generator Q of the Markov process is given by 
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where B0, A0, B10, B20, . . . , Bb0, B01, B02, . . . , B0b, A01, A02, . . . , A0b, A10, A20, . . 

. , Ab0  are the sub matrices of orders (b x b) are given as follows: 

A0 = λ Ib, B0 = - λ Ib, where Ib is the identity matrix of order b. 

A01 = diag (0, λ, λ, . . . , λ), A02 = diag (0, 0, λ, . . . , λ), . . . ,  

A0(b-1) = diag (0, 0, . . . , 0, λ),     

A10 = diag (λ, 0, . . . , 0), A20 = diag (0, λ, 0, . . . , 0), . . . ,  

Ab0 = diag (0, 0, . . . , 0, λ), 

B01 = diag (0,- λ-µ, -λ-µ, . . . , -λ-µ), B02 = diag (0, 0, -λ-µ, . . . , -λ-µ), . . . ,  

B0b = diag (0, 0, . . . , 0, -λ-µ), 
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and A1, A2, N, N01, N02, . . . , N0(b-1), N10, N20, . . . , Nb0 are the sub matrices of 

order (2b x 2b) are given as follows: 
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For N10, N20, . . . , Nb0 have elements only at (b + k)th column only remaining 

elements are zero, where 1 ≤ k ≤ b.  The infinitesimal generator Q of the infinite 

state Markov model under consideration has the block partitioned structure given 

by 

0’ = {(0, 0, 1), (0, 0, 2), . . . , (0, 0, b)},   1’ = {(0, 1, 1), (0, 1, 2), . . . , (0, 1, b)}, 

 2’ = { -,(0, 2, 2), (0, 2, 3), . . . , (0, 2, b)}, . . . , b’ = {-, -, . . . , -, (0, b, b)}. 
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where ‘-‘indicates impossible events. They are introduced to tackle the 

dimensionality problem. 

i = {(i, 0, 1), (i, 0, 2), . . . ,  (i, 0, b),  (i, 1, 1), (i, 2, 2), . . . , (i, b, b)},  i ≥ 1. 

The vector X of steady state probability associated with Q, then 

                                          X Q = 0     and      X e = 1.                                           (2) 

where  e = (1,1, . . . , 1)T. Now partition X as  

X = (X001, X002, . . . , X00b, X011,X012, . . . , X01b, X022, X023, . . . , X02b, . . . , X0bb,      

         Xi01, Xi02, . . . , Xi0b, Xi11, Xi22, . . . , Xibb).                                                    (3) 

Following Neuts (1981), we examine the existence of a solution of the form  

                                         Xi = X1 R
i-1,    for   i ≥ 1                                                (4) 

Deriving  

                                         2 b 1
0 1 10 b0A RA R N R N 0                                (5) 

by using the matrix Q in the equation (2). 

It may be noted that 0 1 10 b0A A N N     is reducible. The equation (5) can be 

written as  

                                        1 2 1 b 1 1
0 1 10 1 b0 1R A A R N A R N A                             (6) 

The matrix R can be computed using the recurrence relation (6) with R(0) 0  and 

for i, j = 1, 2, . . . , b. The (i, j)th  element of R is  

  

2 3 1
, ,

1 1 1

...
b b b

b
i j i j ij ij ij ij ij ij

j j j

R R p R p R p
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                           (7)

                

A necessary and sufficient condition for the stability of the system can be obtained 

as follows: 

The expected number of customers taken for service in a batch (assuming 

that at least the number of customers determined by the Markov chain rule is 

available) is given by ,
1 1

b b

i j
i j

jp
 
 . Hence the service rate is ,

1 1

b b

i j
i j

jp
 
 . If the 

average number λ of arrivals per unit time is less than the service rate then the 
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system is stable. Therefore the system is stable if and only if the traffic intensity is 

less than one or equivalently  

                                                    ,
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                                                  (8) 

under this condition Xk→0 as k→ , and so the special radius of R must be less 

than one. In the case of M/M1, b/1/  queue with accessible batch service with 

server vacation model without the Markov dependence of the service batch sizes, 

we have the stability condition b



 . Thus the problem under the consideration 

includes M/M1, b/1/  queue with accessible batch service with server vacation 

model as a particular case. 
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It can be proved that Q*e = 0 where e is the column vector of appropriate 

dimension with all the elements equal to 1. 

    Let  X* = (X0’, X1’, . . . , Xb’,X1’)  be a solution of  X*Q* = 0. 

Then the below equation obtain from above relation, 

      X0’ B0 +X1’B10+X2’B20+ . . . + Xb’Bb0 =0 

      X0’ A0 +X1’B01+ X1N =0  

          . . .     . . .     . . . 

       X1’A10+X2’A20+ . . . +X1(B01+ RN10+ R2N20 + . . . + RbNb0) = 0                    (9) 

The vectors  X0’, X1’, . . . , X b’ can be expressed in terms of X1 using the above set 

of equations and X1 can be normalized using  
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where e1 = (1, 1, . . . , 1)T is a b – component column vector. 

 

 

2.2    Optimality problem 

  The cost related to waiting time of customers is considered to search for 

the Markov chain rule that will minimize the cost from among a given set of such 

Markov chain rules. 

Cost due to waiting time of customers while the server is in vacation: 

             The number of customers waiting could be 0, 1, 2, . . . , and the steady 

state probability are X(0), X(1), X(2), . . . , where  

          X(0) = 
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The expected number of customer waiting for service is based on the number 

available in the waiting room number of arrivals at the time of service or server is 

in vacation and the number determined by Markov chain rule. Let n be the number 

of customer waiting in waiting room of the system,  K be the number of arrivals at 

the time of service and j be the number determined by the Markov chain rule (with 

probability pij). Then the number of waiting is (n + k + j) + with probability X (n + 

k). Therefore the expected number of waiting customer  
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Let C be the cost per unit associated with the waiting time. Therefore expected 

cost of waiting customer per unit time  
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3     Model II 

It is more similar to model I and the only difference is a server in model II 

takes only a single vacation at a time. When the server returns to the main system, 

server starts service immediately if there is X (X ≥ 1) customers in the queue. If 

there is no customer in the queue, then the server waits until the queue reaches X 

≥ 1.    

  

  

3.1     Steady State Probability Vector 

The process can be formulated as a continuous time Markov chain with 

state space    

           S = {(0, 0, k, 0); 1 ≤ k ≤ b} U {(0, 0, k, I); 1 ≤ k ≤ b}  

           U{(0, j, k); 1 ≤ j ≤ k, 1 ≤ k ≤ b}  

           U {(i, 0, k); i ≥ 1, 1 ≤ k ≤ b} U {(i, k, k); 1≤ k ≤ b}                                 (12) 

all the notations are same as the first model but the difference is (0, 0, k, 0) 

denotes the server is in vacation and (0, 0, k, I) denotes the server stay idle in the 

service station. The technique used for the analysis of Model I is successfully 

applied for the above described Model II and the results are verified below. 

 

 

4  Numerical study for Model I and Model II 

  By Theorem 1 of Latouche and Neuts (1980), R is the limit of the 

sequence of matrices {R(n)},    n ≥ 0 defined by       

R(0) 0  

 1 2 1 b 1 1
0 1 10 1 b0 1R(n 1) A A R (n)N A R (n)N A        ;  n 0                 (13) 

For illustration, let us choose the parameter values as λ = 1, μ = 1, b = 5,  
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C = 1000, α = 2 and the 10 different Markov chain rules; the cost given in the 

following Table 1 is minimum for the Markov chain rule MC5.  

1

0.05 0.20 0.30 0.25 0.20

0.15 0.10 0.25 0.35 0.15

0.20 0.15 0.15 0.30 0.20

0.30 0.25 0.20 0.15 0.10

0.35 0.30 0.20 0.10 0.05

MC

 
 
 
 
 
 
  

2

0.05 0.15 0.40 0.30 0.10

0.10 0.20 0.30 0.35 0.05

0.15 0.20 0.30 0.30 0.05

0.10 0.15 0.35 0.35 0.05

0.05 0.15 0.30 0.40 0.10

MC

 
 
 
 
 
 
  

 

3

0.03 0.12 0.40 0.35 0.10

0.05 0.10 0.45 0.35 0.05

0.02 0.08 0.40 0.40 0.10

0.07 0.10 0.43 0.35 0.05

0.04 0.06 0.50 0.38 0.02

MC

 
 
 
 
 
 
  

4

0.02 0.08 0.40 0.43 0.07

0.03 0.07 0.45 0.40 0.05

0.04 0.09 0.42 0.41 0.04

0.05 0.07 0.43 0.42 0.03

0.06 0.09 0.45 0.39 0.01

MC

 
 
 
 
 
 
  

  

5

0.03 0.12 0.38 0.39 0.08

0.01 0.14 0.37 0.36 0.12

0.02 0.11 0.36 0.39 0.12

0.03 0.15 0.35 0.37 0.10

0.02 0.14 0.36 0.39 0.09

MC

 
 
 
 
 
 
  

6

0.01 0.08 0.47 0.39 0.05

0.02 0.07 0.50 0.40 0.01

0.01 0.06 0.60 0.30 0.03

0.03 0.06 0.55 0.34 0.02

0.03 0.05 0.68 0.21 0.03

MC

 
 
 
 
 
 
  

 

7

0.02 0.12 0.70 0.13 0.03

0.03 0.14 0.68 0.11 0.04

0.01 0.10 0.78 0.10 0.01

0.04 0.09 0.73 0.11 0.03

0.03 0.10 0.75 0.09 0.03

MC

 
 
 
 
 
 
  
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8

0.03 0.18 0.58 0.20 0.01

0.05 0.15 0.60 0.13 0.07

0.04 0.14 0.62 0.12 0.08

0.07 0.13 0.61 0.14 0.05

0.06 0.12 0.62 0.15 0.05

MC

 
 
 
 
 
 
  

9

0.05 0.26 0.24 0.36 0.09

0.09 0.24 0.30 0.29 0.08

0.07 0.26 0.31 0.28 0.08

0.06 0.25 0.35 0.27 0.07

0.08 0.28 0.29 0.29 0.06

MC

 
 
 
 
 
 
  

10

0.18 0.22 0.21 0.19 0.20

0.19 0.21 0.22 0.20 0.18

0.17 0.20 0.22 0.22 0.19

0.19 0.21 0.21 0.21 0.18

0.16 0.23 0.20 0.21 0.20

MC

 
 
 
 
 
 
    

 

 

Table 1: Cost comparison  
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By comparing all the total costs in the above table the total cost for expected 

waiting cost while the server is in multiple vacations is less than the other costs.    
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