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Pollution in porous media:

non permanent cases
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Abstract

In this work, we focus on pollution transfer in porous media. We

prove that the pollutant transfer can be modeling by a non linear evo-

lutive system. We used the mathematical frameworks presented on [5]

to solve the non linear problem. And so we build a numerical scheme,

based on topological optimization to get the representation of the pol-

lution in the non permanent case. To end the paper, we give some

numerical results.
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1 Introduction

In this beginning of the third millennium, we are in front of two major
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e-mail: diaraf.seck@ucad.edu.sn

Article Info: Received : October 28, 2011. Revised : December 19, 2011

Published online : April 20, 2012



34 Pollution in porous media: non permanent cases

Pollutant transfert

Figure 1: Example of pollutant transfer in porous media

challenges: they are mainly the global warming and the access of the drinkable

water for a great part of the population (particularly Subsaharian Africa).

Indeed, in one hand, the galloping industrialization favors the rejection (by

factories, vehicles, ...) of an important quantity of carbon monoxide (CO2) in

the atmosphere. The latter is in a great part, responsible of the air pollution

and consequently of the global warming on the earth. In another hand, the use

of chemical manure and pesticides in farming areas involves the infiltration of

chemical products (thus of polluters) in the sub-soil which can reach the water

layer. It is in this context that we are proposing a mathematical model and

resolution method allowing us to study problem of the transfer of pollutants

in porous media.

In [5], we studied the distribution of a pollution in a unsaturated porous

media. We considered the stationary evolution case of the fluid under some

reasonable hypotheses. And in the model, we used strongly some experimental

laws accepted by the scientific community to overcome difficulties appeared in

the modeling of the pollution phenomena.

And we use mainly topological optimization and some nonlinear techniques

in partial differential equations to have theoretical and numerical results.

The goal of the topological optimization problem is to find an optimal

design with an a priori poor information on the optimal shape of the struc-

ture. The topological optimization problem consists in minimizing a functional
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j(Ω) = J(Ω, uΩ) where the function uΩ is defined, for example, on a variable

open and bounded subset Ω of Rn. For % > 0, let Ω% = Ω\(x0 + %ω), be the set

obtained by removing a small part x0 + %ω from Ω, where x0 ∈ Ω and ω ⊂ R
n

is a fixed open and bounded subset containing the origin. Then, using general

adjoint method, an asymptotic expansion of the function will be obtained in

the following form:

j(Ω%) = j(Ω) + f(%)g(x0) + o(f(%))

lim
%→0

f(%) = 0, f(%) > 0

The topological sensitivity g(x0) provides information when creating a small

hole located at x0. Hence the function g will be used as descent direction in

the optimization process.

The paper is organized us follows: the section 2 deals with the modeling of

pollution in porous media. In section 3, we give some mathematical framework

to prove that the the non linear problem which arise from the modeling gets

a solution . In section 4, we study the problem of pollution transfer as a

topological optimization one, in the section 5, we give some numerical results.

2 Modeling

In [5], we presented the modeling of a pollution problem and we study the

model under some realistic hypotheses. In order to be completed, we present

the model. Our aim in this work is to weaken the hypotheses done in [5] and

to get additional results.

Let D be a porous medium. Let us introduce, for x ∈ D and t ∈ (0, 1).

The effective porosity ε(t, x) is given by

ε(t, x) =
dVl
dVtotal

where dVl is an element of the volume of the fluid and dVtotal an element of

the total volume ;

σ(t, x) the porosity given by

σ(t, x) =
dVv
dVtotal
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where dVv is an element of the volume of the vacuum and

q the Darcy velocity vector given by

q = εV

where V is the velocity vector of the fluid.

Ω is considered as an elementary domain of a porous domain D.

We have M(Ω, t) =
∫

Ω
dm; dm is an element of the mass of the fluid.

dm = ρ(t, x)ε(t, x); ρ(t, x) is the fluid density of the solution.

For our model we will use these notations: ρs[kg/m
3] the fluid density of the

solution given by

ρs =
dmsolution

dvsolution

W (t, x) the fraction of the mass (concentration):

W (t, x) =
dmsolute

dmsolution

.

dmsolution is an element of the mass of the solution and dmsolute is an element

of the mass of the pollutant.

Remark 1. It is acceptable to consider the same model for the air pollution.

In this case, the porosity is a constant.

2.1 The conservation of the mass of the solution

We have

dmsolution = ρsdvsolution = ρs
dvsolution
dvtotal

dvtoal

= ρsε(t, x)dvtotal

Msolution(Ω, t) =

∫

Ω

dmsolution =

∫

Ω

ρsεdx.

The principle of conservation of the mass stipulate that the variation of the

mass in Ω is equal to the flux through the boundary of Ω with velocity V.

dMsolution(Ω, t)

dt
= −

∫

∂Ω

ρsεV νdσ.

Hence, ∫

Ω

∂

∂t
(ρsε) +

∫

∂Ω

ρsεV νdσ = 0
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By the Green formula we obtain
∫

Ω

(
∂

∂t
(ρsε) + div(ρsεV ))dx = 0 ∀ Ω ⊂ D

Hence
∂(ρsε)

∂t
+ div(ρsq) = 0 in D (1)

2.2 Conservation of the mass of pollutant liquid

Here, we consider for example that our pollutant liquid is: water + chemical

concentration (it is homogeneous). By the formula given W (t, x) we have

dmsolute = W (t, x)dmsolution = W (t, x)ρs(t, x)ε(t, x)dvtotal

M(Ω, t) =

∫

Ω

dmsolute =

∫

Ω

Wρsεdx.

We use the principle conservation of the mass. This imply that

∫

Ω

(
∂

∂t
(Wρsε) + div(Wρsq + J))dx = 0,

where J is the flux of dispersion diffusion. Hence

∂

∂t
(Wρsε) + div(Wρsq + J) = 0 ∀ Ω ⊂ D

∂

∂t
(Wρsε) + div(Wρsq + J) = 0 in D (2)

2.3 Conservation of the momentum

If the porous medium is homogeneous the Darcy law is given by

q = −
K

µ
(∇p+ ρsge3);

where e3 is third vector of the canonical basis of R3; p is the pressure, ge3 = ~g is

the gravity field, K the intrinsic permeability tensor, µ the dynamic viscosity

and K/µ hydraulic conductivity.
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If we have some weak concentration the flux of dispersion diffusion J is

determined by the Fick law

J = −ρsD∇W

where D be the tensor of dispersion diffusion.

Finally we have a system of equations







∂ερs
∂t

+ div(ρq) = 0
∂(ερsW )

∂t
+ div(ρsWq + J) = 0

J = −ρsD∇W

q = −K
µ
(∇p+ ρsge3)

(3)

where ε, ρs, W and p are unknowns.

And it is almost impossible to get mathematical solution for the above

system. So we are going to introduce in the next two section two approaches

to overcome these difficulties, of course, under reasonable hypotheses.

2.4 Preliminaries considerations and some hypotheses

In this subsection, we are beginning by introducing some experimental

laws and setting hypothesis. Mainly we introduce laws of the behaviors of the

density ρs and the effective porosity.

Remark 2. i- ρs = ρs(T, p,W ). For our study we suppose that ρs satisfy the

relation

ρs = ρ0 exp(βT (T − T0) + βp(p− p0) + γW )

here βT , βp et γ are constants ; p designates the pressure of the fluid, T the

temperature and W the concentration. ρ0 = ρ(T0, p0, 0) is a reference density;

T0 and p0 are respectively the reference temperature and the reference pressure.

This expression is used in engineering science see for instance [9].

ii- The porosity ε of the medium can be given by many laws. We can quote

[12]

1. The Garner law(1958) given by

ε =
εs − εr

1 + (αh)β
+ εr for h ≤ 0

ε = εs for h > 0
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2. The Brooks and Correy law (1964) where

ε = (εs − εr)(
h

h0
)β + εr for h ≤ hl

ε = a.h5 + bh4 + εs for hl < h ≤ 0

ε = εs for h > 0

3. The Van Genuchten law (1980) where

ε = (εs − εr)(1 + (αh)β)τ + εr for h ≤ 0

ε = εs for h > 0

with τ = 1− 1/β.

h is the pressure measured relatively at the atmospheric pressure and expressed

in columns of water.

To fix the idea we will use the Van Genuchten law for our model.

Solving these equations in the porous medium is very difficult. To overcome

these difficulties, we do the following hypothesis to get some simplification.

• H-4 ρs is a constant.

Replacing q by its expression in the first equation of (3) we obtain the

expansion of the divergence

∂

∂t
ε− div(

K

µ
∇p)− ρsgdiv(

K

µ
e3) = 0 in ]0, 1[×Ω (4)

Replacing q and J by their expressions in the second equation (3) and

after simplifications we have

∂

∂t
(εW )−div(W

K

µ
∇p)−ρsgdiv(

K

µ
We3)−div(D∇W ) = 0 in ]0, 1[×Ω

(5)
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• H-5 The hydraulic conductivity tensor is a constant positive:

(K
µ
= βI3, β > 0) and D is a constant positive (D = aI3, a > 0.)

Using the hypothesis (H-5) the equations (4) and (5) become respectively

∂ε

∂t
−
K

µ
∆p = 0 in ]0, 1[×Ω (6)

and

∂

∂t
(εW )−

K

µ
div(W∇p)− ρsg

K

µ

∂W

∂z
− a∆W = 0 in ]0, 1[×Ω (7)

Using the equation (6), the equation (7) becomes

ε
∂

∂t
W −

K

µ
∇W∇p− ρsg

K

µ

∂W

∂z
− a∆W = 0 in ]0, 1[×Ω (8)

To the equations (6) and (8) we are going to add boundaries conditions

adapted to pollution in porous medium. We obtain finally some bound-

aries and initial value problems given by







∂ε
∂t

− β∆p = 0 in ]0, 1[×Ω

ε(0, x) = ε0 in Ω

ε = ε1 on ]0, 1[×∂Ω \ Γ1

ε = εs on ]0, 1[×Γ1

(9)

and






ε∂W
∂t

− k
µ
∇W∇p− k

µ
ρsg

∂W
∂z

−D∆W = 0 in ]0, 1[×Ω
∂W
∂n

= 0 on ]0, 1[×∂Ω\Γ1

W = V on ]0, 1[×Γ1

W (0, x) = W0 in Ω

(10)

where Γ1 ⊂ ∂Ω

• H-6 The evolution is isotherm.

Let us recall that by hypothesis (H-4) ρs is constant and is given by the

expression

ρs = ρ0 exp[βT (T − T0) + βp(p− p0) + γW ]
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Using hypothesis (H-4) we can find a relation between p the pressure and W

the concentration:

log
ρs
ρ0

= βp(p− p0) + γW.

then

p = p0 +
1

βp
[log

ρs
ρ0

− γW ]

We deduce

∇p = −
γ

βp
∇W, and ∆p = −

γ

βp
∆W

Remark 3. In the particulary case of permanent evolution, applying the hy-

pothesis (H-4)-(H-6) and replacing ∇p by its value in (9) and (10) we obtain:







−∆p = 0 in Ω1

p =
[(

ε1−εr

εs−εr
)−

1
m−1]

1
n

α
on ∂Ω \ Γ1

p = 0 on Γ1

(11)

and 





β|∇W |2 − βρsg
∂W
∂z

− D0

ρ0
∆W = 0 in Ω

∂W
∂n

= V on ∂Ω\Γ1

W = 0 on Γ1

(12)

Here, the boundary condition of (11) is obtained with the Van Genuchten law.

This case was studied in [5].

In the follows, we will focus our effort on the two following cases:

1. the ε 6= cte and ∂ε(t,x)
∂t

6= 0

2. and the case ε(t, x) = ε0(x) and ∃ α0 > 0 : ε0(x) > α0, ∀x ∈ Ω then
∂ε(t,x)

∂t
= 0.

In the second case, it follows from the first equation of (9) that ∆p =

0 ⇒ ∆W = 0 and the system (9) writes ∆W = 0 with adequate boundaries

conditions.

The second equation of (10) becomes

ε0
∂W

∂t
+

κγ

µβp
|∇W |2 −

κ

µ
ρ0g

∂W

∂z
= 0
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We can combine furthermore the systems (10) and (9), and we get







ε0
∂W
∂t

+ κγ

µβp

|∇W |2 − κ
µ
ρ0g

∂W
∂z

+∆W = 0 ]0, 1[×Ω
∂W
∂ν

(0, x) = V0(x) ]0, 1[×∂Ω\Γ1

W (t, x) = 0 ]0, 1[×Γ1

W (0, x) = W (x) Ω

(13)

Without losing of generality in the arguments, we suppose that ∂W
∂z

= 0. As

∆W = 0, we can add to the first equation of the above system ∆W and the

system (13) writes







∂W
∂t

+ κγ

ε0µβp

|∇W |2 + D
ε0
∆W = 0 ]0, 1[×Ω

∂W
∂ν

(0, x) = V0(x) ]0, 1[×∂Ω\Γ1

W (t, x) = 0 ]0, 1[×Γ1

W (0, x) = W (x) Ω

(14)

In the first case, replacing ∆p by − γ

βp

∆W , the system (9) writes







∂ε
∂t

+ βγ

βp

∆W = 0 in ]0, 1[×Ω

ε(0, x) = ε0 in Ω

ε = ε1 on ]0, 1[×∂Ω \ Γ1

ε = εs on ]0, 1[×Γ1

(15)

In order to solve (10), we suppose that there exists, α0 > 0 such that ∀ ε(t, x) ∈

]0, 1[×Ω; ε(t, x) ≥ α0 > 0 and dividing the first equation of (10) by ε(t, x), it

writes
∂W

∂t
=

κγ

µβp

1

ε
|∇W |2 −

D

ε
∆W = 0 (16)

Setting $ = κγ

µβp

1
ε
, (14) writes







∂W
∂t

+$(|∇W |2 −D∆W ) = 0 ]0, 1[×Ω
∂W
∂ν

(x, 0) = V0 ]0, 1[×∂Ω\Γ1

W (x, t) = 0 ]0, 1[×Γ1

W (x, 0) = W (x) Ω

(17)
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3 Well posedness of the non linear problem

We give here a mathematical framework which allows us to solve non linear

model. The same technique is used in [5, 10] in the stationary case.

Proposition 1. LetW (t, x) be the solution of (17), setting u(t, x) := φ(W (t, x)),

then u(x, t) is the solution of the following partial differential equation,







∂u(t,x)
∂t

− D
ε
∆u(t, x) = 0 in ]0, 1[×Ω

u(0, x) = u0(x) on Ω
∂u(t,x)

∂ν
= u1(t, x) on ]0, 1[×∂Ω

(18)

if ψ(x) is a solution of the following ordinary differential equation.

φ′′(s)

φ′(s)
= −

ε f(t, x)

D
(19)

Proof. Let u(t, x) = φ(W (t, x)), then

∂u

∂t
= φ′(W )

∂W

∂t
, ∇u = φ′(W )∇W, ∆u = φ′′(W )|∇W |2 + φ′(W )∆W.

∂u

∂t
= φ′(W )

∂W

∂t
= −φ′(W )

[

f(t, x)|∇W |2 −
D

ε
∆W

]

∂u

∂t
= −φ′(W )f(t, x)|∇W |2 +

D

ε
φ′(W )∆W

∂u

∂t
= −φ′(W )f(t, x)|∇W |2 +

D

ε
∆u−

D

ε
φ′′(W )|∇W |2

⇐⇒
∂u

∂t
−
D

ε
∆u = −|∇W |2

[

φ′(W )f(t, x) +
D

ε
φ′′(W )

]

It follows that ∂u
∂t

− D
ε
∆u = 0 since φ solves the ordinary differential equation

φ′(W )f(t, x) +
D

ε
φ′′(W ) = 0 (20)

In order to compute φ, let us suppose that the integral

∫ s

0

εf(t, s)

D
dσ <∞. ∀ t ∈ [0, 1], ∀s > 0

and we set

Ks(t, x) =

∫ s

0

εf(t, x)

D
dσ = s

εf(t, x)

D
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(20) implies

∫ s

0

φ′′(σ)

φ′(σ)
ds = ln |φ′(σ)|

⌋s

0

= ln
φ′(s)

φ′(0)
= −Ks(t, x) (21)

It follows that φ′(s) = αe−Ks(t,x) where α = ±φ′(0).

∫ W

0

φ′(s)ds = α

∫ W

0

e−Ks(t,x)ds ⇒ φ(W )− φ(0) = α

∫ W

0

e−Ks(t,x)ds

Conversely, if φ is in the form (21) and u(t, x) the solution of (18), the function

W (t, x) = φ−1(u(t, x)) is solution of (17), see [5] for details.

4 Topological optimization for the non perma-

nent problem

For all % ≥ 0, we set Ω% = Ω\ω% where ω% = x0+ %ω, ω ∈ R
n in a reference

domain and Q% =]0, 1[×Ω%. The interior boundary of Q% is noted Σ%.

The topological optimization problem consists to minimize the function

J(u) =

∫

Q

|W%(x, t)−Wd(x, t)|
2dx (22)

where W% be solution of the problem in the perturbed domain: W% solves







∂W%

∂t
+ |∇W%|

2 + λ∆W% = 0 Q%

∆W% = 0 Q%

∂W%

∂ν
= 0 ]0, 1[×∂Ω\Γ1

W%(0, x) = V0(x) Ω

W% = 0 Σ%

W%(0, x) = W0(x) Ω

(23)

and Wd(t, x) is a target function.

In order to get a linearized problem (23), let us consider the same change
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of variable as in the above section, u% = φ(W%). The system (23) becomes







∂u%

∂t
−∆u% = 0 in Q%

∂u%(t,x)

∂ν
= 0 on ]0, 1[×∂Ω\Γ1

u%(0, x) = u0(x) on Γ1

u%(t, x) = 0 on Σ%

u%(0, x) = u1(x) in Ω

. (24)

Then the topological optimization problem consists now to get the asymptotic

expansion of the functional

J%(u%) =

∫

Ω

|φ−1(u%(t, x)− φ−1(ud(t, x)|dx (25)

where u% = φ(W%) is the solution of (24) and ud = φ(W ).

The result which gives the existence, the uniqueness and the regularity

of u% is standard partial differential equations theory, for the proof, see for

instance [1] and [3].

Theorem 4.1. Let u0(x) ∈ L2(Ω) and u1(x) ∈ L2(Ω), then there exists a

unique solution u%(t, x) of (24) and:

u% ∈ C([0,∞[, L2(Ω%))∩C([0,∞[;H2(Ω%)∩H
1
0 (Ω%))∩C1(]0,∞[, L2(Ω%)). (26)

More ever,

u% ∈ L2(0,∞;H1
0 ) ∩ C(Ω% × [δ,∞[), ∀ δ > 0 (27)

and

1

2
‖u%(1)‖

2
L2(Ω%)

+

∫ 1

0

‖∇u%(t)‖
2
L2(Ω%)

= ‖u0‖
2
L2(Ω%)

+ ‖u1‖
2
L2(Ω%)

. (28)

And the associated problem posed on the non perturbed domain has a unique

solution u which satisfies:

u ∈ C([0,∞[, L2(Ω)) ∩ C([0,∞[;H2(Ω) ∩H1
0 (Ω)) ∩ C1(]0,∞[, L2(Ω)). (29)

More ever,

u ∈ L2(0,∞;H1
0 ) ∩ C(Ω× [δ,∞[), ∀ δ > 0 (30)

and
1

2
‖u(1)‖2L2(Ω) +

∫ 1

0

‖∇u(t)‖2L2(Ω) = ‖u0‖
2
L2(Ω) + ‖u1‖

2
L2(Ω). (31)
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In order to get the topological derivative of (22) we have to prove the

following result.

Theorem 4.2. Let u% be solution of (24) and u a solution of the associated

problem posed on the non perturbed domain, then there exists a function

f(%) > 0, lim%→0 = 0 such that

‖u%(t)− u(t)‖L2(Ω) = o(f(%)) (32)

Proof. Without lost the generality, we suppose that Γs = ∅. Let u%(t, x) and

u(t, x) be solution of







ut(t, x)−∆u(t, x) = 0 in ]0, 1[×Ω

u(t, x) = 0 on ]0, 1[×∂Ω\Γ1

u(0, x) = u0(x) on Ω
∂u(0,x)

∂ν
= u1(x) in Ω×

(33)







∂u%(t,x)

∂t
−∆u% = 0 in Q%

∂u%(t,x)

∂ν
= 0 on ]0, 1[×∂Ω\Γ1

u%(0, x) = u0(x) on ×Ω

u%(t, x) = 0 on Σ%

u%(0, x) = u1(x) in Ω

(34)

In order to prove the theorem, we will use homogenization method.

Let

A%(x) = χ%
Ω%
(x) =

{

1 if x ∈ Ω\ω%

0 if x ∈ ω%

It is evident if % 7−→ 0, A% −→ A0 = IΩ(x), the systems (33) and (34) write







ut(t, x)− div(A0(x)∇u(t, x)) = 0 in ]0, 1[×Ω

u(0, x) = u0(x) on Ω
∂u(0,x)

∂ν
= u1(x) in Ω

(35)

which variational formulation is






Find u ∈ W such that
〈

∂u(t)
∂t
, v
〉

H−1(Ω),H1

0
(Ω)

+
∫

Ω
A0(x)∇u(t, x)∇v(x)dx = 0

inD′(Ω), ∀v ∈ H1
0 (Ω)

∂u(0,x)
∂ν

= u1(x), u(0, x) = u0(x)

(36)
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∂u%(t,x)

∂t
− div(A%(x)∇u%) = 0 in Q%

u%(0, x) = u0(x) on Ω

u%(t, x) = 0 on Σ%

u%(0, x) = u1(x) in ×Ω

(37)

which variational formulation is






Find u% ∈ W such that
〈

∂u%(t)

∂t
, v
〉

H−1(Ω),H1

0
(Ω)

+
∫

Ω
A%(x)∇u%(t, x)∇v(x)dx = 0

inD′(Ω), ∀v ∈ H1
0 (Ω)

∂u%(0,x)

∂ν
= u1(x), u%(0, x) = u0(x)

(38)

Then we use the result below to conclude

Theorem 4.3 (Theorem 11.4 of [3]). Let u% be the solution of (36) and A% be

defined as above, then the following convergence hold
{

i) u% ⇀ u weakly ∈ L2(Ω,

ii) A%∇u% ⇀ A0∇u weakly ∈ (L2(Q))n
(39)

where u is the solution of (35) and f(%) is given by:

Boundary condition in the hole f(%) g(x, t)

Neumann 2D π% −2∇u(x, t).∇v0(x, t)

Neumann 3D 4
3
π%3 −3

2
∇u(x, t)∇v0(x, t)

Dirichlet 2D −2π
log(%)

u(x, t)v0(x, t)

Dirichlet 3D 4π% u(x, t)v0(x, t)

4.1 Main Result

In this subsection, we use topological optimization tools in order to get the

asymptotic expansion of the cost function J%(u%(x, t)) which is the main result

of this section. But we will not focus on the details of theses tools. The reader

interested to this tools can refer to [7],[5].

Theorem 4.4. Let j(%) = J%(u%) be given by (25), where u%(x, t) is solution of

(24). Let v0 be solution of the adjoint problem which weak formulation writes

a%(v0, ξ) = −DJ(u)ξ, ∀ ξ ∈ V
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where DJ is the derivative of J which respect J and a(., .) be the weak formu-

lation associated to (13). The J has the following asymptotic expansion

J(%) = J(0) + f(%)(δa(u, v0) + δJ(v0)) + o(f(%))

4.1.1 Variation of the cost function

Proposition 2. Let J%(u%(x, t)) the functional defined by (25), the J admits

the following development:

J%(u%)− J(u) = 2

∫

Q

〈u− u%, ud〉dx+ f(%)δJ + o(f(%)) (40)

Proof.

J%(u%)− J(u) =

∫

Q%

|u% − ud|
2dx−

∫

Q

|u− ud||
2dx

=

∫

Q

[
|u% − ud|

2 − |u− ud|
2
]
dx−

∫

Σ%

|u− ud|
2dγ

=

∫

Q

|u%|
2dx

︸ ︷︷ ︸

E%(u%)

−

∫

Q

|u|2dx

︸ ︷︷ ︸

E(u)

−2

∫

Q

〈u− u%, ud〉dx

−

∫

Σ%

|u− ud|
2dγ

The proof of (40) reduces to prove that ‖E%(u%)−E0(u)‖ = o(f(%)), because,

it is well know that
∫

Σ%

|u − ud|
2dγ = o(f(%)), see [11]. Then we conclude by

using the following result, which proof can be found in [3].

Proposition 3. Let E(u%) and E(u) be the energies associated to the systems

(37) and (39), then the following estimate holds

‖E%(u%)− E0(u)‖V = o(f(%))
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5 Numerical Results

In the numerical results, we set ε = 1, θ(x) = 1 so that,

φ′(x) = e−xf(t,x) =⇒ ψ(t, x) = −
1

f(t, x)
e−xf(t,x)

Thus, we solve numerically







∂u(t,x)
∂t

− D
ε
∆u(t, x) = 0 in]0, 1[×Ω

∂u(0,x)
∂ν

= u0(x) inΩ

u(0, x) = u1(x) inΩ

(41)

It follows that

W (t, x) = φ−1(u(t, x)) = −
1

f(t, x)
log(−u(t, x)f(t, x)) (42)

Remark 4. As
∫

Σ%

|u − ud|
2dγ = o(f(%)), il follows that δJ = 0. When ω =

B(0, 1), δa(u, v) = 2πu(t, x)v0(t, x), il follows that the topological derivative is

given by

g(t, x0) = 2πu(t, x0)v0(t, x0); ∀ (t, x0) ∈ (0, 1)× Ω.
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Example 1: here, we impose homogeneous Dirichlet boundary condition

(u(0, x) = 0 on ∂Ω)

Figure 2: Left: Left: u(x, t) , Right: W (x, t)

Figure 3: Left: u(x, t) Adjoint state, Right: Topological derivative

Example 2: here, we impose non homogeneous Dirichlet boundary

condition (u(0, x) = 1 on ∂Ω)

Figure 4: Left: u(x, t) , Right: W (x, t)

Figure 5: Left: u(x, t) Adjoint state, Right: Topological derivative
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371-402.

[3] D. Cioranescu and P. Donato, An Introduction to Homogenizetion, Oxford

University Press, 1997.

[4] L.C. Evans, Partial differential equations, 19, A.M.S., 2002.

[5] I. Faye, A. Sy and D. Seck, Topological Optimization and pollution in

porous media, Mathematical Modeling, Simulation, Visialization and e-

Learning, Springer-Verlag Berlin Heidelberg, (2008), 209-237.

[6] S. Garreau, Ph. Guillaume, M. Masmoudi, The topological asymptotic for

PDE systems: the elastic case, Control and Optimization, SIAM, 39(6),

(2001), 1756-1778.

[7] M. Masmoudi, The topological asymptotic, Computational Methods for

Control Applications, H. Kawarada and J. Periaux, eds, GAKUTO Inter-

nat. Ser. Math. Sci. Appli. Gakkotōsho, Tokyo, 2002.
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