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Synchronous Properties in Quantum Interferences  

Appearing in Simulated Double Path Experiments  
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Abstract 

Double slit experiments play a key role in Quantum Theory in distinct particle and 

wave interactions according to Feynman. In this paper, double path models 

together with variant logic principles are applied to establish a simulation system 

enabling the exhaustive testing of given targets. Using Einstein quanta interaction, 

different quaternion measures are investigated. Under conditions of Symmetry / 

Anti-symmetry and Synchronous / Asynchronous interaction, eight groups of 

statistical results are generated and presented as eight histograms showing the 

distributions. From this set of simulation results, it can be seen that not only is the 

synchronous condition the key factor in generating quantum wave interference 

patterns but also that the asynchronous condition is the key factor in classical 

particle distributions. Sample results are illustrated and explanations are discussed. 
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1  Introduction  
Feynman, having deeply explored the puzzling nature of quantum measurement 

[15,16] emphasized: "The entire mystery of quantum mechanics is in the 

double-slit experiment." This experiment directly illustrates both classical and 

quantum interactive results. Under single and double slit conditions, dual visual 

distributions are shown in particle and wave statistical distributions linked to von 

Neumann’s measurement theory [28]. 

From the 1970s and piloted by CHSH [10], Aspect used experiments to test Bell 

inequalities [3-5]. After 40 years of development, many accurate experiments [26, 

31-32] have been performed successfully worldwide using Laser, NMRI, large 

molecular, quantum coding and quantum communication approaches [1-7, 17-27, 

29-30].  

In this paper, a double path model is established using the Mach-Zehnder 

interferometer. Different approaches of quantum measures, namely those of 

Einstein, CHSH and Aspect are investigated by quaternion structures. Under 

multiple-variable logic functions and variant principles, logic functions can be 

transferred into variant logic expression as variant measures. Under such 

conditions, a variant simulation model is proposed. A given logic function f , can 

be represented as two meta-logic functions f+  and f−   to simulate single and 

double path conditions. N  bits of input vectors are exhausted by 2N
 states for 

measured data, recursive data are organized into eight histograms. Results are 

determined by symmetry/anti-symmetry properties evident in these histograms. 

Results are obtained consistently from this model on synchronous/asynchronous 

conditions. Based on this set of simulation results, synchronous conditions show 

significant relationship linked to interference properties. 
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2  Double Path Model and Their Measures  

2.1 Mach-Zehnder interferometer Model 

The Mach-Zehnder interferometer is the most popular device [4, 22] to support a 

Young double slit experiment. 

Figure 1(a) shows a double path interferometer. An input signal  X  under 

control function f  causes Laser LS to emit the output signal ρ  under BP 

(Bi-polarized filter) operation output as a pair of signals: +ρ  and −ρ . Both 

signals are processed by SW output L
+ρ  and R

−ρ , and then IM to generate output 

signals ( IM( , )L R
+ −ρ ρ . In Figure 1(b), a representation model has been described 

with the same signals being used.  

 

2.2 Emission and Absorption Measures of Quantum Interaction 

Einstein established a model to describe atomic interaction [8, 9, 13, 14] with 

radiation in 1916. For two-state systems, let a system have two energy states: the 

ground state 1E  and the excited state 2E . Let 1N  and  2N  be the average 

numbers of atoms in the ground and excited states respectively. The numbers of 

states are changed from emission state 2E  to 1E  with a rate 21dN
dt

, in the same 

time; the numbers of ground states are determined by absorbed energies from 1E  

to 2E  with a rate 12dN
dt

 respectively. Let 12N  be the number of atoms from 1E  

to 2E  and 21N  be the numbers from 2E  to 1E . In Einstein’s model, a 

measurement quaternion is 1 2 12 21, , ,N N N N .  

CHSH proposed spin measures testing Bell inequalities [4,10]. They applied 

⊥→ +  and ||→−  to establish a measurement quaternion:  

( , ), ( , ), ( , ), ( , )N a b N a b N a b N a b++ +− −+ −− . 
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Experimental testing of Bell inequalities were performed by Aspect [3] in 1982. 

Four parameters are measured: transmission rate tN , reflection rate rN , 

correspondent rate cN  and the total number Nω  in ω  time period. This set of 

measures is a quaternion , , ,t r cN N N Nω . Among these, cN  is a new data type 

not in Einstein and CHSH methods, this parameter could be an extension of 

synchronous/asynchronous time-measurement. 

 

3  Simulation Systems  

3.1 Simulation model  

Using variant principle described in the following subsections, for a N  bit 0-1 

vector X and a given logic function f , all N  bit vectors are exhausted and 

variant measures generate two groups of histograms. This variant simulation 

system is composed of three components: Pre-process, Interaction and 

Post-process as shown in Figure 2. 

 

 

(a) Variant Simulation System 

 

 

(b) Interaction Component 

Figure 2:  Variant Simulation System; (a) Variant simulation system;  
              (b) Interactive Component 
 

In Figure 2(a), three components of the variant simulation model are presented. At 

the pre-process stage, a N  bit 0-1 vector X and a function f  feed in to output 

X u  ρ  
Post-process Interaction Pre-process { }( | )H v fβ

{ }( | )H u fβ

X∀  
v  

f 

ρ+

ρ−

ρ+

ρ−

ρ
u1 ρ−−

v
SW IM BP 
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a signal ρ . After an interactive component process, two groups of signals are 

output: u  for symmetry group and v  for anti-symmetry group. In the 

post-process stage, all N bit vectors are processed by pre-processing and 

interactive components until all of the 2N  data set has been processed to 

transform symmetry and anti-symmetry signals into eight histograms: four for 

symmetry distributions and another four for anti-symmetry distributions.  
In Figure 2(b), only the interaction component is selected, input signal ρ  

processed by BP to generate two signals { },− +ρ ρ . SW output triple signals 

{ },1 ,− − +ρ −ρ ρ  though IM to generate two groups of signals u  and v . 

 

3.2 Variant Principle  

The variant principle is based on n-variable logic functions [33-35]. For any 

n -variables, 1 0... ... ,n ix x x x−=  0 ,i n≤ <  2{0,1}ix B∈ = .  Let a position j  be 

the selected bit 0 j n≤ < , 2jx B∈  be the selected variable. Let output variable 

y  and n -variable function , ( )f y f x= , 2 2, ny B x B∈ ∈ . For all states of x , a 

set ( )S n  composed of the 2N
 states can be divided into two sets: 0 ( )jS n  and 

1 ( )jS n . 

{ }
{ }
{ }

0 2

1 2

0 1

( ) | 0,

( ) | 1,

( ) ( ), ( )

j n
j

j n
j

j j

S n x x x B

S n x x x B

S n S n S n

⎧ = = ∀ ∈
⎪⎪ = = ∀ ∈⎨
⎪

=⎪⎩

 

For a given logic function f , there are input and output pair relationships to 

define four meta-logic functions { }, , , Tf f f f⊥ + − : 
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{ }
{ }
{ }
{ }

0

0

1

1

( ) ( ) | ( ), 0

( ) ( ) | ( ), 1

( ) ( ) | ( ), 0

( ) ( ) | ( ), 1

j

j

j

j
T

f x f x x S n y

f x f x x S n y

f x f x x S n y

f x f x x S n y

⊥

+

−

⎧ = ∈ =
⎪
⎪ = ∈ =⎪
⎨

= ∈ =⎪
⎪

= ∈ =⎪⎩

 

Two logic canonical expressions: AND-OR form is selected by { }( ), ( )Tf x f x+  as  

1y =  items, and OR-AND form is selected from { }( ), ( )f x f x− ⊥  as 0y =  items. 

Considering { }( ), ( )Tf x f x⊥ , jx y=  items, they are invariant themselves.  

To select { }( ), ( )f x f x+ − ; jx y≠  forming variant logic expression.  

Let ( ) | |f x f x f+ −=  be a variant logic expression. Any logic function can be 

expressed as a variant logic form. In | |f x f+ −  structure, f+  selected 1 items 

in 0 ( )jS n  as same as the AND-OR standard expression, and f−  selecting 

relevant parts the same as OR-AND expression 0 items in 1 ( )jS n . For a 

convenient understanding of variant representation, 2-variable logic structures are 

illustrated for its 16 functions shown in Table 1.  

E.g. Checking two functions 3f =  and 12f =  : 

{ }3: 0 3 , 11: = 0 , 2 : 3f f f+ −= = = = =φ φ  

            { }12 : 2 1 , 14 : = 2 , 8 : 1f f f+ −= = = = =φ φ  

 
 

3.3  Variant Measures  

Let Δ  be variant measure function [25, 35].  

, , , T⊥ + −Δ = Δ Δ Δ Δ  
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( ) ( ), ( ), ( ), ( )

( ), ( ), ( ), ( )
T

T

f x f x f x f x f x

f x f x f x f x
⊥ + −

⊥ + −

Δ = Δ Δ Δ Δ

= Δ Δ Δ Δ
 

{ }1, ( ) ( ), , , ,
( )

0, others
if f x f x

f x
⎧ = ∈ ⊥ + − Τ

Δ = ⎨
⎩

α
α

α
 

For any given n-variable state there is one position in ( )f xΔ  to be 1 and the other 

3 positions are 0. 

For any N bit 0-1 vector X; 1 0... ... ,N JX X X X−= 0 ,J N≤ <  J 2 ,X ∈β  2
NX ∈β  

under n -variable function f , n  bit 0-1 output vector Y, 

( ) | | ,Y f X f X f+ −= =  1 J 0... ... ,NY Y Y Y−=  0 J ,N≤ <  j 2 ,Y ∈β  2
NY ∈β .   

For the J -th position be [ ]J
J 2... ... nx X= ∈β   to form J J

J ( ) | | ,Y f x f x f+ −= =  

let N bit positions be cyclic linked. Variant measures of ( )f X  can be 

decomposed  
1

0
: ( ) ( ) , , ,

N
J

T
J

X Y f X f x N N N N
−

⊥ + −
=

Δ = Δ = Δ =∑  

as a quaternion , , , TN N N N⊥ + −  

E.g.  10N = , given f , ( )Y f X= . 

X = 0 1 1 0 0 1 1 1 0 0 

Y = 1 0 1 0 1 0 1 0 1 0 

Δ（X：Y） = + - T ⊥ + - T - + ⊥  

( ) , , , 2,3,3, 2 , 10Tf X N N N N N⊥ + −Δ = = =  

Input and output pairs are 0-1 variables with only four combinations. For any 

given function f , the quantitative relationship of { }, , ,T⊥ + −  is determined 

directly from input/output sequences.  
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3.4  Measurement Equations 

Using variant quaternion, signals are calculated by the following equations. For 

any N bit 0-1 vector X, function f , under Δ  measurement: 

( ) , , , Tf X N N N N⊥ + −Δ = , TN N N N N⊥ + −= + + +  Signal ρ  is defined by 

( ) , , , T
f X
N ⊥ + −

Δ
ρ = = ρ ρ ρ ρ  

       
, 0 1,N

N
α

α αρ = ≤ ρ ≤  { }, , ,Tα∈ ⊥ + −  

Using { },+ −ρ ρ , a pair of signals { },u v  are formulated: 

{ }
{ }

0 1

0 1

, , ,

, , ,

u u u u u u

v v v v v v

+ − β

+ − β

⎧ = =⎪
⎨

= =⎪⎩
 

                        { }0, , ,1β∈ + −  

0

0

1

1

(1 ) / 2 (1 ) / 2

(1 ) / 2

(1 ) / 2

(1 ) / 2

u
v

u
v

u
v

u
v

− +

− +

+ +

+ +

− −

− −

− +

− +

= ρ ⊕ρ⎧
⎪ = −ρ ⊕ +ρ⎪
⎪ = ρ
⎪ = +ρ⎪
⎨ = ρ⎪
⎪ = −ρ
⎪

= ρ +ρ⎪
⎪ = −ρ +ρ⎩

 

Where 0 , 1u vβ β≤ ≤ , { }0, , ,1β∈ + − , ⊕ : Asynchronous addition, +: Synchronous 

addition. 

Using { },u v  signals, each uβ （ βν ）determines a fixed position in relevant 

histogram to make vector X on a position. After completing 2N  data sequences, 

eight symmetry/anti-symmetry histograms of { }( | )H u fβ , { }( )( | )H v fβ , 

{ }0, , ,1β∈ + −  are generated. 
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4  Simulation Results 

The simulation provides a series of output results. In this section, two cases are 

selected: { }12, 13N = , 2, 0n j= = ,   

{ }3, 11, 2f f f+ −= = =   and  { }12, 14, 8f f f+ −= = = . 

These correspond to double path, right path, left path, symmetry and 

non-symmetry conditions respectively. For convenience of comparison, sample 

cases are shown in Figures 3(a-c). In Figure 3(a), representation patterns are 

illustrated. Figure 3(b) represents 3f =  conditions and Figure 3(c) represents 

12f =  conditions respectively. Eight histograms of  ( | ) ( | )H u f H u f+ −=  are 

shown with results represented by symmetric meta-functions in four groups. 

 

5  Analysis of Results 

5.1  Visual Distributions  

In ( | ) ( | )H u f H u f+ −=  conditions, { }1 1( | ), ( | )H u f H v f have significant 

interference patterns different from other conditions. Output results are balanced. 

 

5.2 Particle Statistical Distributions 

For all symmetric or non-symmetric cases under ⊕  asynchronous addition 

operations, relevant values meet 0 00 , , , , , 1u v u v u v− − + +≤ ≤ .  

Checking { }0 0( | ), ( | )H u f H v f series, { }( | ), ( | )H u f H u f+ −  and 

{ }( | ), ( | )H v f H v f+ −  satisfy following equation: 

0

0

( | ) ( | ) ( | )
( | ) ( | ) ( | )

H u f H u f H u f
H v f H v f H v f

− +

− +

= +⎧
⎨ = +⎩

 

The equation is satisfied even for different values of N  and n . 
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5.3 Wave Interference Patterns 

Different interference properties are observed clearly in ( | ) ( | )H u f H u f+ −=  

and ( | ) (1 | )H v f H v f+ −= − conditions. Under  + synchronous addition 

operations, relevant values meet 1 10 , , , , , 1u v u v u v− − + +≤ ≤ .  

An examination of { }1 1( | ), ( | )H u f H v f distributions especially for cases in 

Figure 3(b-c) denoted { }1 1,u v  showed the appearance of particularly 

significant  interferences compared with { }( | ), ( | )H u f H u f+ −  and 

{ }( | ), ( | )H v f H v f+ − . Spectra in different cases illustrate wave interference 

properties. From listed histogram distributions, the following are all satisfied: 

1 0

1 0

( | ) ( | ) ( | ) ( | )
( | ) ( | ) ( | ) ( | )

H u f H u f H u f H u f
H v f H v f H v f H v f

− +

− +

≠ + =⎧
⎨ ≠ + =⎩

 

Single and double peaks are shown in interference patterns as classical double slit 

distributions. 

 

5.4 Quaternion Measures 

It is interesting to see the relationship between the variant quaternion and other 

measures. 

In the variant quaternion, ( ) , , , Tf X N N N N⊥ + −Δ = , TN N N N N⊥ + −= + + + . 

In Einstein's two-state system of interaction 1 2 12 21, , ,N N N N allows the 

following equations to be established: 

1

2

12

21

1 2

T

N N N
N N N

N N
N N

N N N

⊥ +

−

+

−

= +⎧
⎪ = +⎪⎪ =⎨
⎪ =⎪

= +⎪⎩

 



Jeffrey Zheng 83 

From the equations, the measured pair { }21 12,N N  has a 1-1 correspondence 

to{ },N N− + . 

Selecting 1+ → , 0−→ ,  CHSHs , ( , )N a b± ∓  measures meet 

,

,

,

,

( , )
( , )
( , )
( , )

TN a b N
N a b N
N a b N
N a b N

+ +

+ − −

− + +

− − ⊥

→⎧
⎪ →⎪
⎨ →⎪
⎪ →⎩

 

( , , , ) ( , , , )TN N N N N N N N++ +− −+ −− − + ⊥→ , 

Let N N N N N++ +− −+ −−= + + + , CHSH quaternion is a permutation of the variant 

quaternion. 

Aspect's quaternion  ( , , , )t r cN N N Nω  have following corresponding: 

t

r

N N
N N
N N

−

+

→⎧
⎪ →⎨
⎪ →⎩ ω

 

There is no parameter in the variant quaternion for parameter cN . It indicates 

joined action numbers to distinguish single and double paths, corresponding to 

{ }0 0,u v and { }1 1,u v  times. In an actual experiment, this is a significant 

parameter. In a simulated system, the parameter serves as a control coefficient that 

separates two types of measured paths { }0 0,u v  and { }1 1,u v  in the 

integration of comparisons with real experiments. 

 
6  Conclusions 

In an analysis of N  bit 0-1 vector and its exhaustive sequences for variant 

measurement, this system simulates double path interference properties through 

different accurate distributions. Using this model, two groups of parameters 

{ }uβ  and { }vβ  describe left path, right path, double paths for particle and 
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double path for wave with distinguished symmetry and anti-symmetry properties. 

Under synchronous conditions, the double path system provides wave-like 

interference patterns that are not consistent with those that would be anticipated 

using a classical model. 

Compared with the variant quaternion and other quaternion structures, it is helpful 

to understand the possible properties of the uses and limitations of variant 

simulation systems. 

The complexity of n-variable function space has a size of n22 . Whole simulation 

complexity is determined by 2(2 2 )
n NO ×  as ultra exponent productions. How to 

overcome the limitations imposed by such complexity and how best to compare 

and contrast such simulations with real world experimentation will be key issues 

in future work. 
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(a)                                                   (b)             
 

Figure 1: Double Path Model (a) Mach-Zehnder Double Path Model  
            (b) Description Model 
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Table 1. Two Variable Logic Functions and Variable Logic Representation (n=2, j=0) 

f  
No. )2(S

f ∈
 

3 

11 

2 

10 

1 

01 

0 

00 )2(0
0S

f ∈+

 
30 

110 

21 

101 

10 

010 

01 

001 )2(0
1S

f ∈−

 

0 { }∅  0 0 0 0 ∅  1 0 1 0 1,3  

1 { }0  0 0 0 1 0  1 0 1 1 1,3  

2 {}1  0 0 1 0 ∅  1 0 0 0 3  

3 { }0,1  0 0 1 1 0  1 0 0 1 3  

4 { }2  0 1 0 0 2  1 1 1 0 1,3  

5 { }0,2  0 1 0 1 0,2  1 1 1 1 1,3  

6 { }1,2  0 1 1 0 2  1 1 0 0 3  

7 { }0,1,2  0 1 1 1 0,2  1 1 0 1 3  

8 { }3  1 0 0 0 ∅  0 0 1 0 1  

9 { }0,3  1 0 0 1 0  0 0 1 1 1  

10 { }1,3  1 0 1 0 ∅  0 0 0 0 ∅  

11 { }0,1,3  1 0 1 1 0  0 0 0 1 ∅  

12 { }2,3  1 1 0 0 2  0 1 1 0 1  

13 { }0,2,3  1 1 0 1 0,2  0 1 1 1 1  

14 { }1,2,3  1 1 1 0 2  0 1 0 0 ∅  

15 { }0,1,2,3  1 1 1 1 0,2  0 1 0 1 ∅  
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(a) Statistical Histogram Patterns 
 

 

(b) {12,13}N = , 3f = , Histograms of Symmetric Meta Distributions  

N Left Path Right Path Double-Particle Double-Wave Conditions 

12 )|( fuH +  )|( fuH −  )|( fuH 0  )|( fuH 1  

13 )|( fuH +  )|( fuH −  )|( fuH 0  )|( fuH 1  

Symmetric Meta  

Distributions 

)|()|( fuHfuH −+ =  
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(c) {12,13}N = , 12f = , Histograms of Symmetric Meta Distributions  
 

Figure 3:  Results of Symmetric Meta Distributions 

 


