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Abstract 

In this study, a Box Behnken Design (BBD) and a Binary Logistic Regression (BLR) 

were applied to study the effects of demographic characteristics on the risk of HIV in 

South Africa.  The demographic characteristics studied for each pregnant mother 

attending an antenatal clinic in South Africa, were mother’s age, partner’s age (father’s 

age), mother’s level of education and parity. Using the 2007 South African antenatal 

seroprevalence data, the BBD design showed that HIV status of a pregnant woman was 

highly sensitive to changes to her age and educational level.  These results were 

independently confirmed by the BLR model.  Individually the father’s age and parity 

had no significant effect on the HIV status.  However, the latter two demographic 

characteristics showed significant effects on the HIV risk in two way interactions with 

other demographic characteristics.  The results from the BBD provided the following 

summary statistics, R
2
 = 0.99 and two-factor interactions (2FI) model F-value of 88.29.  

The latter value of 88.29 for the BBD 2FI model is significant with only a 0.01% chance 

that this value could be due to noise.  An adeq.precision value of 31.33 was obtained for 

the BBD further confirming that the 2FI model could be used to navigate the experimental 

design space.  Finally, the 3-D response surface plots of HIV risk against mother’s age 

and her education were created. 
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1  Introduction  
The South African HIV antenatal HIV seroprevalence survey is the largest in the world 

with a sample size of 36 000 subjects [1]. The antenatal HIV data assists in monitoring 

the HIV infection trends within the republic of South Africa.  A thorough understanding 

of the epidemic leads to a fruitful utilization of resources and development of innovative 

approaches to curb the spread of the disease.  In South Africa, the antenatal clinic 

surveys are conducted annually in October to obtain an estimate of the prevalence levels 

of that year [1].   

The first case of HIV infection in South Africa was observed in 1982 [2].  Initially the 

epidemic was confined to the gay community.  However, since 1982 the epidemic has 

grown in leaps and bounds to be the leading killer in South Africa.  In 2007, an 

estimated 1.7 million people in the sub-region were nearly infected with HIV, the 

majority of them being women [13]. 

The control of HIV in South Africa is multi-disciplinary involving government, research 

and academic institutions, civil society, non-governmental organizations, 

community-based organizations and the private sector.  All these organizations work 

together to alleviate health and social consequences of HIV and AIDS. 

As stated in the abstract, the raw antenatal clinic data contains the following demographic 

characteristics for each pregnant woman; age, population group, educational level, 

gravidity, parity, partner’s age, name of clinic, HIV and syphilis results [4]. 

This research paper follows on our previous work that explored the application of 

Response Surface Methodologies (RSMs) to study the relationship between demographic 

characteristics and HIV risk.  Two RSMs techniques were used namely Central 

Composite Face-Centered (CCF) and Box-Behnken Designs (BBD).  The two RSM 

designs demonstrated that the mother’s age had the greatest influence on the HIV risk of 

antenatal clinic attendees. 

This work aims to compare the BBD and BLR techniques in predicting and determining 

the effect of demographic characteristics on HIV prevalence in South Africa. 

 

1.2 Literature Review 

1.2.1 Logistic Regression 

Logistic regression facilitates the investigation of the relationship between a response and 

a set of explanatory variables.  The response can be dichotomous in nature.  The 

logistic regression is a generalized linear model, which is a type of binomial regression.  

The purpose of the logistic regression is to transform the limited range of a probability, 

restricted to the range 0 to 1 into the full range -∞ to +∞, which makes the transformed 

value more suitable for fitting using a linear function [14].  In epidemiology, such a 

probability between 0 and 1 gives the risk of an individual getting a disease. 

The assumptions for logistic regression 

 The  outcome must be discrete 
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 There needs to be enough responses as a ratio of variables to reduce standard errors and 

enhance maximum likelihood estimation 

 The regression equation should have a linear relationship with the logit form of the 

discrete variable 

 There should be an absence of multi-collinearity 

 There should be no outliers 

 There should be independence of errors 

Logistic Regression Model 

The logistic model is designed to ensure that whatever estimate of risk is obtained, it will 

always be some number between 0 and 1.  This therefore means that for the logistic 

model, the risk estimate cannot be above 1 or below 0. 

The Shape of Logistic Model 

As shown in Fig. 1, as z moves from    towards +   the value of f(z) hovers close to 

zero for a while, then starts to increase dramatically towards 1, and finally leveling off 

around 1.The result is an elongated, S-shaped diagram. 

The S-shape of the logistic function is favored by epidemiologists, provided the variable z 

stands for an index that combines combinations of several risk factors, and f (z) represents 

the risk for a given value of z. 

Fundamentally, the S-shape of f(z) indicates that the effect of z on an individual’s risk is 

minimal for low z’s until some threshold is attained.  The risk then rapidly increases 

over a certain range of intermediate z-values, and then remains extremely high around 1 

as soon as z gets large enough.   

The threshold idea is believed by epidemiologists to apply to a variety of disease 

conditions.  In general, an S-shaped model is believed to be ideal for multivariate nature 

of epidemiological research [16]. 

 
Figure 1: Shape of Logistic Model 
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Development of Logistic Model from Logistic Function 

The logistic function is expressed as: 

Z=α + β1x1 + β2x2 + … + βkxk                                              (1) 

z is the linear sum α plus β1 times x2 and so on to βk times xk where x’s are independent 

variables of interest and α and β1 are constant terms representing unknown parameters.  

Therefore z is an index that combines the x’s. 

                                  

Figure 2: Logistic model 

The independent variables x1, x2 and so on up to xk on a group of subjects, with disease 

status either 1 (with disease) or 0 (without disease).  Using the logistic function to 

describe a disease over a period of time T0 to T1, in a disease-free individual with 

independent variables x1, x2 up to xk measured at time T0. 

The probability being modeled can be denoted by the conditional probability statement 

P(D=1|x1, x2, … xk).  The model is defined as logistic if the expression for the 

probability for the probability α plus the sum from i equals 1 to k of βi times xi.  The 

terms α and βi in this model represent unknown parameters that we need to estimate based 

on data obtained on the X’s and on D (disease outcome) for a group of subjects.  

Therefore, a knowledge of the parameter α and βi and determination of values xi through 

xk for a particular disease-free individual, this formula can be used to obtain probability 

that a given individual would develop a disease over a given period of time. 

Letting P(D=1|x1, x2, … xk) be P(x) where x is a collection of variables x1 through xk.  

Therefore the logistic model formula is: 

      
 

     α    β                                                          (2) 

Logit Transformation 

An alternative way of writing the logistic regression is the logit form of the model.  To 

obtain a logit form from the logistic model, a transformation is required.  The logit 

transformation logit p(x) is given by the natural log (to base e) of the quantity p(x) 

divided by one minus p(x), where p(x) represents the logistic model.  The transformation 

facilitates the calculation of a number called logit p(x) for an individual with independent 

variables given by x. 

logit p(x)   =  lne 
    

      
   

where p(x)  =  
 

     α    β      

1-p(x)           =  1 - 
 

     α    β      

    =  
   α    β    

     α    β      

     
 

       
 

 

 

 

 

z = α + β1x1 + β2x2 + … + βkxk 
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   =  

 

     α    β    

   α    β    

     α    β    

  

    =   α    β        

lne 
    

      
   = lne α    β      

 

Therefore p(x)    =   lne 
    

      
   

   

      =   log odds                     

            =   α    β                                        (3) 

Where odds is the ratio of probability that some event will occur over the probability that 

the same event will occur. Therefore 
    

      
   describes the odds (risk) for developing a 

disease for an individual with independent variables specified by x. 

 

Statistical Inferences from Logistic Regression 

Maximum Likelihood (ML) Estimation  

This is a statistical method for estimating the parameters in a mathematical model.  ML 

is preferred for non-linear models such as the logistic models regression.  Furthermore, 

ML estimates require no restrictions on the characteristics of the independent 

variables.ML value is therefore a numerical value of the likelihood function L when the 

ML estimates are substituted for the corresponding parameter values.  There are three 

test procedures for ML namely the Likelihood Ratio (LR), Wald and the Score Tests. 

Likelihood Ratio test 

The difference between log likelihood statistics for two models, one of which is a 

derivation of the other has an approximate chi-square distribution in large samples.  This 

type of statistic is called a likelihood ratio (LR) or LR statistic.  The degrees of freedom 

(df) for this chi-square test are equal to the difference between the number of parameters 

in the two models. 

-2lnL1 – (-2lnL2) = -2 [
  

  
   

LR approximates the ᵡ
2
 variable with df of 1 and provided the sample is large enough.  

Furthermore, LR is like the F-statistic as it compares two models such as main effects 

against main effects and interactions. 

For large contribution to the model L2 is much larger than L1, then 

  

  
   0                                        

Ln [
  

  ]  ln [0] = -                   

LR  = -2 [
  

  
                                                      (4) 

Therefore for highly significant additions to the model, LR is large and positive. 

For no contribution to the model 
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L2  L1  

  

  
  1                                        

LR = -2ln (1) = -2 x 0 = 0       

Therefore if the addition to the model is insignificant,  

LR 0                                                                 (5) 

0 (Not significant) < LR < ∞ (Significant) 

Therefore LR approximates ᵡ
2
 if the sample (n) is large. 

 

Wald Test 

This is another hypothesis testing technique in logistic regression.  The Wald test 

statistic is calculated by deviding the estimated coefficient of interest by its standard error.  

This test statistic has approximately a normal (0,1), or Z distribution in large samples.  

This square of this Z statistic is approximately a chi-square statistic with one degree of 

freedom.  The likelihood ratio statistic and its corresponding squared Wald statistic give 

approximately the same value in very large samples. 

 

LR Z
2

wald in large samples                                               (6) 

Score Test 

This is another method for hypothesis testing.  The score test is designated to evaluate 

whether a model constrained by the proportional odds assumption is significantly 

different from the corresponding model in which the odds ratio parameters are not 

constrained by the proportional odds assumption.  The test statistic is distributed 

approximately chi-square, with degrees of freedom equal to the number of odds ratio 

parameters.  The score test gives the same numerical chi-square values as the LR and the 

Wald statistics. 

 

1.2.2 Response Surface Methodology (RSM) 

RSM is a collection of statistical and mathematical methods that are useful for modelling 

and analyzing design.  RSM experiments are designed to allow forthe estimation of 

interaction and even quadratic effects, and thus provide an  idea of the local shape of the 

response surface being investigated. 

Linear terms alone produce models with response surfaces that are hyperplanes.  The 

addition of interaction terms allows for warping of the hyperplane.  Squared terms 

produce the simplest models in which the response surface has a maximum or minimum, 

and so an optimal response.   

RSM comprises of fundamentally three techniques [5], namely: 

i. Statistical experimental design 

ii. Regression modelling 

iii. Optimization 

The detailed outline of the steps involved in the design of experiments using RSM is 

clearly indicated in figure 3. 
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Figure 3: Design procedure of an RSM 

An example of an RSM is the Box-Behnken Design.     

 

Box Behnken (BBD) Design 

 
Figure 4: BBD Design [10] 
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The Box-Behnken design (Fig. 4) is an independent quadratic design, that does not contain 

an embedded factorial or fractional factorial design.  The Box-Behnken design is 

characterized by treatment combinations at the midpoints of edges of the experimental 

space and the centre.  These designs are rotatable and require 3 levels of each factor.  The 

designs have limited capability for orthogonal blocking compared to the central composite 

designs [11]. 

 

 

2  Experimental Methodology 

2.1 Sources of Data 

Seroprevalence data studied was obtained from the 2007 South African antenatal data, 

supplied by the National Department of Health of South Africa [1].  The data consisted 

of about 32 000 subjects that attended antenatal clinics for the first time across the nine 

provinces of South Africa in 2007. 

 

2.2 Research Tools 

This research utilized the following research tools: 

a) Design Expert V8 Software (StatEaseInc, 2011) 

b) SAS 9.3, an integrated system of software products (SAS Institute Inc). 

c) Essential Regression and Experimental Design, version 2.2 (Gibsonia, PA) 

d) Minitab 16.  Minitab Inc., United States. 

 

2.3 Sampling Procedure 

To facilitate the experimental design, the data was completely randomized, and this 

process was undertaken as a preprocessing technique to reduce bias in the design of 

experiment.   

 

2.4 Missing Data 

Out of the total of 31 808 cases from the 2007 South African antenatal seroprevalence 

database, 21 646 (68%) cases were found to be complete.  10 162 (32%) cases were 

incomplete and thus discarded. 

 

2.5 Variables 

The variables used in the study were mother’s age, father’s age, education, parity and HIV 

status.  The integer value representing level of education stands for the highest grade 

successfully completed, with 13 representing tertiary education.  Parity represents the 

number of times the individual has given birth.  Parity is important as it shows the 

reproductive activity as well as reproductive health state of the women.  The HIV status 

is binary coded; a 1 represents positive status, while a 0 represents a negative status. 

 

 

http://en.wikipedia.org/wiki/SAS_Institute_Inc.
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2.6 Experimental Design 

In this study, the aim was to use a Box-Behnken design (BBD) and a binary logistic 

regression to study the individual and interaction effects of demographic characteristics 

on the HIV status of a pregnant mother using seroprevalence data.  A BBD designs with 

four factors and one response variable was developed as shown in Table 1.  Based on 

sparsity-of-effects principle, two factor-interaction (2FI) design models were used, with 

29 runs and no blocks.  -1 and +1 denote the minimum and maximum levels of factors 

respectively.   

Table 1: The BBD Matrix Design with 4 factors, 1 response variable and 4 center points. 

 Factors Response 

Run Mother’s age Father’s age Education Parity HIV 

1 0 0 0 0 0.33 

2 0 1 -1 0 - 

3 1 0 -1 0 - 

4 1 0 1 0 0.33 

5 -1 0 1 0 - 

6 0 -1 0 1 0.32 

7 0 0 0 0 0.33 

8 0 0 0 0 0.33 

9 -1 0 0 1 - 

10 0 -1 1 0 - 

11 0 -1 -1 0 - 

12 -1 0 0 -1 0.17 

13 0 0 -1 -1 - 

14 0 0 -1 1 - 

15 0 0 0 0 0.33 

16 1 0 0 1 - 

17 -1 -1 0 0 0.28 

18 0 0 1 1 - 

19 0 0 0 0 0.33 

20 1 0 0 -1 - 

21 0 0 1 -1 0.33 

22 -1 1 0 0 0 

23 0 1 0 1 0.33 

24 0 -1 0 -1 0.32 

25 1 -1 0 0 - 

26 1 1 0 0 - 

27 0 1 1 0 - 

28 -1 0 -1 0 0.11 

29 0 1 0 -1 0.27 
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3  Design Matrix Evaluation 

3.1 Degrees of Freedom 

Design matrix evaluation showed that there were no aliases for the 2FI model and the 

degrees of freedom for the matrix are shown in Table 2.  As a rule of thumb, a minimum 

of 3 lack-of-fit df and 4 pure error df ensure a valid lack of fit test.  Fewer df tend to lead 

to a test that may not detect lack of fit [8]. 

Table 2: Degrees of Freedom for BBD Matrix 

Model 10 

Residuals 18 

Lack of Fit 14 

Pure Error 4 

Corr total 28 

 

3.2 Standard Errors 

The standard errors of the BBD design are shown in fig. 5.  The BBD design has large 

standard errors at the edges of the design space.  The BBD design is not capable of 

estimating the response parameter at the edges of the experimental space.  It is therefore 

advisable to work well within the design margins to achieve a greater degree of accuracy. 

 

 
Figure 5: 3D Plot of standard error of BBD design 

 

3.3 Variance Inflation Factor (VIF) 

The variance inflation factor (VIF) quantifies the severity of multicollinearity in an 

ordinary least squares regression analysis.  It provides an index that measures how much 

the variance of an estimated regression coefficient is increased because of collinearity.   
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Therefore, VIF values should be ideally 1 and values greater than 10 indicate that 

coefficients are poorly estimated due to multicollinearity [8]. The VIF values in Table 3, 

indicate that coefficients of individual demographic characteristics and their interactions 

are estimated adequately without multicollinearity for the BBD design. 

Table 3: Signal to noise ratio with the BBD design matrix 

Term BBD 

VIF Ri
2
 

A 1.0 0.0 

B 1.0 0.0 

C 1.0 0.0 

D 1.0 0.0 

E 1.0 0.0 

AB 1.0 0.0 

AC 1.0 0.0 

AD 1.0 0.0 

AE 1.0 0.0 

BC 1.0 0.0 

BD 1.0 0.0 

BE 1.0 0.0 

CD 1.0 0.0 

CE 1.0 0.0 

DE 1.0 0.0 

 

3.4 Ri- Squared 

In general, high Ri-squared values mean the terms are correlated with each other, leading 

to poor model.  For this experiment, low Ri-squared values were obtained for individual 

factors and their interactions as shown in Table 3. 

 

3.5 Fraction of Design Space (FDS) 

FDS curve (fig. 6) is the percentage of the design space volume containing a given standard 

error of prediction or less.  Flatter FDS curve means that the overall prediction error is 

constant. In general the larger the standard error of prediction, the less likely the results can 

be repeated, and the less likely that a significant effect will be detected. 
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Figure 6: FDS plot of the standard error over the BBD design space 

 

Fig. 6, it indicates that only 31% of the BBD design space is precise enough to predict the 

mean within +90. 

 

3.6 Variance Dispersion Graphs (VDGs) 

Variance dispersion graphs (VDGs) have recently become popular in aiding the choice of 

a response surface design [12].  Furthermore, variance dispersion graphs can be used to 

compare the performance of multiple designs for a specific models such as linear model, 

linear model with interaction terms, linear models with quadratic terms or for full 

quadratic model.  VDGs were developed by Giovannitti-Jensen and Myers in 1989 [12]. 
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3.7 Choice of Levels for the Factors 

Table 4: Factor Levels 

 

Factor 

Levels 

-1 0 1 

Parity  0 1 > 2 

Education 

(Grades) 

< 8 9-11 12-13 

Mother’sage 

(years) 

< 20 21-29 > 30 

Father’sage 

(years) 

< 24 25-33 > 34 

 

 

4  Main Results  

4.1 Model Fit Statistics 

4.1.1 Box Behnken Design 

a) Sequential Model Sum of Squares 

This technique shows the effect of increasing terms to the complexity of the total model. 

Table 5: Sequential Model Sum of Squares for the BBD Design 

Source Sum of Squares F-value P-value 

Mean vs. Total 1.13   

Linear vs. Mean 0.097 5.37 0.014 

2FI vs. Linear 0.044 49.83 0.000 

For the BBD, the probability (P-value) is lowest for the 2FI models at a significance level 

of 0.05. 

b) Model Summary Statistics 

Table 6: Model Summary Statistics 

Source Standard 

Deviation 

R
2
 R

2
 Adjusted PRESS Adeq. 

Precision 

Linear 0.067 0.68 0.56 0.15  

2FI 0.013 0.95 0.98 - 31.33 

 

The R
2
 statistics of the linear models are considerably lower than those of the two-factor 

interactions (2FI) models.  Therefore, the 2FI model has the lowest standard deviation, 

high R
2
 and low Predicted Residual Sum of Squares (PRESS), implying that the 2FI 

model best fits the data.  Statistically, high R
2
 values imply that a large proportion of 

variation in the observed values is explained by the model.   

Adeq.precision is used to measure the signal to noise ratio and a ratio greater than 4 is 

desirable indicating model can be used to navigate the design space.  The BBD design 

has an adeq. precision of 31.33 indicating an adequate signal.   
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4.1.2 Binary Logistic Regression 

In logistic regression, Deviance and Pearson’s chi-squared goodness-of-fit are measures 

used to compare the overall difference between observed and fitted values.  In addition, 

information criteria such as AKAIKE Information Criterion (AIC), Schwartz Criterion 

(SC) and negative log-likelihood, are used to measure goodness-of-fit for logistic 

regression models. 

a) Pearson’s Chi-Square test 

Table 7: Pearson values 

Criterion Value DF Value/DF Pr > ChiSq. 

Pearson 47.14 25 1.89 0.0047 

 

Pearson’s chi-square statistic includes the test for independence in two-way contingency 

tables.  This technique has been extended from generalized linear model theory to test 

for adequacy of the current fitted model.  Given a model with responses yi, weights wi, 

fitted means µi, variance function v(µ) and dispersion Ф =1, the Pearson goodness-of-fit 

is; 

ᵪ
2
 = ∑

          

      
                                                          (7) 

If the fitted model is correct and observations yi are approximately normal, then ᵪ
2 

is 

approximately distributed as ᵪ
2
on the residual degrees of freedom for the period.  

Therefore, Table 7 shows a desirable goodness-of-fit for the logistic regression model. 

b) Residual Deviance 

Table 8: Deviance values 

Criterion Value DF Value/DF Pr > ChiSq. 

Deviance 46.75 25 1.87 0.0052 

 

The other goodness-of-fit test is the residual deviance.  This is the log-likelihood ratio 

statistic for testing the fitted model against the saturated model in which there is a 

regression coefficient for every observation.   

D
2
 = 2{ln[Ls(β)] – ln [Lm(β)]}                                             (8) 

where; 

ln [Lm(β)] = maximized log-likelihood of the fitted model 

ln [Ls(β)] = maximized log-likelihood of the saturated model 

The deviance quantity compares the values predicted by the fitted model and those 

predicted by the most complete model we could fit.  A very large D
2
 value is evidence 

for model lack-of-fit.  However under specificity regularity conditions D
2
 converges 

asymptotically to a ᵪ
2
 distribution  with h degrees of freedom, where h is the difference 

between the number of parameters in the saturated model and the number of parameters in 

the model being considered; 

D
2     

   ᵪ
2
h                                                                              (9) 

The null hypothesis can be tested as follows; 

H0: βh = 0                                     
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H0 is rejected when: 

D
2
> ᵪ

2
1-α                                                                                        (10) 

α is fixed level of significance 

If the null hypothesis cannot be rejected, it can be concluded that the fitting of the model 

of interest is substantially similar to that of the most completed model that can be built.  

Therefore, from the Deviance table (Table 8) above, it can be concluded that the saturated 

model has a desirable goodness-of-fit.  The saturated model represents the largest model 

that can be fitted and leads to perfect prediction of the outcome of interest.   

c) AKAIKE Information Criterion (AIC) 

Table 9: AKAIKE Information Criterion (AIC) 

Criterion Intercept Only Intercept and Covariates 

AIC 18887.57 18189.01 

 

This technique was introduced by AKAIKE in 1973, as tool of optimal model selection 

[15]. 

AIC = -2logL + 2((k-1) + s)                                              (11) 

Where k is the number of levels of the dependent variable and s is the number of 

predictors in the model.  Therefore as the number of independent variables k included in 

the model increases, the lack-of-fit term increases while the penalty decreases.   

AIC is used for the comparison of models from different samples.  The model with the 

lowest AIC is considered best as it minimizes the difference from the given model to the 

‘true’ model.  From Table 9, it is evident that the model with intercept and covariates 

better fits the data compared to the intercept only model. 

d) Schwarz Criterion (SC) 

Table 10: Schwarz Criterion (SC) 

Criterion Intercept Only Intercept and Covariates 

SC 18895.28 18227.53 

 

Schwarz criterion was developed in 1978 as a model selection criterion.  The model was 

derived from a Bayesian modification of the AIC criterion [15].    

Schwarz criterion is defined as; 

SC= -2logL + ((k-1) + S) * log (∑fi)                                       (12) 

Where fi’s are the frequency values of the i
th
 observation, k is the number of levels of the 

dependent variable and S is the number of predictors in the model.  Like AIC, SC 

penalizes for the number of predictors in the model and the smallest SC is most desirable.  

Table 10 shows that the intercept and covariates model is better than the intercept only 

model. 

e) -2 logL 

Table 11: 2Log L 

Criterion Intercept Intercept and Covariates 

-2Log L 18885.57 18179.01 
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This is negative two times the log likelihood.  The -2logL is used in hypothesis testing 

for nested models. 

The intercept only model is the logistic regression estimate when all variables in the 

model are estimated at zero.  As shown in Table 11, the model with independent 

variables and the intercepts has lower -2logL value indicating that it is better than 

intercept only model.  Furthermore, the values for the three measures of model-fit are 

similar. 

 

4.2. ANOVA for 2FI Response Surface 

4.2.1 Box Behnken Design 

The ANOVA table (Table 12) for the BBD design confirms the adequacy of the 2FI 

model.  The model F-value of 88.29 for the BBD is significant with only a 0.01% chance 

of this value being due to noise.   

The BBD design confirms that the mother’s age has the greatest effect on the HIV status 

of antenatal clinic attendees.  The mother’s educational level was the second most 

important individual factor.  Also of note is the fact that the interaction of the mother’s 

age with father’s age and educational level significantly affects the HIV status of the 

antenatal clinic attendees. 

Table 12: ANOVA Results (BBD design) 

Source Sum of Squares F-value P-value 

Model 0.014 88.29 <0.0001 

Mother’s age 0.054 301.92 <0.0001 

Father’s age 0.0004 2.25 0.194 

Education 0.0046 25.60 0.004 

Parity 0.0009 5.06 0.074 

Mother’s 

age*Father’s age 

0.023 126.75 <0.0001 

Mother’s 

age*Education 

0.017 94.10 0.0002 

Mother’s age*Parity 0.001 6.51 0.051 

Father’s age*Parity 0.0009 5.06 0.074 

Education*Parity 0.0004 22.56 0.0051 

 

4.2.2 Binary Logistic Regression (BLR) 

a) Likelihood Ratio (LR), Wald and Score Tests 

The results of the LR, Wald and the Score Test for testing the joint significance of the 

explanatory variables are included in Table 13, below. 

Table 13: ANOVA Results (BLR) 

Test Chi-Square DF Pr>Chi-Square 

Likelihood Ratio 726.07 3 <0.0001 

Score 670.25 3 <0.0001 

Wald 628.26 3 <0.0001 

 

The likelihood ratio of 726.07 therefore confirms that the fitted model with intercept and 
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covariates is important and has a significant effect on the basic model with no predictors.  

The three hypothesis testing techniques (LR, Score and Wald Tests) confirm the effect of 

the addition of covariates to the basic model with intercept only.  In general, for large 

samples the LR is approximately equal to the Wald score, as shown in Table 13. 

 

4.3 Model Adequacy Checking 

Model adequacy checking is conducted to verify whether the fitted model provides an 

adequate approximation to the true system and to verify that none of the least squares 

regression assumptions are violated.  Extrapolation and optimization of a fitted response 

surface will give misleading results unless the model is an adequate fit. 

There are many statistical tools for model validation, but the primary tool for most process 

modeling applications is graphical residual analysis.   

The residual plots assist in examining the underlying statistical assumptions about 

residuals.  Therefore residual analysis is a useful class of techniques for the evaluation of 

the goodness of a fitted model.   

 

4.3.1  Residual Analysis 

Box Behnken Design 

a) Normality Probability Plot of Residuals 

A normal probability plot of residuals can be used to check the normality assumption.  If 

the residuals plot approximates a straight line, then the normality assumption is satisfied. 

Furtherrmore, the normal plot of residuals as shown in Fig. 11, evaluates whether there 

are outliers in the dataset.  All the points lie on the diagonal, implying that the residuals 

constitute normally distributed noise.   
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Figure 8:Normal Plot of Residuals for the BBD Design 
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b) Plot of Residuals vs Fitted Response 

The residuals should scatter randomly suggesting that the variance of the original 

observations is constant for all values of the response.  However, if the variance of the 

response depends on the mean level of the response, the shape of the plot tends to be 

funnel-shaped, suggesting a need for a transformation of the response variable. 
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Figure 9: Plot of Residuals vs Fiited Response for the BBD design 

The plot of the residuals vs fitted response for the BBD design (Fig. 9) suggests that 

variance of the original observations is constant. 

c) Plot of Residuals vs Observation order 

Non random patterns on these plots indicate model inadequacy.  This might require 

transformation to stabilize the situation. 
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Figure 10: Plot of Residuals vs Observation order for the BBD design 
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Binary Logistic Regression 

The stepwise regression technique on SAS calculates a residual Chi-square score statistic 

and reports the statistic, its degrees of freedom and the p-value.  The residual chi-square 

is the chi-square score statistic testing the null hypothesis.  For the stepwise regression 

procedure, a residual chi-square test is conducted for each parameter added onto the 

model.   

The null hypothesis is that the addition of each parameter has no effect on the model and 

this is due to resdual influence.  However the results in the Table 14 below indicates that 

residual effect has no effect on the addition of parameter to the model. 

Table14: Residual Analysis 

Parameter added Residual Chi-Square 

Chi-Square DF Pr>Chi-Square 

Intercept 684.44 10 <0.0001 

Mother’s age 79.51 9 <0.0001 

Education 40.28 8 <0.0001 

Mother’s 

age*Education 

14.10 7 0.0495 

 

a) Deviance Residuals 

The deviance residual is the measure of deviance contributed from each observation and 

is given by; 

rDi = sign (ri) √(di)                                                      (13) 

where Di is the individual deviance contribution.  The deviance residuals can be used to 

check the model fit at each observation for generalized linear models.  Therefore 

deviance residual is used to identify poorly fitting observations.  Observations with a 

deviance residual in excess of two may indicate lack-of-fit.  Fig. 11, shows that there is 

no lack-of-fit. 

 
Figure 11: Deviance Residuals from the Logistic regression 

 

b) Pearson Residuals 

The Pearson residual is the raw residual divided by the square root of the variance 
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function v (µ).  The Pearson residual is the individual contribution to the Pearson  ᵪ
2 

statistic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Pearson Residuals from the Logistic regression 

Like Deviance residuals, the Pearson residuals can be used to check the model fit at each 

observation for generalized linear models. 

4.3.2 Influence Diagnosis 

Parameter estimates or predictions may depend more on the influential subset than on the 

majority of the data.  It is therefore important to locate these influential points and assess 

their impact on the model.  The Leverage of points test was used for the influential 

diagnosis.   

Box Behnken Design 

a) Leverage Points 

This is a measure of the disposition of points on the x-space.  Some observations tend to 

have disproportionate leverage on the parameter estimates, the predicted values and the 

summary statistics [5].  Figure 13 shows that the leverage of the points is below one. 
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Figure 13: Plot of Leverage of points for the BBD design 
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Binary Logistic Regression 

a) Leverage Plot 

The leverage plot (Fig. 14) for the logistic regression shows that very few observations 

have a disproportionate leverage on the parameter estimates on the predicted values. 

 
Figure 14: Plot of Leverage Points for the BLR 

 

 

5. Final Equations of the Response Surface Models 

5.1 Box Behnken Design 

Table 15: Final Equation from BBD Response Surface 

Box Behnken Design 

HIV = 

Factors 

+0.32  

+0.18 Mother’s age 

-0.02 Father’s age 

-0.07 Education 

+0.02 Parity 

+0.13 Mother’s age*Father’s age 

-0.10 Mother’s age*Education 

+0.05 Mother’s age*Parity 

+0.02 Father’s age*Parity 
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5.1.1 Main Effects Model 

A main effects plot (Fig.16) is a plot of the means of the response variable for each level 

of a factor, allowing for the determination of which main effects are important.  From 

the main effects plot, it is evident that HIV risk increases steeply as the mother’s age and 

her educational level increase from the low level to the middle level. 
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Figure 16: Main Effects Plot 

The co-efficient plot derived from the final response surface equation in Table 15, clearly 

indicates that the mother’s age and her educational level are the single most important 

determinants of the HIV status of an antenatal clinic attendees.  Coefficient plots represent 

the relative importance of each variable on the model equation. 

 

5.1.2 Interaction Effects Model 
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Figure 17: Interactions Plot 
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Assuming the sparsity-of-effects principle that states that a system is usually dominated 

by main effects and low-order interactions, an interactions plot as shown in Fig. 17 was 

generated.  On the basis of sparsity-of-effects principle, the research assumed that main 

effects and two-factor interactions are the most significant responses in this experimental 

design.  In other words, higher order interactions such as three factor interactions are 

rare.  This phenomenon is sometimes referred to as the hierarchical ordering principle.  

The interactions plot derived from the design shows that the interaction of the mother’s 

age with the other demographic characteristics has a significant effect on the HIV risk of 

pregnant mothers.  These results are confirmed by the co-efficient plot of the main and 

interactions effects (Fig. 18). 

 
Figure 18: Coefficient Plot of Main and Interaction Effects 

 

5.2 Logistic Regression  

5.2.1 Main Effects Model 

The main effects model was produced using HIV status as the response variable at two 

levels, HIV negative (0) and HIV positive (1).  The model generated was based on the 

binary logit with Fisher’s scoring as the optimization technique.  In total 12 071 HIV 

positive and 4 312 HIV negative individuals were studied. Maximum likelihood technique 

was employed to develop estimates of the intercept and the model parameters. 

Table 13: Maximum Likelihood Estimates 

Parameter Estimate Standard Error Wald ᵪ2 Pr> ᵪ2 

Intercept 0.77 0.02 1189 <0.001 

Parity -0.06 0.03 3.65 0.06 

Mother’s age -0.76 0.06 144.48 <0.001 

Father’s age 0.07 0.03 5.64 0.018 

Education -0.28 0.05 28.21 <0.001 
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The co-efficient plot (Fig. 19) derived from the maximum likelihood estimate, confirms the 

results obtained by the Box Behnken Design, that the mother’s age and her educational 

level are the single most important determinants of the HIV status of an antenatal clinic 

attendee.   

 
Figure 19: Coefficient Plot of the Main Effects 

 

5.2.2 Interaction Effects Model using Stepwise Regression 

However the use of stepwise regression only found the mother’s age and her educational 

level to be worth including in the model at a significance level of 0.05.  Furthermore, 

stepwise regression demonstrated that the interaction of the mother’s age and her 

educational level had a significant effect on the HIV risk. 

 
Figure 20: Coefficient Plot of the Main and Interaction Effects based on ML method 
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6  3D Response Surface plot  

Fig. 21 shows the 3D plots of the influences of mother’s age and her educational level on 

the HIV risk of pregnant mothers.  The response surface plots indicate that the HIV risk 

increases with the age of the mother, however the increase in HIV risk is lower for the 

educated woman compared to their less educated counterparts.  The latter observation 

could be attributed to increased HIV/AIDS awareness in the educated groups.  
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Figure 21: 3D Response Surface plot of BBD Design 

 

 

7  Discussion 

A Box Behnken Design was compared with a Binary Logistic Regression with 

respect to the capability to determine the effect of demographic characteristics on 

HIV risk.  The two techniques illustrated that the mother’s age and her 

educational level had the greatest effect on her HIV status.  
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