Ivabradine for the Treatment of Heart Failure: A Systematic Review and Meta-Analysis

Hadir Aljohani¹, Hadeel Alkofide² and Hanin Aljohani²

Abstract

Background: Ivabradine has a pure heart rate reduction. However, the use of ivabradine remains limited due to the conflicting evidence of its safety and efficacy. **Purpose:** To determine the efficacy and safety of ivabradine compared to control in subjects with Heart failure (HF).

Data Sources: Medline, Embase, Ovid and the Cochrane Central Register of Controlled Trials from inception through June 2018.

Study Selection: Peer-reviewed, randomized controlled trials of Ivabradine versus control in patients with heart failure with or without low ejection fraction.

Data Extraction: Two investigators independently extracted data from each eligible study and assessed the risk of bias of included studies.

Data Synthesis: Six trials with 17886 patients were included. There was no significant difference among Ivabradine treated group versus control in lowering all-cause mortality, cardiovascular mortality or hospital readmission. Ivabradine had an increase in the mean difference in the percentage of ejection fraction (EF) by 3% as compared with control. Bradycardia, phosphenes and blurred vision were significantly higher with ivabradine by 4 and 5 times as compared with control.

Conclusion: Administration of Ivabradine to adults with HF with or without low EF significantly improved the ejection fraction. However, there was no significant impact on mortality and re-admission rates

Keywords: Ivabradine, heart failure, systematic review, meta-analysis.

¹ Drug Safety Sector, Saudi Food and Drug Authority, Riyadh, Saudi Arabia.

² Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia

Article Info: *Received:* July 19, 2019. *Revised:* August 3, 2019.

Published online: October 15, 2019.

1. Introduction

Heart failure (HF) "represents a complex clinical syndrome, which is characterized by ventricular dysfunction when the heart is unable to pump adequate blood to meet the body's metabolic needs".(1) The percentage of the adult populace who has HF in the developed countries is between 1 to 2 %, within five years of diagnosis 50% of them will die.(2) In the last few years, there has been a considerable advancement in the management of HF. One therapeutic target is heart rate reduction, which is linked to reduced mortality and cardiovascular incidents.

Beta-blockers have been showed an improvement in the survival in subjects with HF and have an effect on lowering the heart rate.(3) However, just 30-35% of patients in clinical practice reach the target therapeutic dose of beta-blockers, as their utilization is limited in subjects with conduction abnormalities, severe left ventricular (LV) dysfunction, and active bronchospasm.(4) Recently, ivabradine, an anti-anginal and anti-ischemic agent, have been introduced in the treatment of HF. "Ivabradine selectively and specifically inhibits the If current in the sino-atrial (SA) node, and provides pure heart rate reduction without altering other cardiovascular parameters." (5)

Studies have shown that ivabradine might improve the management of subjects with HF. However, only a few trials have explored the beneficial impacts of ivabradine in HF, and the results have not been consistent across several clinical outcomes. Also, the safety of ivabradine in subjects with HF remains unclear. So, our goal is to comprehensively evaluate the literature and determine the relative efficacy and safety of the of ivabradine in subjects with HF. Our long-term goal is to gain a better understanding of the role that ivabradine can provide to subjects with HF, especially those not able to tolerate beta-blockers. We propose the following specific aims to evaluate the efficacy of ivabradine compared to control in subjects with HF on objective and patient-reported outcome measures used in HF management and determine the safety of ivabradine compared to control in subjects with HF with or without low ejection fraction.

2. Research Design and Methods section

2.1 Data Sources and Search

A systematic literature search performed in Medline, Embase, Ovid and the Cochrane Central Register of Controlled Trials. We did the search through reference lists of eligible articles and related existing systematic reviews. To identify any unpublished studies, we searched conference proceedings of the American Heart Association/American Stroke Association, American Diabetes Association, European Society of Cardiology Congress, and World Congress of Cardiology. We developed a search strategy that includes keywords appropriate to study design (randomized, controlled trial), the disease of interest (heart failure), and the intervention of interest (Ivabradine). A list of these keywords is available in (Appendix Table 1 available at www.annals.org). Search terms explored and

properly modified according to each database we were using. Searching was limited to humans, but no language restriction was applied. This systematic review was conducted in accordance with the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines.

2.2 Study Selection

Two reviewers were assigned for identified and reviewed all included studies of randomized controlled trials of Ivabradine if they fulfilled the following criteria (Appendix Table 2): comparison of Ivabradine either as monotherapy or add-on therapy to other heart failure treatment with control in patients with heart failure with or without low ejection fraction; at any age and without any dose or follow-up duration restriction; inclusion of at least 1 pre-specified outcome measure. We excluded any non-randomized trials and studies with a significant risk of bias as evaluated by the methods suggested by the Cochrane Collaboration. Our primary outcome was: all- causes mortality, cardiovascular mortality, or hospital admission for new onset or even worsening of heart failure. Secondary outcomes include resting HR from baseline until the end of follow-up, LVEF, and adverse events. Two investigators were independently screen titles and abstracts of the citations for relevant articles by using Abstrackr (Brown University). Also, the same two investigators recovered and rescreen all full-text of relevant articles. Any discrepancies were resolved by consensus.

2.3 Data Extraction and Quality Assessment

Two investigators assigned independently for extraction of data from each eligible study, and any disagreement during data abstraction was recognized and solved consensus. We extracted data on study design and methodology, patient characteristics, interventions, comparators, outcome measures, and adverse events by using a standardized data collection form. The methodological quality of the qualified studies evaluated with" the Cochrane Collaboration's risk-of-bias tool for randomized trials" (Appendix Table 3, available at www.annals.org). Thirteen risk-of-bias items are included in this tool. A decision for the first 7 items (sequence generation, allocation concealment, patients' blinding, caregivers' blinding, outcome assessors' blinding, attrition, and selective outcome reporting) assigned by "low," "high," or "unclear", while the judgment of the remainder (intention-to-treat analysis, baseline balance, co-intervention similarity, compliance, and presence of other biases) assigned by "yes," "no," or "unsure".

After evaluating all risk-of-bias items, to each RCT, we assigned good, fair, or poor as a grade for quality. We considered studies with poor quality if they have one of the following: lack of blinding, differential loss to follow-up, imbalances in the baseline, or lack of a washout period in the crossover studies. Studies that described enough details about the blinding (for example double-blinding and if they used identical capsules) had a low chance of bias while studies with inadequate reporting (such as, reporting of an expression, for example, "double-blind") had an unclear chance of bias. We looked at the extents of withdrawals in each group by using the chi-square test and for a P value, less than 0.1 will be were used to show the differential loss of follow-up.

2.4 Data Synthesis and Analysis

We assessed the treatment effect on binary outcomes by using the risk ratio (RR) with the corresponding 95% confidence intervals (CIs). On the other hand, for continuous outcomes, the difference in mean changes from baseline between ivabradine and control was calculated for each study included. We estimated the summary treatment effects by using random-effects model that is determined by the empirical Bayes method. We calculated a summary RR, and mean difference, between Ivabradine and control, where suitable. We assessed statistical heterogeneity by using Cochran's Q and I2 statistics. Heterogeneity were classified as I2 values Low <25%, moderate 25% to 50%, and high-level >50%.

3. RESULTS

3.1 Literature Search

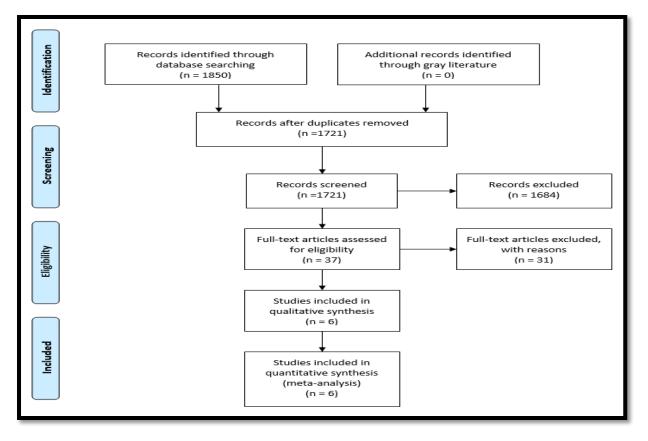


Figure 1: PRISMA flow diagram of evidence search and selection

Figure 1 summarizes our search yield. We screened 1721citations. A total of 37 articles were retrieved for full-text review; of those, 6 RCTs met our inclusion criteria with 17886 patients included in the systematic review and meta-analysis.

3.2 Trial Characteristics

Table 1 summarizes the characteristics of the included RCTs, which were published between 2008 and 2017. Six RCTs met our inclusion criteria. The Six studies (6),(7),(8),(9),(10),(11) included adult patients with mean age between 60 to 73 years. Two studies included heart failure with preserved ejection fraction, and four studies included heart failure patients with reduced ejection fraction, of these two were with coronary artery disease. The main exclusion criteria were all patients with recent myocardial infraction within the previous six months. Overall, 17886 patients were randomly assigned to receive either Ivabradine or control. Beta-blockers, Aspirin, Diuretics, Angiotensin-converting enzyme(ACEI) or Angiotensin II receptor blockers (ARBs) were used as concomitant treatments by all patients in five studies, whereas the sixth study used Abciximab in addition to nitrates, aspirin, clopidogrel, statin and ACEI as concurrent treatment. Mean HR at baseline was between 71bpm and 92 bpm and mean ejection fraction at baseline was between 29% and 69%. We included six RCT, and four RCTs were multicenter. Treatment duration ranged from 7 days to 32 months.

[Tuble	I. Inais chara		-		1 1		
Study, Year	Population	Treatment Groups	Patients, n	Age, y	EF, %	Treatment Duration		
BEAUTIFUL,	CAD EE < 400/	Ivabradine 5479		65.3	32.4	· 24 months		
2008 (6)	CAD, EF<40%	Placebo	5438	65	32.3	24 monuis		
E11- 2000 (7)	STEMI,	Ivabradine	78	61.6	41.3	2 manutha		
Fasullo, 2009 ⁽⁷⁾	EF<50%	Placebo	75	62.1	42.5	2 months		
SHIFT, 2010 ⁽⁸⁾		Ivabradine	3241	60.7	29			
	HF, EF≤35%	Placebo	3264	60.1	29	32 months		
W 1 2012 ⁽⁹⁾		Ivabradine	30	66.5	67			
Kosmala,2013 ⁽⁹⁾	HF,EF ≥50%	Placebo	31	68	69	7 days		
ETHIC-AHF,	HF, EF< 40 %	Ivabradine	33	66.2	29.8	12 months		
2016 (10)	III, LI < 40 %	control	38	67.7	29.9	12 months		
EDIFY,2017 (11)	HF, EF ≥45%	Ivabradine	95	72	60	8 months		
	, <u></u> 070	Placebo	84	73	61			

Table 1: Trials characteristics

3.3 Assessment of Risk of Bias

Six RCTs ⁽⁶⁻¹¹⁾ were included and five RCTs assessed to be high quality. Generation of randomized sequence, allocation concealment and double blinding were reported clearly and intention to treat analysis were used in five trials. There was a co-interventions similarity in all trials.

3.4 Mortality and Cardiovascular End Points

 $Six^{(6-11)}$ and three trials respectively, reported the effect of ivabradine compared with control on mortality and cardiovascular mortality. Ivabradine did not always lower all-cause mortality (summary RR,0.97 [CI, 0.89 to 1.07]; I² =11%) (figure 2) and

cardiovascular mortality (summary RR,1.01 [CI, 0.82 to 1.24]; $I^2 = 71\%$) (*Appendix figure 1*) and four trials reported the effect of ivabradine compared with control on hospital readmission (summary RR,0.84[CI, 0.66 to 1.07]; $I^2 = 73\%$). (figure 3). A mean difference in change from baseline in percentage of ejection fraction (EF) was calculated for five trials, and overall, patients treated with ivabradine had an increase in EF by 3 % as compared with control (summary RR, 3.27 [CI, 2.08 to 4.45]; $I^2 = 26\%$) (figure 4). A mean difference in change from baseline in percentage of heart rate was calculated for four trials, and there was no statistically significant difference between ivabradine and control (summary RR, 0.59 [CI, -0.08 to 1.26]; $I^2 = 93\%$) (*Appendix figure 2*).

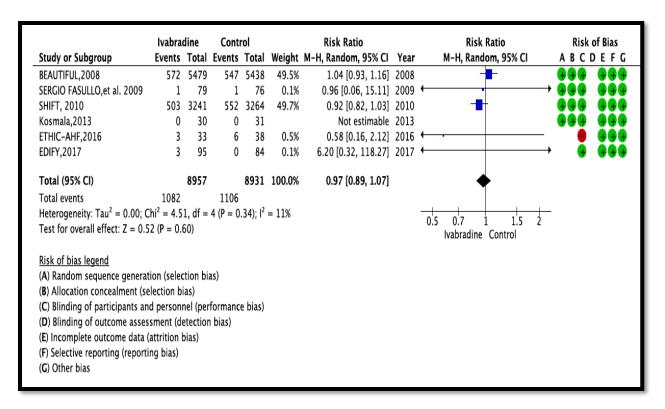
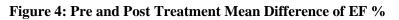



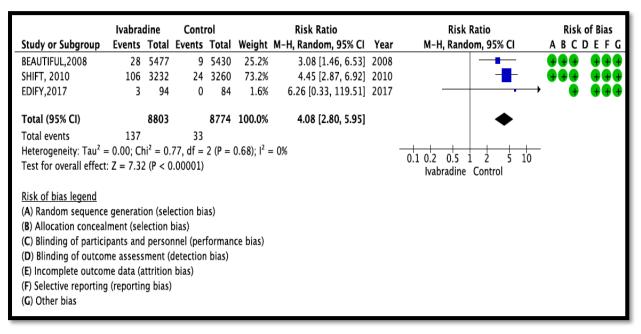
Figure 2: Summary of Relative Risk of Mortality

	Ivabra	dine	Cont	ol		Risk Ratio		Risk Ratio	Risk of Bias		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl	ABCDEFG		
BEAUTIFUL,2008	426	5479	427	5438	45.2%	0.99 [0.87, 1.13]	2008	+			
SERGIO FASULLO, et al. 2009	5	79	12	76	5.2%	0.40 [0.15, 1.08]	2009	(
SHIFT, 2010	514	3241	672	3264	47.3%	0.77 [0.69, 0.85]	2010	+			
ETHIC-AHF,2016	3	33	3	38	2.3%	1.15 [0.25, 5.32]	2016	•	→ 😑 🗣 🗣		
Total (95% CI)		8832		8816	100.0%	0.84 [0.66, 1.07]		•			
Total events	948		1114								
Heterogeneity: Tau ² = 0.03; C	hi² = 11.	19, df :	= 3 (P =	0.01); I	² = 73%			0.5 0.7 1 1.5 2	_		
Test for overall effect: Z = 1.4	1 (P = 0.1)	16)						Ivabradine Control			
Risk of bias legend											
(A) Random sequence generat	ion (selec	tion bi	as)								
(B) Allocation concealment (se	lection bi	as)									
(C) Blinding of participants an	d personi	nel (per	formanc	e bias)							
(D) Blinding of outcome asses	sment (de	etection	ı bias)								
(E) Incomplete outcome data (attrition bias)											
(F) Selective reporting (reporti	ng bias)										
(G) Other bias	_										

Figure 3: Summary of Relative Risk of Hospital Readmission

	C	ontrol		lva	bradiı	ne		Mean Difference		Mean Difference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI	ABCDEFG
SERGIO FASULLO, et al. 2009	-4.7	7.08	76	-9.9	7.79	79	19.3%	5.20 [2.86, 7.54]	2009		→ 444 444
SHIFT,2011	0.1	9.7	203	-2.4	9.7	208	26.4%	2.50 [0.62, 4.38]	2011		999 999
BEAUTIFUL,2011	0.1	8.7	294	-2.8	8.6	296	37.4%	2.90 [1.50, 4.30]	2011		999 999
Kosmala,2013	1	5.5	31	-1	6.5	30	12.8%	2.00 [-1.03, 5.03]	2013		999 999
ETHIC-AHF,2016	-11.9	8.7	38	-18.4	14.7	33	4.1%	6.50 [0.77, 12.23]	2016		→ 😑 🗣⊕⊕
Total (95% CI)			642			646	100.0%	3.27 [2.08, 4.45]		•	
Heterogeneity: Tau ² = 0.47; C	2 chi² = 5	39, df	= 4 (P	= 0.25)	; ² =	26%					-
Test for overall effect: Z = 5.4	10 (P < 0	.0000	1)							-4 -2 0 2 4 Control Ivabradine	
Risk of bias legend											
(A) Random sequence generat	tion (sele	ction	bias)								
(B) Allocation concealment (se		,									
(C) Blinding of participants an					as)						
(D) Blinding of outcome asses			ion bias	;)							
(E) Incomplete outcome data (
(F) Selective reporting (reporti	ng bias)										
(G) Other bias											

3.5 Safety End Points


Six ⁽⁶⁻¹¹⁾ and four trials respectively, reported the incidence of all adverse events and ischemic events of ivabradine compared with control. Ivabradine did not always increase the incidence of all adverse event (summary RR,0.97[CI, 0.91 to 1.02]; I² =23%) (figure 5), and ischemic events (summary RR,0.95[CI, 0.89 to 1.02];I² =0%) (*Appendix figure 3*). However, the incidence of bradycardia, phosphenes and blurred vision as adverse events were reported in three trials and were significantly higher with ivabradine by 4 and 5 times as compared with control (summary RR,5.04[CI, 2.49 to 10.18];I² =85%)(figure 6) and (summary RR,4.08[CI, 2.80 to 5.95];I² =0%) (figure 7) respectively. The number of withdrawal patients from six trials in ivabradine were higher compared with control (summary RR,1.12[CI, 1.03 to 1.22];I² =0%) (figure 8), and the main reasons for withdrawal from ivabradine were symptomatic and asymptomatic bradycardia and phosphenes which are the main adverse events of ivabradine .

	Ivabra	dine	Cont	rol		Risk Ratio			Risk Ratio	Risk	of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year		M-H, Random, 95% Cl	ABC	DEFG
BEAUTIFUL,2008	1233	5479	1239	5438	42.1%	0.99 [0.92, 1.06]	2008		-	•••	•••
SERGIO FASULLO, et al. 2009	2	79	2	76	0.1%	0.96 [0.14, 6.66]	2009	←	· ·		
SHIFT, 2010	1450	3241	1553	3264	56.2%	0.94 [0.89, 0.99]	2010		-		999
Kosmala,2013	0	30	0	31		Not estimable	2013				
ETHIC-AHF,2016	0	33	0	38		Not estimable	2016			•	999
EDIFY,2017	33	94	21	84	1.6%	1.40 [0.89, 2.23]	2017			→ •	
Total (95% CI)		8956		8931	100.0%	0.97 [0.91, 1.02]			•		
Total events	2718		2815								
Heterogeneity: Tau ² = 0.00; 0	Chi ² = 3.9	1, df =	3 (P = 0	.27); l²	= 23%			0.5	0.7 1 1.5		
Test for overall effect: $Z = 1.2$	L5 (P = 0.1	25)						0.5	Ivabradine Control	2	
Risk of bias legend											
(A) Random sequence genera	tion (seled	tion bi	as)								
(B) Allocation concealment (s	election bi	ias)									
(C) Blinding of participants ar	nd personi	nel (per	formanc	e bias)							
(D) Blinding of outcome asses	sment (de	etection	n bias)								
(E) Incomplete outcome data	(attrition l	bias)									
(F) Selective reporting (report	ing bias)										
(G) Other bias											

Figure 5: Summary of Relative Risk of All Adverse Events

	Ivabar	dine	Contr	'nl		Risk Ratio		Risk Ratio	Risk of Bias		
Study or Subgroup					Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl	ABCDEFG		
BEAUTIFUL,2008	705	5477	79	5430	44.0%	8.85 [7.03, 11.13]	2008	+	999 999		
SHIFT, 2010	150	3241	32	3264	40.7%	4.72 [3.23, 6.89]	2010		444 444		
EDIFY,2017	4	94	3	84	15.3%	1.19 [0.27, 5.17]	2017		• •••		
Total (95% CI)		8812		8778	100.0%	5.04 [2.49, 10.18]		•			
Total events	859		114								
Heterogeneity: Tau ² = 0.28; Chi ² = 13.76, df = 2 (P = 0.001); I ² = 85%											
Test for overall effect:	z = 4.50) (P < 0	.00001)					Ivabradine Control			
Risk of bias legend											
(A) Random sequence	-			as)							
(B) Allocation conceal											
(C) Blinding of particip					ce bias)						
(D) Blinding of outcom				bias)							
(E) Incomplete outcome data (attrition bias)											
(F) Selective reporting	(reportin	ig bias)									
(G) Other bias											
		-		-							

Figure 6: Summary of Relative Risk of bradycardia

	Ivabra		Contr			Risk Ratio		Risk Ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl	ABCDEFG
BEAUTIFUL,2008	232	5479	215	5438	22.3%	1.07 [0.89, 1.28]	2008		999 999
SERGIO FASULLO, et al. 2009	1	79	1	76	0.1%	0.96 [0.06, 15.11]	2009	· · _	• • • • • • • • • • • • • • •
SHIFT, 2010	682	3241	605	3264	76.7%	1.14 [1.03, 1.25]	2010		444 444
Kosmala,2013	0	30	0	31		Not estimable	2013		444 444
ETHIC-AHF,2016	2	33	2	38	0.2%	1.15 [0.17, 7.73]	2016	• •	• 😑 🕂 🕂
EDIFY,2017	10	95	5	84	0.7%	1.77 [0.63, 4.97]	2017		• • • •
Total (95% CI)		8957		8931	100.0%	1.12 [1.03, 1.22]		•	
Total events	927		828						
Heterogeneity: Tau ² = 0.00; C	hi² = 1.0	6, df =	4 (P = 0)	.90); I ²	= 0%			0.7 0.85 1 1.2 1.5	-
Test for overall effect: Z = 2.6	7 (P = 0.0)	008)						Ivabradine Control	
Risk of bias legend									
(A) Random sequence generat	ion (selec	tion bi	as)						
(B) Allocation concealment (se	lection bi	as)							
(C) Blinding of participants and	d personr	nel (per	formanc	e bias)					
(D) Blinding of outcome assess	sment (de	etection	n bias)						
(E) Incomplete outcome data (a	attrition b	oias)							
(F) Selective reporting (reporting		e							
(G) Other bias									
	_		_		_				

Figure 8: Summary of Relative Risk of withdrawal

4. Discussion

In our study we included RCTs met our inclusion criteria, These RCTs included heart failure patients with reduced and preserved ejection fraction and coronary artery disease with reduced ejection fraction. Overall, 17886 patients were randomly assigned to receive either ivabradine or control with treatment duration ranged from 7 days to 32 months. Ivabradine increased EF by 3% compared with control. However, ivabradine did not lower all-cause mortality or hospital readmission, and there was no significant difference reduction in the mean heart rate from baseline to the follow up compared with control. Ivabradine did not increase the incidence of all adverse events or ischemic events. But the incidence of phosphenes, blurred vision and bradycardia were higher with ivabradine by 4 and 5 times as compared with control. Finally, the number of withdrawal patients from all the included trials were higher in ivabradine as compared with control. Phosphenes, blurred vision and bradycardia were the main reasons for withdrawal.

In a BEAUTIFUL study ⁽⁷⁾ 10917 eligible subjects had coronary artery disease and a left ventricular EF of less than 40% randomly assigned to either ivabradine or placebo. Ivabradine had no significant effect on cardiovascular death, any hospital admission for new onset or worsening heart failure. However, ivabradine was associated with a reduction in the admission to hospital for myocardial infarction

and coronary revascularization. Furthermore, in subjects with baseline heart ≥ 70 beats/min ivabradine had a significant reduction in the risk of hospitalization for the myocardial infraction by 36%, the risk of coronary revascularization by 30% and coronary events by 22%. In the SHIFT trial ⁽⁶⁾. 6558 participants were randomly assigned to either ivabradine or placebo. There was an 18% reduction in cardiovascular death or hospital admission for worsening heart failure in subjects who received ivabradine, compared to placebo. Death from HF and most cardiovascular endpoints were significantly reduced in patients treated with ivabradine. This study shows the importance of ivabradine in reducing the heart rate which will improve the clinical outcomes of HF. In 2009, a randomized, doubleblind trial ⁽⁸⁾ was conducted to assess the tolerability and the effect of ivabradine versus metoprolol after 30 days in patients with ST-segment elevation myocardial infarction (STEMI) and reperfused by percutaneous coronary intervention (PCI) with LV ejection fraction (EF) < 50%. A total of 155 patients we randomly allocated to receive either metoprolol or ivabradine for 12 months after PCI. Ivabradine as compared to metoprolol, showed a significant reduction after 60 days follow up in readmission for heart failure, the end-systolic volume (ESV) and end-diastolic volume (EDV), (P=.047, P<.0001 and P<.0001, respectively). In addition, a significant increase in EF, P<.0001. However, there was no significant difference in heart rate(HR) reduction between both groups as both showed significant HR reduction between baseline and after 60 days (91 ± 6 vs. 66 ± 7 and 92 ± 7 vs. 65 ± 6 beats/min, respectively, P<.0001).In 2013, a randomized, double-blind trial⁽⁹⁾,was done to assess the effect of ivabradine on exercise capacity and left ventricular filling in patients with HF with HFpEF, 61 patients randomly assigned to either ivabradine or placebo for 7 days, and they found that the short time treatment with ivabradine showed an improvement on exercise capacity and left ventricular filling pressure. In ETHIC-AHF trial⁽¹⁰⁾,71 hospitalized patients with HF and HFrEF randomly assigned to either ivabradine and beta-blockers versus beta-blockers alone and followed for 1 year, and they found that early co-administration of ivabradine and beta blocker produced significant improvement in both HR and left ventricular systolic function as compared with beta blocker alone. In EDIFY, ⁽¹¹⁾ a recent randomized, double-blind, placebo control trial, 179 patients randomly allocated to either ivabradine or placebo, to assess if HR reduction could improve the cardiac function among HF patients with HFpEF. After following the patients for 8 months they found that among HFpEF patients, HR reduction in the ivabradine group did not improve cardiac outcomes.

In the recent years, there has been an increased number of studies assessing the efficacy and safety of ivabradine in patients with HF with or without low EF. In many international, especially European guidelines, ivabradine is recommended as part of the management of HF.⁽²⁾ In the most current Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, the role of ivabradine for HF management and how it is fit is still unclear, it is only fit on HF on maximum therapy. The guideline says ivabradine has an effect on reducing HF hospitalization which mainly based on SHIFT trial.

However, in our study, we did not find it significant with ivabradine. Furthermore, the use of ivabradine has not been widely adopted yet but many clinicians. This could be due to the high cost of ivabradine, with the limited, and somewhat conflicting evidence on its efficacy and safety. ⁽¹³⁻¹⁶⁾

In our meta-analysis some of the limitations at the systematic review level and the other associated with the included trials. Outcomes may be reported differently by each study, at different time points, and some outcomes were not reported. Due to the small number of randomized controlled trials on ivabradine in HF, we had limited data to perform subgroup or sensitivity analyses on different types of HF.

5. Conclusion

This systematic review and meta-analysis investigate that administration of ivabradine to adults with heart failure with or without low ejection fraction significantly improved the ejection fraction. However, there was no significant impact with ivabradine in mortality, cardiovascular mortality, re-admission rates and the mean difference in change of heart rate. Ivabradine did not always increase the incidence of all adverse event or ischemic events. But the incidence of bradycardia, phosphenes and blurred vision as adverse events were higher with ivabradine as compared with control and these were the main reasons for withdrawal which was higher with ivabradine group compared with control. This may indicate a poorer tolerability profile. Our finding suggests that ivabradine may be efficacious and safe as a treatment in its usual doses in adults with heart failure with or without low ejection fraction. Further studies are needed to confirm these results and during this time more studies might show up.

References

- Paper O. Ivabradine Improves Quality of Life in Subjects with Chronic Heart Failure Compared to Treatment with β-Blockers : Results of a Multicentric Observational APULIA Study. 2013;276–80.
- [2] Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart. Eur Heart J [Internet]. 2010;31(14):2369–429. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22611136\nhttp://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=3690472&tool=pmcentrez&rendertype=abstr act\nhttp://www.ncbi.nlm.nih.gov/pubmed/16875962\nhttp://www.ncbi.nlm. nih.gov/pubmed/20802247\nhttp://www.ncbi.nl

[3] Ramani G V, Uber PA, Mehra MR. Chronic Heart Failure: Contemporary Diagnosis and Management. Mayo Clin Proc [Internet]. 2010 Feb;85(2):180–

from:

Available

http://www.sciencedirect.com/science/article/pii/S0025619611603935

- [4] Gheorghiade M, Albert NM, Curtis AB, Thomas Heywood J, McBride ML, Inge PJ, et al. Medication dosing in outpatients with heart failure after implementation of a practice-based performance improvement intervention: Findings from IMPROVE HF. Congest Hear Fail. 2012;18(1):9–17.
- [5] Deedwania P. Selective and specific inhibition of If with ivabradine for the treatment of coronary artery disease or heart failure. Drugs [Internet]. 2013;73(14):1569–86. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3786091&tool=p mcentrez&rendertype=abstract
- [6] Swedberg K, Komajda M, B??hm M, Borer JS, Ford I, Dubost-Brama A, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): A randomised placebo-controlled study. Lancet. 2010;376(9744):875–85.
- [7] Fox K, Ford I, Steg PG, Tendera M, Ferrari R, Investigators B, et al. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. 2016;372:807–16.
- [8] Fasullo S, Cannizzaro S, Maringhini G, et al. Comparison of Ivabradine Versus Metoprolol in Early Phases of Reperfused Anterior Myocardial Infarction With Impaired Left Ventricular Function: Preliminary Findings. J Card Fail. 2009;15(10):856-863. doi:10.1016/j.cardfail.2009.05.013.
- [9] Kosmala, W., Holland, D., Rojek, A., Wright, L., Przewlocka-Kosmala, M. and Marwick, T. (2013). Effect of If-Channel Inhibition on Hemodynamic Status and Exercise Tolerance in Heart Failure With Preserved Ejection Fraction. Journal of the American College of Cardiology, 62(15), pp.1330-1338.
- [10] Hidalgo, F. (2017). Early Therapy with Beta Blockers Plus Ivabradine Versus Beta Blockers Alone in Patients Hospitalised with Heart Failure and Reduced Ejection Fraction (ETHIC-AHF Study): Results at One-Year Follow-Up. International Journal of Clinical Cardiology, 4(1).
- [11] Komajda, M., Isnard, R., Cohen-Solal, A., Metra, M. and Pieske, B. (2017). Effect of ivabradine in patients with heart failure with preserved ejection fraction: the EDIFY randomized placebo-controlled trial. European Journal of Heart Failure, 19(11), pp.1495-1503.
- [12] Tardif J, Meara EO, Komajda M, et al. Effects of selective heart rate reduction with ivabradine on left ventricular remodeling and function : results from the SHIFT echocardiography sub study. 2011:1-9. doi:10.1093/eurheartj/ehr311.
- [13] Ceconi, C., Freedman, S., Tardif, J., Hildebrandt, P. and McDonagh, T. (2011). Effect of heart rate reduction by ivabradine on left ventricular remodeling in the echocardiographic sub study of BEAUTIFUL. International Journal of Cardiology, 146(3), pp.408-414.
- [14] Tsutsui H, Momomura S, Yamashina A, Ogawa H, Shimokawa H, Kihara Y, et al. Heart Rate Control With If Inhibitor, Ivabradine, in Japanese Patients

95.

With Chronic Heart Failure – A Randomized, Double-Blind, Placebo-Controlled Phase II Study –. Circ J [Internet]. 2016;80(March):1–8. Available from:https://www.jstage.jst.go.jp/article/circj/advpub/0/advpub_CJ-15-1112/_article

- [15] Volterrani M, Cice G, Caminiti G, Vitale C, Isa SD, Perrone P, et al. Effect of Carvedilol, Ivabradine or their combination on exercise capacity in patients with Heart Failure (the CARVIVA HF trial). Int J Cardiol [Internet]. Elsevier Ireland Ltd; 2016;151(2):218–24. Available from: http://dx.doi.org/10.1016/j.ijcard.2011.06.098
- [16] Pal N, Sivaswamy N, Mahmod M, Yavari A, Rudd A, Singh S, et al. Effect of selective heart rate slowing in heart failure with preserved ejection fraction. Circulation. 2015;132(18):1719–25.
- [17] Bozkurt B, Butler J, Al E. 2017 ACC / AHA / HFSA Focused Update of the 2013 ACCF / AHA Guideline for the Management of Heart Failure.; 2017. doi:10.1161/CIR.00000000000509.

Appendices

Appendix Tab	le 1. Sear	ch strategy
---------------------	------------	-------------

1. R	andomized controlled trial.pt.
2. C	ontrolled clinical trial.pt.
3. ra	andomized controlled trials/
4. R	andom Allocation/
5. D	ouble-blind Method/
6. Si	ingle-Blind Method/
7. cl	inical trial.pt
8. C	linical Trials.mp. or exp Clinical Trials/
9. (c	clinic\$ adj25 trial\$).tw.
10. ((singl\$ or doubl\$ or trebl\$ or tripl\$) adj (mask\$ or blind\$)).tw.
11. P	lacebos/
12. pl	lacebo\$.tw.
13. ra	ndom\$.tw.
14. tr	ial\$.tw.
15. (r	andomized control trial or clinical control trial).sd.
16. (l	atin adj square).tw.
17. C	omparative Study.tw. or Comparative Study.pt.
18. ex	xp Evaluation studies/
19. Fo	ollow-Up Studies/
20. Pi	rospective Studies/
21. (c	control\$ or prospectiv\$ or volunteer\$).tw.
22. C	ross-Over Studies/
23. or	r/1-22
24. (i	vabradine).af.
25. (F	Procoralan or Corlentor or Coraxan or Coralan or Procoralan or Coralan).af.
26. S	-16257 or S-15544 or S-16257-2 or S-16260.af.

27. Selective inhibitor of cardiac If channels.af.

28. or/24-27

29. Heart failure.af.

30. Low ejection fraction or Left ventricular ejection fraction (LVEF) or reduced

ejection fraction (HFrEF) or Preserved ejection fraction (HFpEF) .af.

31. 29 or 30

	Description	Comments
Population	All Heart failure patients with	No age restriction will be applied
	or without low ejection	
	fraction	
Intervention	Ivabradine	We plan to include studies on
		ivabradine alone or in combination
		with other agents for heart failure
		management
Comparator	control	Either control alone or in
		combination with other agents for
		heart failure management
Outcomes	Benefits:	
	Primary outcomes: all- cause	
	mortality, cardiovascular	
	mortality, cardiac death,	
	admission to hospital for new	
	onset or worsening heart	
	failure.	
	Secondary outcomes: resting	
	HR from baseline till end of	
	follow-up, change in NYHA	
	functional class, LVEF, and	
	concentrations of plasma B-	
	type natriuretic peptide (BNP)	
	Harms:	-
	Any adverse drug reactions	
Study Design	Randomized Controlled	non-inferiority studies
	Double-blind Trials	

Appendix Table 2. Criteria for inclusion/exclusion of studies in the review

Appendix Table 3. Risk-of-Bias Items Assessed for Randomized, Controlled Trials

1. What is the risk of selection bias (biased allocation to interventions) due to inadequate generation of a randomized sequence? [Low, Unclear, High]

2. What is the risk of selection bias (biased allocation of interventions) due to inadequate concealment of allocations before assignment? [Low, Unclear, High]

3. For each main outcome or class of outcomes, what is the risk of performance bias due to knowledge of the allocated interventions by participants and personnel during the study (lack of study participant and personnel blinding)? [Low, Unclear, High]

4. Was the care provider blinded to the intervention? [Low, Unclear, High]

5. For each main outcome or class of outcomes, what is the risk of detection bias due to knowledge of the allocated interventions by outcome assessment (lack of outcome assessor blinding)? [Low, Unclear, High]

6. For each main outcome or class of outcomes, what is the risk of attrition bias due to amount, nature, or handling of incomplete outcome data? [Low, Unclear, High]

7. What is the risk of reporting bias due to selective outcome reporting? [Low, Unclear, High]

8. Were all randomized participants analyzed in the group to which they were allocated? [Yes, No, Unsure]

9. Were the groups similar at baseline regarding the most important prognostic indicators? [Yes, No, Unsure]

10. Were co-interventions avoided or similar? [Yes, No, Unsure]

11. Was the compliance acceptable in all groups? [Yes, No, Unsure]

12. Was the timing of the outcome assessment similar in all groups? [Yes, No, Unsure]

13. Are there other risks of bias? [Yes, No]

Name of Study	Fo	x, 2008	Fasul	lo, 2009	Swedberg, 2010		
Group	Baseline	Follow-up (24 months)	Baseline	Follow-up (2 months)	Baseline	Follow-up (32 months)	
Ivabradine	72 bpm	64 bpm	91 bpm	91 bpm 66 bpm		67 bpm	
Control group	72 bpm	69 bpm	92 bpm	65 pbm	80 bpm	75 bpm	

Study or Subgroup	Ivabra		Conti		Waight	Risk Ratio	Voar	Risk Ratio M-H, Random, 95% Cl	Risk of Bias A B C D E F G			
Study or Subgroup			Events		-	M-H, Random, 95% Cl		M-H, Kandom, 95% Ci				
BEAUTIFUL,2008	469	5479		5438	49.3%			_				
SHIFT, 2010	449	3241	491	3264	50.2%	0.92 [0.82, 1.04]	2010		444 444			
EDIFY,2017	1	95	0	840	0.4%	26.28 [1.08, 640.66]	2017		→ 🗣 🗣 🗣			
Total (95% CI)		8815		9542	100.0%	1.01 [0.82, 1.24]		•				
Total events	919		926									
Heterogeneity: Tau ² =	Heterogeneity: $Tau^2 = 0.02$: Chi ² = 6.98. df = 2 (P = 0.03): $I^2 = 71\%$											
Test for overall effect:			,		,, -			0.5 0.7 1 1.5 2 Ivabradine Control				
<u>Risk of bias legend</u>												
(A) Random sequence	generati	on (sele	ection bia	as)								
(B) Allocation conceal	-											
(C) Blinding of partici				forman	ce bias)							
(D) Blinding of outcom		· .										
(E) Incomplete outcom		,		i bius)								
(F) Selective reporting	(reportin	iy blas)										
(G) Other bias												

Appendix Figure 1. Summary of Relative Risk of Cardiovascular Mortality

	lvabradine			Control			Std. Mean Difference			Std. Mean Difference	Risk of Bias	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% CI	ABCDEFG	
SERGIO FASULLO, et al. 2009	25	6.5	78	27	6.5	75	26.0%	-0.31 [-0.63, 0.01]	2009		999 999	
SHIFT,2011	14.8	12	208	4.9	12	203	26.9%	0.82 [0.62, 1.02]	2011	+	999 999	
Kosmala,2013	10	7.54	30	0	7	31	23.1%	1.36 [0.80, 1.92]	2013		999 999	
ETHIC-AHF,2016	25.5	9.18	33	19.9	10.3	33	24.0%	0.57 [0.07, 1.06]	2016		• •••	
Total (95% CI)			349			342	100.0%	0.59 [-0.08, 1.26]				
Heterogeneity: Tau ² = 0.43; Chi ² = 42.68, df = 3 (P < 0.00001); l ² = 93% Test for overall effect: Z = 1.73 (P = 0.08) <u>Risk of bias legend</u> (A) Random sequence generation (selection bias) (B) Allocation concealment (selection bias) (C) Blinding of participants and personnel (performance bias) (D) Blinding of outcome assessment (detection bias) (E) Incomplete outcome data (attrition bias) (F) Selective reporting (reporting bias) (C) Other bias												

Appendix Figure 2. Pre and Post Treatment Mean Difference of HR

	Ivabradine		Control				Risk Ratio		Risk of Bias		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year		M-H, Random, 95% Cl	ABCD	EFG
BEAUTIFUL,2008	331	5477	324	5430	20.4%	1.01 [0.87, 1.17]	2008		_ _	•••	•••
SERGIO FASULLO, et al. 2009	4	78	4	75	0.2%	0.96 [0.25, 3.71]	2009	←		→ ��₽	999
SHIFT, 2010	920	3232	991	3260	79.3%	0.94 [0.87, 1.01]	2010			.	999
EDIFY,2017	4	94	0	84	0.1%	8.05 [0.44, 147.39]	2017	←		→ 😛	•••
Total (95% CI)		8881		8849	100.0%	0.95 [0.89, 1.02]			•		
Total events	1259		1319								
Heterogeneity: Tau ² = 0.00; Chi ² = 2.95, df = 3 (P = 0.40); $l^2 = 0\%$											
Test for overall effect: $Z = 1.42$ (P = 0.16) 0.5 0.7 1 1.5 2 Ivabradine Control									2		
Risk of bias legend (A) Random sequence generation (selection bias) (B) Allocation concealment (selection bias) (C) Blinding of participants and personnel (performance bias) (D) Blinding of outcome assessment (detection bias) (E) Incomplete outcome data (attrition bias) (F) Selective reporting (reporting bias) (G) Other bias											

