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Abstract

Here, we consider a class of optimal control problems (OCP) contain-

ing nonlinear dynamical systems with the quadratic functionals of state

variables. The major part of our technique is based upon linear com-

bination property of intervals (LCPI) such that using this property the

nonlinear dynamical system is converted to a linear one. And, the ma-

jor difference of our approach from a large number of direct approaches

for solving OCPs is that we finally solve a convex (linear or quadratic)

programming problem which its optimal solution is global. We also ex-

tend our technique to a class of optimal control problems governed by

differential inclusions (DI). The proposed idea is illustrated by numer-

ical examples. Moreover, a comparison is made with a discretization

method.
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1 Introduction

Although, many approaches have been developed and proposed for solving

optimal control problems (OCP) (see [1]-[4], [6], [7] and references therein),

modification of the existing methods and development of new techniques should

yet be explored to obtain accurate solutions successfully.

The methods to numerical solutions of optimal control problems may be

divided into two major classes: the indirect methods and the direct methods.

The indirect methods are based on the Pontryagin Maximum Principle (PMP)

and require the numerical solution of boundary value problems that result

from the necessary conditions of optimal control. For many practical optimal

control problems, these boundary value problems are quite difficult to solve.

In fact, the manner in which PMP is used differs so significantly from one type

of problem to another that no standard solution procedure can be devised.

Therefore, we must use direct computational algorithms such as [4], [6], [7] to

solve OCPs.

However direct approaches are more easy to handle and eliminate the re-

quirement of solving a two point boundary value problem (2PBVP) in contrast

to indirect approaches, they suffer from this fact that their solutions may not

be global, because these approaches finally solve a Nonlinear Programming

Problem (NLP), which for any initial point, they give different optimal (local)

solution or even may have not global solutions.

Thus, we consider a general class of nonlinear dynamical systems that can

be changed into a linear one together with a quadratic functional of state

variables in the following form

Minimize

∫ tf

t0

(xT (t)Q(t)x(t) + cT (t)x(t))dt (1)

Subject to

ẋ(t) = A(t)x(t) + h(t, u(t)), t ∈ [to, tf ], u(.) ∈ U, (2)

with the boundary conditions x(t0) = α and x(tf ) = η.



Emran Tohidi and Mohammad Hadi Noori Skandari 147

It is assumed that A(t), Q(t) ∈ Rn×n and c(.), α, η ∈ Rn are known,

whereas x(t) ∈ Rn and u(t) ∈ Rm are the unknown state and control variables

respectively.

We although suppose that U is a compact and connected subset of Rm and

h : [t0, tf ]×U −→ Rn is a smooth or non-smooth continuous function. More-

over, there exists a pair of state and control variables (x(t), u(t)) such that

satisfies (2) and boundary conditions x(t0) = α and x(tf ) = η and Q(t) is

a positive definite matrix. Here, we use the linear combination property of in-

tervals (LCPI) to convert the nonlinear dynamical system (2) to an equivalent

linear system. After this step, the control u(t) is replaced by the associated con-

trol λ(t). The new optimal control problem with this linear dynamical system

is transformed to a discrete-time problem that could be solved by quadratic

programming methods [5].

This paper is organized as follows. Section 2, transforms the nonlinear

function h(t, u(t)) to a corresponding function that is linear with respect to

the associated control variable. In Section 3, the new problem is converted

to a discrete-time problem via discretization. In Section 4, we extend our ap-

proach to a general class of optimal control problems governed by differential

inclusions (DI). In Section 5, numerical examples are presented to illustrate

the effectiveness of the proposed method. In the latter section, we show that

our strategy acquire better solutions, that attained in fewer time, than a dis-

cretization method [1] through several simplistic examples, which comparison

of the solutions is included in the first two examples. Finally conclusions are

given in Section 6.

2 Linearization of the Dynamical System

In this section, we use LCPI for changing the nonlinear dynamical system

(2) to a linear one. The LCPI states that every uniform continuous function

with a compact and connected domain can be written as a convex linear com-

bination of its maximum and minimum. In other words, if µ and ν are the

maximum and minimum of the uniform continuous function h(x), one can

write

h(x) = λµ+ (1− λ)ν = h(λ), with 0 ≤ λ ≤ 1,

where µ = Maxx{h(x) : x ∈ D}, ν = Minx{h(x) : x ∈ D} and D is a



148 A New Approach for a Class of Nonlinear Optimal Control...

compact and connected set. Here, for using the above-mentioned property

(i.e., LCPI) we need to the following theorems.

Theorem 2.1. Let hi : [t0, tf ] × U −→ R for i = 1, 2, . . . , n be a con-

tinuous function where U is a compact and connected subset of Rm, then for

any arbitrary (but fixed) t ∈ [t0, tf ] the set {hi(t, u(t)) : u(t) ∈ U} is a closed

interval in R.

Proof. Assume that t ∈ [t0, tf ] be given. Let ψi(u) = hi(t, u(t)) for i =

0, 1, . . . , n. Obviously ψi(u) is a continuous function on U. Since continuous

functions preserve compactness and connectedness properties, {ψi(u) : u(t) ∈
U} is compact and connected in R. Therefore {hi(t, u(t)) : u(t) ∈ U} is a

closed interval in R.

Now, for any t ∈ [t0, tf ] suppose that the lower and upper bounds of

the closed interval {hi(t, u(t)) : u(t) ∈ U} are gi(t) and wi(t), respectively.

Thus, for i = 0, 1, . . . , n

gi(t) ≤ hi(t, u(t)) ≤ wi(t), t ∈ [t0, tf ]. (3)

In other words

gi(t) = Minu{hi(t, u(t)) : u ∈ U}, t ∈ [t0, tf ], (4)

wi(t) = Maxu{hi(t, u(t)) : u ∈ U}, t ∈ [t0, tf ]. (5)

Theorem 2.2. Let functions gi(t) and wi(t) for i = 0, 1, . . . , n be defined

by relations (4) and (5). Then they are uniformly continuous on t ∈ [t0, tf ].

Proof. We will show that gi(t) for i = 0, 1, . . . , n is uniformly continuous.

It is sufficient to show that for any given ε > 0, there exists δ > 0 such that if

s1 ∈ Nδ(s2) then |gi(s1)−gi(s2)| < ε, where Nδ(z) is a δ-neighborhood of z.

Since any continuous function on a compact domain is uniformly continuous,

The function hi(t, u(t)) on the compact set [t0, tf ] × U is uniformly contin-

uous, i.e., for any ε > 0, there exists δ > 0 such that if (s1, u) ∈ Nδ(s2, u),

then |hi(s1, u)− hi(s2, u)| < ε. Thus hi(s1, u) < hi(s2, u) + ε.

In addition, by (4), gi(s1) < hi(s1, u) and so, gi(s1) < hi(s2, u) + ε.

Now, by taking infimum on the right hand side of the latter inequality gi(s1) <

gi(s2) + ε. By a similar argument we have also gi(s2) − gi(s1) < ε. Thus

|gi(s1) − gi(s2)| < ε. The proof of uniformly continuity of wi(t) for i =

0, 1, 2, . . . is similar.
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By linear combination property of intervals and relations (4)-(5), for any

t ∈ [t0, tf ]

hi(t, u(t)) = βi(t)λi(t) + gi(t), λi(t) ∈ [0, 1] (6)

where βi(t) = wi(t) − gi(t) for i = 0, 1, 2, . . . , n. Thus, we transform problem

(1)-(2) by relations (3), (4) and (5) to the following problem.

Minimize

∫ tf

t0

(xT (t)Q(t)x(t) + cT (t)x(t))dt (7)

Subject to


ẋk(t) = (

∑n
r=1 akr(t)xr(t)) + βk(t)λk(t) + gk(t), t ∈ [t0, tf ]

0 ≤ λk(t) ≤ 1, k = 1, 2, . . . , n, t ∈ [t0, tf ]

x(t0) = α and x(tf ) = η

where akr(t) is the kth row and rth column component of matrix A(t). Note

that in the problem (7), which is a linear quadratic optimal control problem,

λ(t) = (λ1(t), λ2(t), . . . , λn(t))T is the associated control vector. Next section,

converts the latter problem to a corresponding discrete-time problem.

3 Discrete-time Problem

Now, discretization method enables us transforming continuous problem

(7) to a corresponding discrete form. Consider equidistance points t0 = s0 <

s1 < s2 < · · · < sN = tf on [t0, tf ] which defined as sj = t0 + jδ for

all j = 0, 1, . . . , N with step-length δ =
tf−t0
N

where N is a given large

number. We use the trapezoidal approximation in numerical integration and

the following approximations to change problem (7) to a corresponding discrete

form:

ẋk(sj) ≈
xk(sj+1)− xk(sj)

δ
, and

ẋk(sN) ≈ xk(sN)− xk(sN−1)
δ

, for k = 1, 2, . . . , n, and j = 1, 2, . . . , N − 1.

Thus we have the following discrete-time problem with unknown variables xkj

and λkj for k = 1, 2, . . . , n and j = 0, 1, . . . , N − 1.

Minimize C +
N−1∑
j=1

n∑
k=1

(ckjxkj + (
n∑
i=1

Qikjxkjxij)) (8)

Subject to
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xk,j+1 − (1 + δakkj)xkj − (

∑n
r=1,r 6=k δakrjxrj)− δβkjλkj = δgkj, (0 ≤ j ≤ N − 1)

(1− δakkN)xkN − xk,N−1 − (
∑n

r=1,r 6=k δakrNxrN)− δβkNλkN = δgkN

0 ≤ λkj ≤ 1, xk0 = αk, xkN = ηk, for j = 0, 1, . . . , N, k = 1, 2, . . . , n

where Qikj = Qik(sj), xkj = xk(sj), ckj = ck(sj), akrj = akr(sj), λkj =

λk(sj), gkj = gk(sj), βkj = βk(sj), for all j = 0, 1, . . . , N, and k = 1, 2, . . . , n

while C is a constant.

By solving problem (8), which is a quadratic programming problem, we

are able to obtain optimal solutions λ∗kj and x∗kj for all j = 1, 2, . . . , N and

k = 1, 2, . . . , n. Note that, for evaluating the control variable u∗(t), we must

use the following system

h(t, u∗(t)) = β(t)λ∗(t) + g(t) (9)

4 Extend to Optimal Control Problems Gov-

erned by Differential Inclusions

In this section, we apply our approach for solving a class of continuous-time

problems involving differential inclusion constraints which are as follow

Minimize

∫ tf

t0

(xT (t)Q(t)x(t) + cT (t)x(t))dt (10)

Subject to

ẋ(t) ∈ H(t), t ∈ [t0, tf ], (x(t0), x(tf )) ∈ S

where H(t) is a set of continuous functions on [t0, tf ] and S is a set which

containing boundary points of state variable x(.). By the approach of this pa-

per, we can convert the problem (10) to an equivalent quadratic programming

(QP) problem. Here we assume that

H(t) = {h(t, u(t)) : u(t) ∈ U}, t ∈ [t0, tf ], (11)

where U ⊂ Rm is a compact set and h(t) = (h1(t), h2(t), . . . , hn(t))T is a

continuous function on [t0, tf ] × U. By attention to the linearization idea of

Section 2, the problem (10) is equivalent to the following problem

Minimize

∫ tf

t0

(xT (t)Q(t)x(t) + cT (t)x(t))dt (12)
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Subject to{
ẋk(t) = λk(t)βk(t) + gk(t), 0 ≤ λk(t) ≤ 1, (x(t0), x(tf )) ∈ S

for all t ∈ [t0, tf ] and k = 1, 2, . . . , n

where βi(t) = wi(t)− gi(t) for i = 1, 2, . . . , n and functions gi(t) and wi(t)

satisfy the relations (4) and (5). Now by the discretization method of Section

3, we obtain the following problem for approximating problem (10)

Minimize C +
N−1∑
j=1

n∑
k=1

(ckjxkj + (
n∑
i=1

Qikjxkjxij)) (13)

Subject to
xk,j+1 − (1 + δakkj)xkj − δβkjλkj = δgkj, (0 ≤ j ≤ N − 1)

(1− δakkN)xkN − xk,N−1 − δβkNλkN = δgkN

0 ≤ λkj ≤ 1, xk0 = αk, xkN = ηk, (xk0, xkN) ∈ S
for j = 0, 1, . . . , N, and k = 1, 2, . . . , n.

Again, by solving problem (13), which is a quadratic programming (QP)

problem, we are able to obtain optimal solutions x∗kj and λ∗kj for all j =

1, 2, . . . , N and k = 1, 2, . . . , n. Note that, for evaluating the optimal control

variable u∗(t), we can use the system (9).

5 Numerical Examples

Here, we use our approach to obtain approximate optimal solutions of the

following three nonlinear optimal control problems by solving problems (8)

and/or (13) which is a linear programming (LP) or quadratic programming

(QP) problem in MATLAB software. Moreover, comparisons of our solutions

with the method that argued in [1] are included in Tables 1 and 2 respectively

for two first examples.

Example 5.1. Consider the following nonlinear optimal control problem

Minimize J =
1

2

∫ 1

0

(exp(−t)x(t)− 2tx2(t))dt (14)

Subject to{
ẋ(t) = tx(t)− t ln(u(t) + t+ 2), t ∈ [0, 1], u(t) ∈ [−1, 1]

with BV conditions x(0) = 0.9 and x(1) = 0.2.
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Table 1: comparison of J∗ and CPU time between methods of Ex. 5.1

N=100 Our Method Discretization Method [1]

Objective function ( J∗ ) 0.00065 0.00676

CPU Time (sec) 24.090 28.318

By relations (4) and (5),

g(t) = Minu{− ln(u(t) + t+ 2) : u(t) ∈ [−1, 1]} = − ln(t+ 3),

w(t) = Maxu{− ln(u(t) + t+ 2) : u(t) ∈ [−1, 1]} = − ln(t+ 1)

and hence

β(t) = w(t)− g(t) = ln(
t+ 3

t+ 1
), for t ∈ [0, 1].

Let N = 100, then δ = sj = 1
100
, for all j = 0, 1, . . . , 100. We obtain opti-

mal solutions x∗j and λ∗j , j = 0, 1, . . . , 100 of this problem by solving corre-

sponding problem (8), which is illustrated in Figures 1 and 2 respectively. In

addition, the corresponding u∗j for this example is

u∗j = exp(−β(sj)λ
∗
j − g(sj))− sj − 2, j = 0, 1, . . . , 100.

The optimal control u∗j , j = 0, 1, . . . , 100 of problem (8) is shown in Figure

3. Here, The value of optimal solution of objective function is 0.00065.

Example 5.2. Consider the following nonlinear optimal control problem

Minimize J =

∫ 1

0

(| sin(2πt)| − exp(−t))x(t)dt (15)

Subject to{
ẋ(t) = (t5 − t2 + t)x(t)− |u(t)|3 exp(sin(2πt)), t ∈ [0, 1], u(t) ∈ [−1, 1]

with BV conditions x(0) = 0.9 and x(1) = 0.4.

By relations (4) and (5),

g(t) = Minu{−|u(t)|3 exp(sin(2πt) : u(t) ∈ [−1, 1]} = − exp(sin(2πt)),

w(t) = Maxu{−|u(t)|3 exp(sin(2πt) : u(t) ∈ [−1, 1]} = 0

and hence,

β(t) = w(t)− g(t) = exp(sin(2πt)), for t ∈ [0, 1].
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Table 2: comparison of J∗ and CPU time between methods of Ex. 5.2

N=100 Our Method Discretization Method [1]

Objective function (J∗) -0.0434 -0.0261

CPU Time (sec) 0.078 6.680

Let N = 100, then δ = sj = 1
100

for all j = 0, 1, . . . , 100. We obtain optimal

solutions x∗j and λ∗j , j = 0, 1, . . . , 100 of this problem by solving correspond-

ing problem (8) which is illustrated in Figures 4 and 5 respectively. In addition,

the corresponding u∗j for this example is

u∗j = (−(β(sj)λ
∗
j + g(sj)) exp(− sin(2πt)))

1
3 , j = 0, 1, . . . , 100.

The optimal controls u∗j for j = 0, 1, . . . , 100 is shown in Figure 6. Here, The

value of optimal solution of objective function is −0.0435.

Example 5.3. Consider the following optimal control problem governed by

differential inclusion:

Minimize J =

∫ 1

0

sin(3πt)x(t)dt (16)

Subject to{
ẋ(t) ∈ {− tan(π

8
u3(t) + t) : u(t) ∈ [0, 1]} t ∈ [0, 1],

with BV conditions x(0) = 1 and x(1) = 0.

Here,

h(t, u(t)) = − tan(
π

8
u3(t) + t) and c(t) = sin(3πt),

for (t, u(t)) ∈ [0, 1]× [0, 1]. Thus by (4) and (5)

g(t) = Minu{− tan(
π

8
u3(t) + t) : u(t) ∈ [0, 1]} = − tan(

π

8
+ t)

w(t) = Maxu{− tan(
π

8
u3(t) + t) : u(t) ∈ [0, 1]} = − tan(t),

and hence,

β(t) = w(t)− g(t) = tan(
π

8
+ t)− tan(t).

Let N = 100, then δ = sj = 1
100
, for all j = 0, 1, . . . , 100. We obtain

optimal solutions x∗j and λ∗j , j = 0, 1, . . . , 100 of this problem by solving
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corresponding problem (13) which is illustrated in Figures 7 and 8 respectively.

In addition, the corresponding u∗j for this example is

u∗j = (
8

π
(tan−1(−β(sj)λ

∗
j − g(sj))− sj))

1
3 , j = 0, 1, . . . , 100.

The optimal controls u∗j , for j = 0, 1, . . . , 100 is shown in Figure 9. Here,

The value of optimal solution of objective function is 0.0235.

6 Conclusions

In this paper, we proposed a different approach for solving a class of nonlin-

ear optimal control problems which have quadratic functionals and nonlinear

dynamical systems. In our approach, the linear combination property of in-

tervals (LCPI) is used to obtain the new corresponding problem which is a

linear-quadratic optimal control problem. The new problem can be converted

to a QP Problem by a simple discretization method. Also, our approach ex-

tended for solving a class of optimal control problems governed by differential

inclusions (DI). By the approach of this paper we may solve a wide class of

nonlinear optimal control problems.
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