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Abstract 

An efficient treatment of the gravitational inverse problem is possible if an 

optimization method is applied in the determination of the residual field. An 

optimal residual model should adapt to the observed gravity field data in the best 

possible way and take into account the geology of the area. 

Three polynomial functional models of the first and second degree in one and two 

variables were used in the computation of the regional anomaly which was 

separated from the Bouguer gravity anomaly to obtain the residual vector. The 

polynomial fittings were applied from two options; firstly to the individual 

Bouguer gravity anomaly profiles and secondly to the entire network of points 

within the basin.  The linearization of the models yielded a set of linear equations 

which were solved by method of least squares adjustment. Applications of 

multivariate statistics in analyzing the results obtained from the least squares 
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adjustment in terms of multivariate confidence intervals (MCI), null hypothesis 

test and correlation coefficients were carried out to determine the model that is 

most suitable for basin analysis. 

The quadratic polynomial model as applied to the individual profiles was found 

have the least sum of squares of residuals and va/riances. Its correlation 

coefficient is also higher than that obtained in the other models applied in the two 

options. The null hypotheses were not rejected at 5% significant level. The 

quadratic model is considered the most suitable for basin analysis in terms of 

hydrocarbon exploration.  

 

Keywords: Bouguer anomaly, residual, polynomial, least squares, Confidence 

interval, null hypotheses 

 

 

1  Introduction 

Bouguer gravity anomaly maps always contain the superposition of 

disturbances of noticeable order of size. These superpositions are as a result of 

deep-seated structures. In Gongola basin, the presence of large scale, deep-seated 

structural features and density effects caused by intrabasement lithologic changes 

cause significant regional variations in the gravitational field. The removal of the 

regional gravity anomaly resulting from the deep seated structures which often 

distort or obscure the effects of the structures that are sought in oil exploration is 

of great concern to geophysicist. In achieving a good result in the separation of the 

regional gravity from the Bouguer gravity anomaly, polynomial functional models  

of the first and second degree involving  one and two variables were applied for 

the computation of the regional gravity anomaly using the least squares technique. 

The first model (A) was developed for the computation of regional anomaly by 

utilizing the relationship between the station elevation, the weathered tertiary 
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sediment density, the free air anomaly and Bouguer correction in the computation 

of Bouguer anomaly. The weathered tertiary density value of 2.2 was adopted in 

the computation of Bouguer gravity anomaly. This value was obtained from the 

application of Nettleton and Parasnis methods and validated using the density log 

from the basin. The second and third models (B and C) are first and second degree 

polynomials in two variables. 

Applications of multivariate statistics for analyzing results obtained from the least 

squares adjustment in terms of multivariate confidence intervals (MCI) and null 

hypothesis testing and correlation coefficients were carried out to determine the 

model that is most suitable for basin analysis.  

The Criteria for selecting the best regional gravity anomaly whose residuals will 

be used for basin analysis are based on the following: 

i. The residual anomaly derived from the regional anomaly should correlate 

with the geology of the basin 

ii. The sum of squares of the residual gravity anomaly obtained from the 

regional anomaly should be of minimum value 2( min )v imum .  

iii. The null hypotheses should be satisfied at 5% significant level. 

iv. The correlation coefficient should be maximum. 

 

 

1.1 Multivariate Interval Estimation 

In order to know how good the estimate of the polynomial coefficients and 

the variance obtained are in terms of probability, the confidence intervals were 

used. The confidence interval sets up the probability statement concerning the 

critical limits of the parameters. This in turn forms the basis for hypothesis testing. 

In least squares adjustment, the a-posteriori variance of unit weight is defined by: 
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 

 
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                                                  (1) 

where  

df = degrees of freedom,  

P = unit weight matrix of observation, which is defined as  

                                                      
12

0 ,bL
P  
                                                     (2) 

2
0  a-priori variance of unit weight 

bL
 vector of observation 

Ayeni (1981) has shown that 
1

b

T

L
V V
 -å is distributed as Chi-squared 2( )X with 

degrees of freedom df  (same as in eqn. (1)). The probabilistic statement (see 

Ayeni,1981) 

                                          2 2 2 2
/ 2 0 1 / 2 0  TX V PV X   

 
                                      (3) 

Expresses the multivariate confidence interval (MCI) on TV PV
 

 at (1 / 2)  

percent.  The critical region for testing the null hypothesis on TV PV
 

 is carried 

using the MCI. 

Further treatment of the confidence intervals with respect to the polynomial 

coefficients can be obtained in Krumbien and Graybill (1965) pages 229-231 

respectively. 

 

 

1.2 Multivariate Hypothesis Testing 

This is required to test whether TV PV


 is too large or too small compared with 

the a-priori variance unit weight 2
0  assumed for the adjustment. From the 

confidence interval in equation (3). The three possible hypotheses used in this 

research are: 
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i. 2
1 0: THo V PV 
 

, corresponds to testing if TV PV
 

is too large or too small      

               the criterion for rejecting 1Ho is as follows: 

        Reject 1Ho , if 2 2
1 / 2 ( )X X df  or 2 2

1 / 2 ( )X X df  

ii. 2
2 0: THo V PV 
 

 corresponds to testing if TV PV
 

 is too small, which is 

one tailed test 2
2 0: THo V PV 
 

      

              Reject 2Ho ,  if 2 2 ( )X X dfa<   

iii. 2
3 0: THo V PV 
 

 corresponds to testing if TV PV
 

is too large 

       2
3 0: TH V PV 
 

 

              Reject 3Ho ,  if 2 2
1 ( )X X df  

  

 

1.3 Linear Correlation 

The simple linear model and the multiple correlation coefficients were 

computed as a measure to indicate the adequacy of the variables (coordinates, 

elevation and distances) in the prediction of the regional gravity anomaly. The 

coefficient of correlation is positive for direct correlation in the case of basement 

complex region while it is negative for inverse correlation in the case of  

sedimentary region for a simple linear model in one variable. The sedimentary 

rocks basin has low densities and thus produces a negative gravity anomaly. The 

negative anomaly is high where the basin is deepest. 

  The estimate of the square of the multiple correlation coefficients is given 

by (Krumbien and Graybill, 1965) 

                                                  2 1

2

1

,  
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i i
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where 
1

k

i i
i

R r

  is the sum of the products of elements in the column labeled g in 

the abbreviated Doolittle format (Krumbien and Graybill, 1965), and the quantity 

                                               
1 1 1

( ),  
k k n

i i i ji j
i i i

R r X Y
  

  


                                      (5) 

is called “the reduction due to estimating the parameters 1 2, ................ k    in the 

linear model.” 

 

 

2  Methodology 

2.1 Data Acquisition 

The gravity data used in this research were secondary data obtained from 

Shell Nigeria Exploration and Production Company. The study area is OPL 

803/806/809 within the Gongola basin.  It contains 1831 observed gravity station 

data with  station interval of 500m.  

 

 

2.2 Data Quality 

The gravity observations were repeated ten times at each gravity station. 

The standard deviation of each observed gravity value was found to be 0.013mgal.  

Also, the average standard error of the gravity base stations was found to be 

0.015mgal (Idowu, 2006).  The difference between the observed gravity anomalies 

and the predicted gravity values using least squares collocation technique was 

given as 68.4 10colV x    while the mean square error is 2 117.06 10colV x  .  

Based on the application of least squares collocation in the prediction of the 

gravity data by Idowu (2006), it can be inferred that the validity, reliability and the 

quality of the gravity data used in this research are satisfactory. 
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2.3 The Polynomial functional Model Computations 

The polynomial functional models are expressed as follows:  

                 A: 0.2164reg s s iModel g H s e                                        (6)  

                 B: reg s s iModel g x y e                                                (7) 

                2 2 C: reg s s s s s s iModel g x y x y x y e                      (8)   

where regg = regional gravity anomaly.   

, , , , ,  =      the polynomial coefficients, 

sH  elevation, 

ss distance with respect to the first station 

                                                   0s sx X X                                                          (9) 

                                                   0s sy Y Y                                                          (10) 

where ,s sX Y  are the station point coordinates, 0 0,  X Y  are coordinates of the map 

origin, 0 625000mEX  , 0 1096818mNY  . 

In the equations (6), (7) and (8), ( ) 0iE e = , variance 2( )ie s= . The two options 

adopted in the application of the models are: 

Option 1: This involves the determination of a generalized polynomial fitting and 

modl equations for the entire 1813 gravity observations of the basin. Fig.1 shows a 

model of the gravity observations with the generalized linear fitting for all the 

observations irrespective of the line. The coefficients were used in the 

determination of a generalized regional field of the basin.  

Option 2: This involves the determination of the polynomial fitting and the model 

equation with respect to the individual line of observation. The polynomial 

coefficients were used in the determination of the regional field of each line. The 

combination of the regional field produced by individual lines was used in the 

determination of the entire regional field of the basin. In Fig 1, the straight lines 
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on theY-axis crossing the observation points represent the polynomial fitting of 

each line.   

The confidence intervals, hypotheses testing and correlation coefficients were 

determined by computing the following: 

i. The 95% confidence interval for a  with confidence coefficient 1   equal 

to / 2 / 2 / 2( ( 2)), ( ( 3)) and ( ( 6)) respectively.t n t n t ng g g- - -  

ii. The 95% confidence interval for b  with confidence coefficient 1   equal 

to / 2 / 2 / 2( ( 2)), ( ( 3)) and ( ( 6)) respectively.t n t n t ng g g- - -  

iii. The 95% confidence interval for 2s  with confidence coefficient 1   

equal to 2 2 2
/ 2 / 2 / 2( ( 2)),  ( ( 3)) and ( ( 6)) respectively.X n X n X ng g g- - -  

iv. Test the hypotheses  0 0 0: ,  where  is a given constant.H a a a=  

v. Test the hypotheses 0 0 0: ,  where  is a given constant.H b b b=  

vi. Test the hypotheses 2 2 2
0 0 0: ,  where  is a given constant.H s s s=  

ix. Test the hypotheses 0 0 0: 0,  for the two variable polynomialH a b= =  

x. Test the hypotheses for the second degree polynomial  in two variable as : 

0 0 0 0 0 0: 0,  H a b g l x= = = = =  

xi. The linear correlation coefficient .p


 

xii. The multiple linear correlation coefficient 2.R


 

. 

 

3  Results and Analysis 

3.1 Results 

The following results in Tables 1, 2, 3 and 4 were obtained for options 1 and 2 

with respect to models A, B and C. 
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3.2 Analysis 

3.2.1 Polynomial Functional Model in One and Two Variables (Models A, B 

and C) 

Based on the results obtained, in Tables 1, 2, 3 and 4, the following are 

inferred: 

1. Columns 2, 3 and 4 (Table 1a) and Columns 3,4 and 5 (Table 1b) show the 

95% confidence interval, while column 2 (Table 2a) and column 4 (Table 

2b) show the a-priori variance for model A (options 1 and 2) respectively. 

Columns 2, 3 and 4 (Table 1c) and Columns 3,4 and 5 (Table 1d) show the 

95% confidence interval for the polynomial coefficients, while column 4  

(Table 2a)  and column 5  (Table 2b) show the a-priori variance for model B 

(options 1 and 2 respectively). Column 6 (Table 4.14b) shows the a-priori 

variance of model C (option 1). Columns 6,7 and 8 (Table 2a) and Columns 

7,8 and 9 (Table 2b) shows the sum of squares of the residual gravity 

anomalies for options 1 and 2 using the three models. It could be inferred 

that the a-priori variances of all the two options using model A, B and C are 

unbiased estimators of the regional gravity anomaly. However, the mean 

variance and sum of squares of the residuals for model C (option 2) is lower 

than that obtained using models A and B for the two options.  

2. In columns 3 and 4 (Table 3a) and columns 4 and 5 (Table 3b), the results of 

the multivariate hypotheses tests for the variances of all the gravity lines 

show that 2 2

/ 2 ( 2)X X n  . Hence the null hypothesis ( 0H ) is accepted. It 

could be inferred that the variances are neither too large nor too small and 

therefore, the least squares adjustment is not distorted at 5% significance 

level. The null hypothesis used is one tailed at 5% significance level.  

3. In columns 5, 6 and 7 (Table 3a) and columns 6, 7 and 8 (Table 3b), the 

results of the null hypotheses tests for the polynomial coefficients show that 

0 / 2 0 / 2( 2) and ( 2)H t n H t n       for all the gravity lines. In columns 2, 
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3 and 4 (Table 3c) and columns 3, 4 and 5 (Table 3d), the results of the null 

hypotheses tests for the polynomial coefficients for model B (option 2) show 

that 0 / 2 0 / 2( 3) and ( 3)H F n H F n       for all the gravity lines. Also in 

columns 3 and 4 (Table 3e) columns 4 and 5 (Table 3f) the results of the null 

hypotheses tests for the polynomial coefficients for model C show that 

0 / 2 ( 6)H F n   for options 1 and 2. Hence, the polynomial functional 

models for computing the regional anomaly in models A, B and C for 

options 1 and 2 are accepted. The values of the polynomial coefficients of 

models A, B and C for both options all fell within the 5% significance level. 

The polynomial coefficients did not introduce any significant distortion in 

the computation of the regional gravity anomaly.  The null hypothesis used 

is one tailed at 5% significance level. 

4.  In column 8 (Table 3a) shows a negative correlation coefficient for the 

entire basin. Also, in column 9 (Table 3b), the correlation coefficient 

obtained in all the gravity lines is negative except in lines 94V007 and 

94V045. This is because the basin is dominated by dolomites and sandstone 

whose density contrast with the basement is negative and as such produces 

negative gravity anomaly. The average correlation coefficient for all the 

gravity lines for model A is -51% (option1) and -63.96% (option 2). In 

column 5 (Table 3c) and column 6 (Table 3d), the average multiple 

correlation coefficient obtained in all the gravity lines from model B is 68% 

(option 1) and 71.38% (option 2), while in column 5 (Table 3e) and column 

6 (Table 3f), the average multiple correlation coefficient for all the gravity 

lines obtained from model C is 73% (option1) and 93.6% (option 2). 

5. Based on the above least squares analysis of the model results, Table 4 

shows the ranking of the models. From the table, model C (option 2) has 

the least sum of squares of residuals and variances and the highest value 

for correlation coefficient and as such is considered the best model for 

basin analysis. 
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4  Summary of Findings 

i. The maps developed using the gravity data show that the Gongola basin 

consists of four zones namely: sedimentary, transition, granite pluton and 

basement complex zones. 

ii. The anomalous mass under investigation is located along a composite profile 

94V071/95D071 and 94V037 respectively. The gravity contour closures are 

better defined in model C option 2 than in the other models. Figures 1 and 2 

show the residual gravity anomaly maps derived from option 2, models B and 

C respectively. 

iii. The excess mass computed using option 2 is 111.613 10x Kg  for model A, 

111.79727 10x Kg  for model B and 104.7 10x Kg  for model C. 

iv. The regional profiles of model C (option 1) were all straight lines, while the 

profiles of the same model in option 2 followed the symmetric path of the 

Bouguer profiles thereby producing a minimized residual for basin analysis. 

v. The regional field in the Gongola basin has numerous geological 

convolutions and as such, the second degree polynomial as applied to the 

individual profiles is preferred to the other polynomials for basin analysis. 

 

 

5  Conclusion 

The application of the multivariate statistical analyses on the residual 

gravity anomaly results provided a valuable tool in the determination of the most 

appropriate model for basin analysis. The null hypotheses provided the validity of 

the chosen model. The models did not introduce any distortion at 5% significant 

level. The map produced using model C as applied to the individual profiles 

should be used in the delineation of the Gongola basin for hydrocarbon 

exploration. 
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Figure 1:  A Model of the Polynomial Fitting Methods 

 

 

 

Table 1a: Results of 95% Confidence Intervals for Model A (Option 1) 

S/N Confidence Interval  

2s  
2

/ 2 ( 2)

0.05

X ng

g
-

=
 

Confidence Interval 

b  

/ 2 ( 2)

0.05

t ng

g

-

=
 

Confidence Interval 

a  

/ 2 ( 2)

0.05

t ng

g

-

=
 

1 273.1 96.5d< <  0.00016 0.00014b- < <-  7.83 7.77a- < <-  

 

 



66 Multivariate Statistical Analysis of Gongola Basin Residual Gravity Anomalies ... 
 

Table 1b: Results of 95% Confidence Intervals for Model A  

(Option 2) 

S/N LINE 

Confidence 
Interval 

2s  
2

/ 2 ( 2)

0.05

X ng

g
-

=
 

Confidence Interval 
b  

/ 2 ( 2)

0.05

t ng

g

-

=
 

Confidence Interval 
a  

/ 2 ( 2)

0.05

t ng

g

-

=
 

1 94V007 21.09 2.65d< <  0.0038 0.0034b- < <-  0.00892 0.0091a- < <-  

2 94V020 23.60 8.51d< <  0.0006 0.0005b- < <-  0.00149 0.00151a- < <-  

3 94V023 210.88 18.08d< <  0.0006 0.0004b- < <-  0.00258 0.00261a- < <-  

4 94V037 20.98 2.38d< <  0.0017 0.0015b- < <-  23.97 24.29a- < <-  

5 94V039 22.54 4.23d< <  0.0019 0.0017b- < <-  0.99 1.007a- < <-  

6 94V045 21.64 3.61d< <  0.0024 0.0022b- < <-  5.06 5.13a- < <-  

7 94V055 22.21 3.92d< <  0.0016 0.0014b- < <-  4.02 4.05a- < <-  

8 94V071 25.34 9.48d< <  0.0011 0.0012b- < <-  9.38 9.37a- < <-  

9 94V080 23.47 6.16d< <  0.0017 0.0015b- < <-  0.00118 0.00191a- < <-  

10 94V120 210.06 17.86d< <  0.0017 0.0011b- < <-  0.00158 0.00162a- < <-  

11 94V146 25.22 11.49d< <  0.0059 0.0045b- < <-  6.431 6.809a- < <-  

12 94D032 27.59 12.61d< <  0.0007 0.0005b- < <-  0.00179 0.00181a- < <-  

13 94D039 210.66 17.72d< <  0.0013 0.0011b- < <-  0.00139 0.00141a- < <-  

14 94D048 211.74 20.85d< <  0.0016 0.0014b- < <-  0.00128 0.00131a- < <-  

15 94D064 23.70 6.58d< <  0.0018 0.0016b- < <-  0.00169 0.00171a- < <-  

16 94D096 211.45 19.04d< <  0.0015 0.0013b- < <-  0.00159 0.00161a- < <-  

17 95D030 21.93 3.21d< <  0.0016 0.0020b< <  27.83 28.34a- < <-  

18 95D071 20.23 0.41d< <  0.00237 0.00231b- < <-  14.01 14.07a- < <-  

19 DA1 20.23 0.89d< <  0.0025 0.0020b- < <-  3 .9 8 4 .0 2a< <  

20 DA2 20.57 1.27d< <  0.0016 0.0090b- < <-  1.23 1.24a- < <-  

21 DA3 21.27 2.81d< <  0.00088 0.0005b- < <-  3.08 3.13a- < <-  
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Table 1c: Results of 95% Confidence Intervals for Model B (Option 1) 

S/N Confidence Interval  

a  
2

/ 2 ( 3)

0.05

X ng

g
-

=
 

Confidence Interval 

b  

/ 2 ( 3)

0.05

t ng

g

-

=
 

Confidence Interval 

g  

/ 2 ( 3)

0.05

t ng

g

-

=
 

 

1 

 

0.00019 0.00017a- < <-  

 

0.0035 0.0033b- < <-  

 

13.2495 13.2496g< <  

 

 

Table 1d: Results of 95% Confidence Intervals for Model B (Option 2) 

S/N LINE Confidence Interval  

a  
2

/ 2 ( 3)

0.05

X ng

g
-

=
 

Confidence Interval 

b  

/ 2 ( 3)

0.05

t ng

g

-

=
 

Confidence 

Interval 

g  

/ 2 ( 3)

0.05

t ng

g

-

=
 

1 94V007 0.0047 0.0047a- < <  0.0045 0.0049b- < <  21.82 21.80    

2 94V020 0.000285 0.000539a< <  0.00091 0.00066b- < <-  1.5174 1.5175   

3 94V023 0.00045 2.04 5Ea- < <- -  0.0014 0.00099    15.349 15.350   

4 94V037 4.39 6 0.00040E a- < <  0.00321 0.00361   278.451 278.450   

 

5 94V039 0.00049 0.00013a- < <  0.00190 0.00127    54.1493 54.1499   

6 94V045 0.00018 0.00020a- < <  0.000154 0.000228    11.762 11.761    

7 94V055 0.00021 0.00017a- < <-  0.000125 8.04 5E     4.5164 2.5163    

8 94V071 0.00047 0.00044a- < <  0.00085 6.64 5E     9.328 9.329   

9 94V080 0.00337 0.00327a- < <-  0.00105 0.00094    269.4191 269.4192   

10 94V120 0.00169 0.00204a< <  0.00152 0.00112    140.786 140.785    

11 94V146 0.000354 0.00124a< <  0.00174 0.00085    49.996 49.995    

12 94D032 0.0030 0.0037a- < <-  0.00368 0.00314    15.91 15.92   



68 Multivariate Statistical Analysis of Gongola Basin Residual Gravity Anomalies ... 
 

13 94D039 0.160 0.159a- < <  0.1614 0.1564    84.012 84.332   

14 94D048 0.00022 0.00014a- < <-  0.000452 0.000369    20.098 20.099   

15 94D064 0.534 0.533a- < <-  0.536 0.535    3.464 4.534   

16 94D096 0.00476 0.00600a- < <  0.00649 0.00433    14.158 14.147    

17 95D030 0.00233 0.00289a- < <-  0.00085 0.00073    49.269 49.279   

18 95D071 0.0031 0.0033a- < <  0.00571 0.00073    119.059 119.066   

19 DA1 0.0006 0.00124a- < <  0.0023 0.00047    45.056 45.070   

20 DA2 0.00071 0.00070a- < <-  0.00038 0.00010    10.163 10.160    

21 DA3 0.00019 0.003a- < <  0.00044 8.7 5E     12.8759 12.8753    

 

 

 

 

 

 

Table 2a: Results for Variance and Sum of Squares Residuals for the 

three Models (Option 1) 

S/N Number 

of 

stations 

(n) 

Variance 

Model A 

2
As  

Variance 

Model B 

2
Bs  

Variance 

Model C 

2
Cs  

Sum of 

Squares of 

Residuals: 

Model A 

2
Avå  

Sum of 

Squares of 

Residuals: 

Model B 

2
Bvå  

Sum of  

Squares of  

Residuals: 

Model C 

2
Cvå  

 

1 

 

1813 

 

82.5 

 

39.2 

 

12.3 

 

246447.3 

 

255443.8 

 

178376.6 
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Table 2b: Results for Variance and Sum of Squares Residuals for the three Models  

(Option 2) 

S/N LINE Number 
of 

stations 
(n) 

Variance 
Model A 

2
As  

Variance 
Model B 

2
Bs  

Variance 
Model C 

2
Cs  

Sum of 
Squares of 
Residuals: 
Model A 

2
Avå  

Sum of 
Squares of 
Residuals: 
Model B 

2
Bvå  

Sum of  
Squares of  
Residuals: 
Model C 

2
Cvå  

1 94V007 42 1.62 1.23 0.46 2114.62 886.39 329.23 

2 94V020 144 5.78 5.48 5.16 13649.3 7571.37 2986.58 

3 94V023 217 15.56 16.64 14.65 48651.26 55320.35 48702.96 

4 94V037 46 1.32 0.18 0.01 1344.23 1494.66 77.21 

5 94V039 73 3.87 1.49 0.35 2263.91 2055.64 479.92 

6 94V045 62 2.02 1.49 0.07 1699.39 841.50 39.90 

7 94V055 81 3.29 4.24 0.27 1495.82 1918.04 119.98 

8 94V071 96 6.69 6.49 0.40 3056.20 4360.23 266.44 

9 94V080 78 5.37 2.76 1.19 23198.19 13911.18 6005.78 

10 94V120 81 15.38 18.74 12.07 22863.3 11227.99 7234.22 

11 94V146 44 8.87 7.38 1.16 2862.15 6550.19 1026.06 

12 94D032 133 8.81 14.40 8.89 11693.82 7163.52 4421.32 

13 94D039 131 12.58 11.79 9.93 31157.8 20428.79 17213.05 

14 94D048 113 12.45 5.49 3.13 4463.16 3799.22 2165.32 

15 94D064 94 4.74 5.39 6.92 10853.9 6816.84 8746.28 

16 94D096 121 14.65 16.44 15.39 43610.62 26561.8 24857.62 

17 95D030 64 2.94 2.20 0.38 1705.03 2353.03 404.70 

18 95D071 76 0.39 0.18 0.01 467.76 1937.30 139.97 

19 DA1 20 0.41 0.18 0.02 70.22 281.34 30.27 

20 DA2 52 0.82 1.2 2.38 364.64 78.07 155.10 

21 DA3 46 2.07 2.29 0.18 1246.76 1141.71 90.09 

 Total Sum of Squares of Residuals 228832.1 176699.2 125492
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Table 3a: Results for Hypotheses Test and Correlation Coefficients for Model A  

(Option 1) 

  

 

 

 

 

Table 3c: Results for Hypotheses Test and Correlation Coefficients for Model B 

(Option 1) 

 

 

 

 

 

S/

N 

Number 

of 

stations 

(n) 

 

0

2 2

0

:H

 
 

 

 

2

/ 2 ( 2)

0.05

X n






 

 

0 0:H b b=

 

 

0 0:H a a=

 

 

/ 2 ( 2)

0.05

t ng

g

-

=
 

Correlation 

Coefficient  

(%) 

p


 

1 
 

1813 

 

92 

 

124.3 

 

1.53 

 

0.78 

 

1.96  

 

-51 

S/N Number 

of stations 

(n) 

 

2
/2( 3)

0.05

X ng

g

-

=
 

 

0 : 0H a b= =  

 

/2 ( 3)

0.05

nFg

g

-

=
 

Multiple  

Correlation  

Coefficient  

    (%) 

     2R


 

 

1 

 

1813 

 

140.57 

 

19.19 

 

3.00 
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Table 3b: Results for Hypotheses Test and Correlation Coefficients for Model A 

(Option2) 

S/N LINE Number 
of 

stations 
(n) 

 

0

2 2

0

:H

s s=
 

 

 
2

/2( 2)

0.05

X ng

g

-

=
 

 

0 0:H b b=
 

 

0

0

:H

a a=
 

 

/2( 2)

0.05

t ng

g

-

=
 

 
Correlation 
Coefficient  

(%) 
p


 

1 94V007 42 24 55.76 1.92 0.19 2.01  22.4 

2 94V020 144 92 124.3 0.86 0.31 1.96  -95.8 

3 94V023 217 92 124.3 0.81 0.47 1.96  -94.0 

4 94V037 46 24 61.6 1.20 0.20 2.01  -87.4 

5 94V039 73 65 96.22 1.20 0.26 1.99  -84.5 

6 94V045 62 32 79.08 1.60 0.30 2.01  3.6 

7 94V055 81 66 101,9 2.70 0.34 1.99  -86.5 

8 94V071 96 66 118.7 1.15 0.15 1.96  -7.9 

9 94V080 78 66 96.12 1.15 0.23 1.99  -96.4 

10 94V120 81 77 107.5 0.54 0.11 1.99  -88.5 

11 94V146 44 42 55.76 0.22 0.04 2.01  -75.7 

12 94D032 133 92 140.57 0.64 0.28 1.96  -92.0 

13 94D039 131 92 140.57 1.60 0.24 1.96  -92.5 

14 94D048 113 66 109.83 1.00 0.14 1.99  -72.4 

15 94D064 94 66 118.70 1.40 0.24 1.99  -92.5 

16 94D096 121 92 140.57 1.30 0.20 1.96  -94.6 

17 95D030 64 57 84.81 2.40 0.12 1.99  -79.2 

18 95D071 76 32 96.22 2.80 0.54 1.99     99.1 

19 DA1 20 8 28.87 0.64 0.17 2.11  -92.8 

20 DA2 52 32 67.50 1.60 0.71 2.01  -86.9 

21 DA3 46 32 61.63 1.40 0.22 2.01  -48.8 

Average  Correlation Coefficient -63.97 
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Table 3d: Results for Hypotheses Test and Correlation Coefficients for Model B  

(Option 2) 

S/N LINE  

2
/2( 3)

0.05

X ng

g

-

=
 

 

0 : 0H a b= =  

 

/2 ( 3)

0.05

nFg

g

-

=
 

Multiple  

Correlation 

Coefficient (%) 

2R


 

1 94V007 49.77 8.19 3.19 29.6 

2 94V020 124.3 69.33 3.00 92.7 

3 94V023 124.3 60.1 3.00 94.0 

4 94V037 61.63 62.7 3.19 96.7 

5 94V039 96.22 28.5 3.11 89.1 

6 94V045 73.29 10.83 3.15 27.6 

7 94V055 96.22 82.73 3.11 87.9 

8 94V071 118.7 2.33 3.11 4.0 

9 94V080 96.12 100.6 3.11 96.4 

10 94V120 96.22 20.1 3.11 84.1 

11 94V146 61.63 94.75 3.19 82.2 

12 94D032 140.57 19.3 3.00 74.8 

13 94D039 140.57 41.49 3.00 86.6 

14 94D048 109.83 20.89 3.11 79.2 

15 94D064 118.70 23.4 3.11 83.7 

16 94D096 140.57 25.6 3.00 81.3 

17 95D030 84.81 77.71 3.11 71.8 

18 95D071 96.22 60.2 3.11    95.7 

19 DA1 27.59 13.4 3.59 94.1 

20 DA2 61.63 9.39 3.19 62.1 

21 DA3 61.63 4.56 3.19 17.5 

Average Multiple Correlation Coefficient 73 
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Table 3e: Results for Hypotheses Test and Correlation Coefficients for 

Model C (Option 1) 

S/N Number 

of 

stations 

(n) 

 

0 : 0H a b g l x= = = = =

 

/2 ( 6)

0.05

nF






 

Multiple 

Correlation 

Coefficient 

(%) 

2R


 

 

1 

 

1813 

 

9.33 

 

3.00 

 

73 

 

 

 

Table 4: Ranking of Models Using Least Squares Criteria 

Ranking Option Model 

1 2 C 

2 2 B 

3 1 C 

4 2 A 

5 1 A 

6 1 B 
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Table 3f: Results for Hypotheses Test and Correlation Coefficients for 

Model C (Option 2) 

S/

N 

LINE Number 

of 

stations 

(n) 

 

0 : 0H a b g l x= = = = =

 

/2 ( 6)

0.05

nFg

g

-

=
 

Multiple 

Correlation 

Coefficient 

(%) 

2R


 

1 94V007 42 8.23 3.26 90.5 
2 94V020 144 3.36 3.00 97.6 
3 94V023 217 4.04 3.00 94.4 
4 94V037 46 3.24 3.23 99.7 
5 94V039 73 9.51 3.11 94.4 
6 94V045 62 3.36 3.15 99.3 
7 94V055 81 3.75 3.11 99.6 
8 94V071 96 3.17 3.11 99.5 
9 94V080 78 3.85 3.11 97.2 

10 94V120 81 6.7 3.11 88.3 
11 94V146 44 3.45 3.24 93.2 
12 94D032 133 6.44 3.00 96.4 
13 94D039 131 3.84 3.00 93.1 
14 94D048 113 3.62 3.11 94.6 
15 94D064 94 7.81 3.11 67.1 
16 94D096 121 8.55 3.11 94.5 
17 95D030 64 4.65 3.19 96.6 
18 95D071 76 5.77 3.11 99.6 
19 DA1 20 4.48 3.74 95.7 
20 DA2 52 3.33 3.19 79.6 
21 DA3 46 3.52 3.23 95.5 

Average Multiple Correlation Coefficient 93.6 
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Figure 1: Residual Gravity Anomaly of Option 2 Model B. Contour interval 

=1mGal 
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Figure 2: Residual Anomaly Map of option 2 Model C.   C.I =1mGa 


