
Journal of Applied Mathematics and Bioinformatics, vol. 9, no. 2, 2019, 17-45  

ISSN: 1792-6602(print), 1792- 6939(online) 

Scientific Press International Limited 

 

 

 

Mathematical Model of the Impact of Retroviral 

Drugs at the early stage of Infections in control 

program of HIV/AIDS. 
 

 

Bruno O. Onyemegbulem1, Joel N. Ndam2, Vincent Ele Asor3 and Aguiyi J.C4 

 

 

Abstract 
 

In this work we developed a compartmental model of HIV/AIDS. The results of this 

study provide some insights on the impact of early treatment on disease 

transmission dynamics of HIV/AIDS. The stability of the disease-free equilibrium 

was investigated, condition for the stability of the disease-free equilibrium were 

determined. We also carried out sensitivity analysis to determine the relevant 

parameter control of the disease. Furthermore, qualitative analysis of the model was 

investigated using Runge Kutta scheme. From our above results, we found that 

treatment that commerce within 72hours of risky exposure is the best way to stop 

HIV proliferation. 
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1. Introduction  

HIV/AIDS have remained one of the problems that has led to multidimensional 

crisis in the health sector [1-5]. Statistics provided by Joint United Nations 

Programme on HIV/AIDS (UNAIDS) shows that an estimate of 22.4 

million(20.8million-24.1million) people (women account for approximate of 60%) 

were living with HIV in sub-Saharan Africa by the end of 2008. 68% and 91% of 

new HIV infections was recorded among children and adults respectively [6-8]. As 

of 2006, UNAIDS recorded 3.1 million deaths as a result of AIDS, 4.9 million 

people infected with HIV,40.3 million of people living with the virus worldwide 

[9,10]. After 10 years, UNAIDS recorded more than 36.7 million people living with 

HIV by the end of 2016 [9,10]. The other major challenge is that many people who 

are affected in most parts of sub-Sahara Africa, Europe and Asia are not even aware 

of their status and some that are aware of their infection do not always take 

necessary precautions when engaging in sexual interactions [4]. The challenge 

posed by the number of cases calls for urgent need to come up with strategies to 

prevent and control the spread of HIV/AIDS. In a bid to address this menace, the 

World health organization WHO introduced HIV medication regimen called 

antiretroviral therapy (ART) to prolong the lives of those already infected with the 

disease.  Moreover, what happens when someone has been exposed to HIV? 

Unfortunately, most people don’t know the efficacy of anti-HIV drugs as an option 

in the event of a high-risk behavior that could result to being infected [11]. 

Research conducted by [12, 13] provided evidence on effectiveness of post 

exposure prophylaxis against HIV, on compliance to treatment initiated within the 

period of 72 hours of risky exposure. Research carried out by [15] significantly 

shows the impact of anti-retroviral therapy in reducing the risk of HIV transmission 

from mother-to child during pregnancy, labor and child birth. On this account, Post 

Exposure Prophylaxis is administered to HIV pregnant women to reduce their 

chance of transmitting the virus to their baby via breast feeding and during child 

delivery “The dramatic success of the prevention of mother-to child transmission 

with the use of anti- HIV drugs suggests that PEP may also provide protection 

against other routes of HIV exposure” [11]. Research conducted by [16,17,18] 

shows that PEP reduces risk of HIV infection based on initiation timing and to the 

degree in which the exposed comply to treatment. 

Post-exposure prophylaxis is not cure for HIV, its servers as HIV prevention when 

30 days treatment course is initiated within 72 hours of exposure to HIV. On the 

other hand, if HIV is diagnosed in the course of treatment, PEP is changed to 

HAART (Highly Active Antiretroviral Therapy) to treat the person’s HIV infection.  

Once HIV enters the body, it attacks the class of lymphocytes or white blood cells 

known as CD4+ T Cells. Antibodies and cytotoxic lymphocytes are being produced 

as a response to the virus which is known as sero-conversion.  Because of the 

central role of CD4+ T cells in immune regulation, their depletion has widespread 

deleterious effects on the functioning of the immune system and leads to 

immunodeficiency that characterizes AIDS [20]. When the age of infection 
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increases, HIV infection leads to a severe reduction in the number of T-helper cells 

which are responsible for helping fight the diseases. If antiretroviral treatment is 

administered immediately after exposure, referred to as post-exposure prophylaxis, 

it reduces the risk of infection if begun as quickly as possible [21,12, 13,16,17,18]. 

“In the absence of HAART, progression from HIV infection to AIDS has been 

observed to occur at an average of between nine to ten years and the median survival 

time after developing AIDS is only 9.2 months”. This means that HAART is 

encouraged to start as early as possible to promote life expectancy [12,13,17]. 

Mathematical modelling over the years have been used to understand diseases 

dynamics, such as HIV/AIDS, Malaria and Tuberculosis., and plays an important 

role in the better understanding of epidemiological patterns for disease control [4]. 

Many studies have been developed to analyze mathematically the impact of the 

screening, treatment and free giving of anti-retroviral therapy on the spread of HIV 

infections [21]. 

 

Maimunah, Dipo Aldila (2018) [22]. Established a deterministic mathematical 

model to study the spread of HIV with an ART treatment intervention. The ART 

intervention in the model was only given to the infected humans in a chronic 

infected category. The results from the model established the importance of 

treatment to infected population.  

 

Marsudi Et al (2017) [1] presented a deterministic model for the transmission 

dynamics of HIV/AIDS in which they concluded that condoms campaigns and 

antiretroviral therapy were both important for management of the disease.  

Omondi Et al (2018) [22] on the other hand employed a deterministic model to 

provide a quantification of HIV prevention, testing and treatment with ART as 

public health measure to fight HIV infection. This study as well presented a 

deterministic model for predicting the epidemiological trends of HIV that exploits 

HIV surveillance data to model the disease evolution in Kenya.  

 

Su, Et al (2016) [23] constructed a deterministic transmission model of HIV using 

surveillance and treatment data for the period 2005-2008. The authors then 

validated the model by comparing its predicted value of HIV prevalence in 2010 to 

the prevalence data of 2010. 

 

Bhunu etal (2011) [24] presented a mathematical analysis of an HIV/AIDS model 

on Impact of educational programs and abstinence in sub Saharan Africa. They 

formulated a deterministic HIV/AIDS model to theoretically investigate how 

counselling and testing coupled with the resulting decrease in sexual activity could 

affect the HIV epidemic in resource-limited communities with the conclusion that 

formalized information, education, and communication strategy to be given 

prominence in educational campaigns 

In a similar research, Moffat etal (2017) [8] examines a mathematical modelling 

and analysis of HIV/AIDS and transmission dynamics influenced by public health 
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education campaign. Some parameter values of the system exhibit steady state 

bifurcation, with conclusion that infective population increases with respect to 

increase in rate of transmission. 

 

R. Safiel et al (2012) [25] used ordinary nonlinear differential equations to assess 

the effects of vaccination on the spread of HIV/AIDS in homogenous populations. 

From this study, it was concluded that the most effective way with incidence rate 

and lower prevalence rate is population education that makes them aware of the 

consequences of free sex and the need for preventive measures against infection. 

Among many others.  

None of these existing models considered impact of early treatment within 72hours 

of exposure. On this note, we intend to examine the impact of early treatment of 

someone who has been exposed to an event of a high- risk behavior that could result 

in being exposed to HIV. 

We built a mathematical model to explore the impact of initiation timing of PEP in 

order to address HIV infection. The model we consider in this paper is an improved 

model of [6,1,25,22] by the including (Exposed class, Treated un-infectives and 

Recovered class) with the assumption that individuals exposed to HIV recover from 

treatment if they enroll and adhere strictly to PEP 30days course   initiated within 

72hours of exposure.  In this study, we intend to qualitatively analyze the nonlinear 

system in order to determine the positivity of the solution, sensitivity of parameters, 

the conditions for existence and the stability of the disease-free equilibrium points. 

Analysis of the model will allow us to determine the impact of early treatment on 

the transmission of HIV infection in a population.  

The remaining parts of the paper are organized as follows: In section 2, we 

developed a mathematical model that describes the dynamics of HIV/AIDS and the 

underlying assumptions. Qualitative analysis of the nonlinear system will be carried 

out in order to determine the positivity and boundedness of the solution as well as 

existence and uniqueness of solutions. In section 3, we analyze the model using next 

generation matrix approach and Routh-Hurwitz criterion to determine stability of 

the disease-free equilibrium. Sensitivity analysis will be carried out using 

normalized forward index, to determine relevant parameters in the control of HIV. 

In section 4, we will quantitatively analyze the model using fourth order of Runge 

Kutta scheme. Our conclusions are presented in Section 5. 

 

2. Model Formulation  

2.1 Basic Assumptions (without loss of generality) 

• Susceptible population is generated by two sources; birth rate and 

immigration rate. 

• 
𝑑𝐸

𝑑𝑡
≤ 72 ℎ𝑜𝑢𝑟𝑠 

• No individual with AIDS is receiving antiretroviral therapy. 
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• The disease is only transmitted through sexual intercourse (we have omitted 

transfusion and mother-to-child transmission). 

• Those in the AIDS class are assumed to be too ill to have sex or they are 

isolated. 

• The force of infection is assumed to be frequency- dependent. 

• Infective will first be unaware before knowing their status, probably after 

going for test. 

• Exposed individual that are sensitive early move to treated class due to early 

notification. This is normally within 72 hours. This notification is made 

known by an Infective who already knows his/her HIV Status. 

• 
1 2 3     explained in table 1 

• No permanent immunity after treatment. 

• The population is heterogeneous, i.e. in a broad sense, diversity, variety. 

 

2.2 Statement of The Problem 

The development to reduce the spread of HIV/AIDS infections necessitates decisive 

measures to curb the epidemic. Sustaining minimized number of humans with 

incidence of HIV with adequate control can be attained by developing a suitable 

mathematical model to enable us understand dynamics and control of the epidemic. 

The mathematical analysis of the compartmental models leads us to eight coupled 

systems of nonlinear ordinary differential equations. 

In this section we develop a compartmental bio-mathematical model to examine the 

impact of retroviral drugs at the early stage of infection in control program of 

HIV/AIDS  

The total population at time t  is denoted by ( )N t and the model has eight 

compartments of susceptible ( )S t , Exposed ( )E t , Treated Un-infectives ( )Z t , 

Recovered ( )R t , Unscreened infective ( )uI t , Screened infective ( )SI t , Treated 

infective ( )TI t , AIDS class ( )A t .  

 

Where ( )N t  is given as  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u S TN t S t E t Z t R t I t I t I t A t= + + + + + + +  

 

The susceptible class ( )S t , are individuals that have not contacted the infection but 

stand the chance of being infected through sexual contacts with infected individuals. 

( )uI t  represents the number of unscreened infectives. ( )SI t  represents the 

number of HIV positive individuals that are diagnosed of infection by way of 
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medical screening. ( )TI t  represents the number of HIV positive individuals in pre-

aids stage receiving antiretroviral therapy. ( )A t represents the number of 

individuals with full-blown AIDS. Z( )t  represents the number of individuals that 

seek treatment within 72hours of risky exposure. ( )R t  represents individuals that 

have recovered as a result of treatment. 

 

Description of variables and parameters are provided in table 1 and 2 below 

 

Table 1: Description of Variables 

Symbol Description 

( )S t  Susceptible Population at time t. 

( )Z t  Treated Un-infectives 

( )R t  Recovered Individuals. 

( )E t  Exposed Population. 

( )uI t  Unscreened Infectives population at time t 

( )sI t  Screened Infectives Population at time t 

( )TI t  Treated Infectives 

( )A t  AIDS patients at time t 

( )N t
 

Total population at time t 
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Table 2: Parameters of the model 

 

 

 

Symbol Description 

  Birth and immigrant rate. 

  Progression rate of unaware infected to AIDS class. 

  Rate at which HIV infectives on treatment develop AIDS. 

1  The rate at which unaware infective transmit infection. 

2  The rate at which screened infective transmit infection. 

3  Transmission rate of treated infectives. 

  Force of infection. 

  Rate at which recovered individuals become susceptible. 

c Number of sexual partners. 
q  Progression rate at which screened infectives move to AIDS class. 

1k  Early treatment rate before 72hours of HIV exposure. 

2k
 

Recovery rate. 

3k  Rate at which infectives are recruited. 

g
 

Disease induced death rate. 

  Treatment rate of infectives that seek treatment after 72hours of 

HIV exposure. 

  Screening rate. 

  Immunity loss rate of uninfected individuals. 
  Natural death rate 
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Figure 1: Compartmental Model of HIV 

 

2.3 THE GOVERNING EQUATIONS FOR THE MODEL 

dS
S R S

dt
  = − + −                    (1) 

3 1

dE
S k E k E E

dt
 = − − −                    (2) 

1 2

dZ
k E k Z Z

dt
= − −                        (3) 

2

dR
k Z R R

dt
 = − −                            (4) 

3
u

u u u

dI
k E I I I

dt
  = − − −                         (5) 

s
u S S S

dI
I I qI I

dt
  = − − −                   (6) 

T
S T T

dI
I I I

dt
  = − −                        (7) 

( )u S T

dA
I qI I g A

dt
  = + + − +                      (8) 

 

S E
uI SI TI




3k  






q





1k

Z



A

g +

R

2k
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Where  , is the force of infection given by 

 

1 2 3u S TI I I
c

N

  


+ + 
=  

 
,   u S TN S E Z R I I I A= + + + + + + + , ( )3 11k k= −  

 

Adding the system of equations (1-8) we get 

 

u S T
dI dI dIdN dS dE dZ dR dA

N
dt dt dt dt dt dt dt dt dt

= + + + + + + +  −                 (9) 

 

2.4 Invariant region 

2.4.1 Proposition  

There exists a domain   in which the solution set  , ,Z, , , , ,u S TS E R I I I A is 

contained. 

Proof: given the solution set  , ,Z, , , , ,u S TS E R I I I A with non-negative initial 

condition. 

dN
N

dt
 −              (10) 

Solving the inequality, 

exp( )N K t −  − , K is constant.  

 

Take limit as t →  

N



   

 

The feasible region for the model (1-8) confined is given by       

( ) 8, , Z, , , , , : , , Z, , , , , 0 :u S T u S TS E R I I I A S E R I I I A N


+

 
 =    

 
, which is 

positively invariant. 

 

It remains to show that the solutions of system (1-8) are nonnegative in   for any 

time t > 0 since the model represents human populations. 

 

2.5 Positivity and boundedness of solutions 

HIV/AIDS transmition model (1-8) is epidemiological meaningful when solutions 

with non-negative initial data  remain non-negative for all time. 

Theorem 2.  The solutions , , Z, , , , ,u S TS E R I I I A  of the HIV/AIDS model (1-8) 

with non-negative initial data in the feasible domain  , remain nonnegative in   

for all t > 0. 
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Proof: Proving using idea of [26]  

From equation (1-8)  

( )
dS

S R S S
dt

    = − + −  − +  

Integrating we have, ( )( ) 0 exp( ( ) ) 0S t S t  − +   

Following the above procedure, from equations (1-8), we obtain respectively the 

positivity conditions; 

 

( ) 3 1( ) 0 exp( ( ) ) 0E t E k k t − + +  , ( ) 2Z( ) 0 exp( ( ) ) 0t Z k t − +   

( )( ) 0 exp( ( ) ) 0R t R t  − +  , ( )( ) 0 exp( ( )) 0u uI t I t   − + +   

( )( ) 0 exp( ( )) 0S SI t I q t  − + +  , ( )( ) 0 (exp ( ) ) 0T TI t I t  − +   

( )( ) 0 {exp ( ) } 0A t A g t − +   

 

Furthermore, we need to show that the region   is positively invariant. RHS of  

(10) is bounded by N− it follows that 0
dN

dt
  if ( )N t




 , using a standard 

comparison theorem [26] 

 

We have that,              

( ) (1 exp( ) (0)exp( )N t t N t 



 − − + −  

If (0)N



  then ( )N t




  which implies that   is positively invariant. Then 

the solution enters  in finite time or ( )N t  approaches 



 asymptotically as the 

infected variable , , ,u S TI I I A  approaches zero. 

 

2.6 Existence and Uniqueness of Solutions for the Model 

 

Theorem 3: let Ddenote the region 
0t t a−  , 

0x x b−    

 

where 
1 2 3( , , ,........., )nx x x x x= and suppose that ( , )f t x satisfies the Lipschitz 

condition 
1 2 1 2( , ) ( , )f t x f t x k x x−  − .  

Whenever the pairs 1( , )t x  and 2( , )t x belong to D , where k is a positive constant, 

then there exist a constant 0  such that there exist unique continuous vector 

solution ( )x t  of the system in the interval 
0t t −  .  
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It is important to note that the condition is satisfied by requirement that i

j

f

x




, 

(1,2...........)i = , be continuous and bounded in D [27].  

 

Theorem 4: let D  denote the region 0 ≤ 𝜌 ≤.  

Then the system of equations has a unique solution, if i

j

f

x




, , 1,2,..,8i j =  are 

continuous and bounded in D . Using Lipchitz condition to verify the existence 

and uniqueness of the system to equation (1-8). 

Let 

1 ( )f R S  = + − +                                             (11)

2 3 1( )f S k k E = − + +                                            (12) 

3 1 2( ) Zf k E k = − +                                               (13) 

4 2f k Z R R = − −                                               (14) 

5 3 ( ( )) uf k E I  = + − + +                                          (15) 

5 ( ( ))u Sf I q I  = + − + +                                        (16) 

6 ( )S Tf I I  = − +                                               (17) 

7 ( )u S Tf I qI I g A  = + + − +                                      (18) 

 

  
 

The partial derivative of   1f   yield      

1f

S
 


= − −  


;    1 0 ;

f

E


=  


 1 ;

f

R



=  



1 0 ;
f

Z


=  


           

1 0 ;
u

f

I


=  



1 0 ;
S

f

I


=  



1 0 ;
T

f

I


=  


1 0 .

f

A


=  


 

As clearly shown above, the partial derivatives of the whole system of equations 

exist, they are finite and bounded. Hence by theorem 1, the whole model system 

has a unique solution. 

3. Mathematical Analysis of the Model 

In this section we qualitatively analyze the nonlinear system (1-8) to enable us to 

determine the stability of the disease-free equilibrium points and the sensitivity of 

the parameters. Analysis of the model enables determine if the disease become 

endemic in a population or not.  
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3.1 Disease Free Equilibrium 

We want to study how the population changes when it is disease free. We assume 

the absence of HIV; therefore, we equate. , , , , , , , 0u A TS E T R I I I A = . Hence the 

disease-free equilibrium is given as 

* * * * * * *( , , Z , , , , , ) ,0,0,0,0,0,0,0 , 0, 0u S TS E R I I I A 


  
=    
 

. 

The DFE indicates that in the absence of HIV, the susceptible changes in 

proportion to the ratio of their recruitment rate to the death rate. 

3.2 Reproduction Ratio 

An important notion in epidemiological models is the basic reproduction number, 

usually denoted by
0R . This number can be understood as the average number of 

secondary infections by an infective individual during members of the population 

are susceptible.  It is an important parameter that gives us whether an infection will 

spread through the population or not [26].  

To obtain 0R  for model (1-8), we use the next-generation matrix technique 

described in [28]. 

 

Let ( , , , , , )T

u S Tx E I I I A= . Then model (1-8) can be written as 

( ) ( )
dx

F x V x
dt

= − , where  

1 2 3

0
( )

0

0

0

u S T
I I I

c c c
N N N

F x

  
 

+ + 
 
 

=  
 
 
 
 

  and   

 

3 1

3

( )

( )

( ) ( )

( )

( )

u

S u

T S

u S T

k k E

I k E

V x q I I

I I

g A I qI I



  

  

  

  

+ + 
 

+ + − 
 = + + −
 

+ − 
 + − − − 
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Finding the Jacobian matrix of F and V at the disease-free equilibrium point     
 

0 ,0,0,0,0,0,0,0 , 0E 


 
=  
 

.  

 

We obtain 

               

1 2 30 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

c c c

F

   
 
 
 =
 
 
 
 

  and  

 

  

3 1

3

0 0 0 0

( ) 0 0 0

0 ( ) 0 0

0 0 ( ) 0

0

k k

k

V q

q g



  

  

  

  

+ + 
 

− + + 
 = − + +
 

− + 
 − − − + 

 

 

 

 

The basic reproduction number is given by 
1

0 ( )R FV −= , where   is the 

spectral radius of the product 
1

0R FV −= for the model (1-8), we arrive at  

 

          
1 3 3 3 2 3

0

3 1

( )( ) ( )

( )( )( )( )

q c k c k c k
R

k k q

          

       

+ + + + + +
=

+ + + + + + +
       (19) 

 

1 3

3 1( )( )uI

c k
R

k k



   
=

+ + + +
                     (20)            

   

 

           2 3

3 1( )( )( )SI

c k
R

k k q

 

     
=

+ + + + + +
                    (21) 

 

           3 3

3 1( )( )( )( )TI

c k
R

k k q

 

       
=

+ + + + + + +
            (22) 

 

0 U S TI I IR R R R= + +  
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From the equations (18)-(20) above, it is clear that 

 

U S TI I IR R R   

which implies that unaware infectives UI  have a significant contribution on the 

transmission of the HIV/AIDS infection followed by Screened Infectives SI  and 

lastly treated infectives TI  [1]. 

 

3.3 Stability Analysis of the Model 

Theorem 5: The disease-free state, 0E , is locally asymptotically stable if 0 1R 

and unstable if 0 1R  . 

Proof 

We analyze the stability of the equilibrium point  * * * * * * *

0 ( , , Z , , , , )u S TE S E I I I A=  

by inserting the value of  

* * * * * * *

0 ( , , Z , , , , ) ,0,0,0,0,0,0 , 0u S TE S E I I I A 


 
= =  

 
  

into the Jacobian matrix, we have: 

 

11 14 15 16 17

22 25 26 27

32 33

43 44

0

52 55

65 66

76 77

85 86 87 88

0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
( )

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

J J J J J

J J J J

J J

J J
J E

J J

J J

J J

J J J J

 
 
 
 
 
 =
 
 
 
 
 
 
 

 

 

Where 11J = − , 14J = , 15 1( )J c= − , 16 2( )J c= − , 17 3( )J c= −  , 

22 3 1( )J k k = − + + 25 1J c= , 26 2J c= , 27 3J c= , 32 1J k= , 33 2( )J k = − + , 

43 2J k= , 44 ( )J  = − + , 52 3J k= 55 ( )J   = − + + , 65J = , 66 ( )J q = − + + , 

76J = , 77 ( )J  = − + , 85J = , 86J q= , 87J = , 88 ( )J g = − + . 
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We need to show that all the eigenvalues of 0( )J E  are negative. The first, eighth 

columns contain only the diagonal terms which form the two negative terms −

and ( )g − + , the other six eigenvalues can be obtained from the submatrix, 

1 0( )J E , formed by excluding the first and the eighth rows and columns of 0( )J E , 

hence we have: 

           

3 1 1 2 3

1 2

2

1 0

3

( ) 0 0

( ) 0 0 0 0

0 ( ) 0 0 0
( )

0 0 ( ) 0 0

0 0 0 ( ) 0

0 0 0 0 ( )

k k c c c

k k

k
J E

k

q

   



 

  

  

  

− + + 
 

− + 
 − +

=  
− + + 

 − + +
  − + 

 

 

In the same way, 

 

( )

31 2
3 1

1 2

2 0

3

( ) 0

( ) 0 0 0

0 ( ) 0 0

0 0 ( ) 0

0 0 0 ( )

cc c
k k

k k
J E

k

q

 
 

  



   

   

   

 
− + + − 
 

− + 
=  

− + + − 
 − + + −
 

− + − 

 

   

            

( )

3 1 1 2 3

3

3 0

( )

( ) 0 0

0 ( ) 0

0 0 ( )

k k c c c

k
J E

q

    

   

   

   

− + + − 
 

− + + − =
 − + + −
 

− + − 

 

 

The eigenvalues of the matrix ( )3 0J E  are the roots of the characteristic’s 

equation. 

     4 4 3 3 2 2 1 0 0A A A A A   + + + + =                                (23) 

Where  

4 1A =  
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3 1 2 3 4A B B B B= + + +  

2 1 2 3 4 2 3 1 4 2 4 1 3( ) ( )A B B B B B B B B B B c k= + + + + + −  

( )1 1 2 3 4 1 2 3 4 1 3 4 3 2 3( ) ( ) ( )A B B B B B B B B c k B B c k  = + + + − + +  

( )0 1 2 3 4 1 3 3 3 2 3B ( )( ) ( )A B B B q c k c k c k          = − + + + + + +  

 

Where 1 3 1B k k = + + , 2B   = + + , 3B q = + + , 4B  = + . 

Further manipulation of 0A  in terms of the reproduction number, 0R , yields 

0 01A R= −  

Evaluating the above equation  we have that the coefficients iA  are positive; 

4 0A  ; 3 0A  ; 2 0A  ; 1 0A  ; 0 0A  . And 4 4 3 3 2 2 1 0 0A A A A A   + + + + = . 

From 0 01A R= −  it is easy to see that 0 1R  . Computing the  Routh Hurwitz 

matrices for the polynomial (20) , we find that  

1 3 0H A=   , 
3 4

2

1 2

0
A A

H
A A

=  ,  

3 4

3 1 2 3

0 1

0

0

0

A A

H A A A

A A

=  , and 

3 4

1 2 3 4

4

0 1 2

0

0 0

0
0

0 0 0

A A

A A A A
H

A A A

A

=   

Since all the coefficients iA  are positive and matrix 0iH   for 0,1,2,3,4.i = ,   

eigenvalues of the Jacobian matrix 0( )J E have negative real parts when 0 1R  . 

Routh-Hurwitz condition [30] implies the disease-free equilibrium point is locally 

asymptotically stable. 

3.4 Sensitivity Analysis 

In this section, we carry out the Sensitivity Analysis (SA) of the basic reproduction 

number 0R  with respect to the model parameters to help us know the parameters 

that have high impact on the disease transmission.  We used the normalized 

forward sensitivity index of a variable to parameter approach used in [31]. 

We compute the sensitivity of 0R  with respect to each of the parameters described 

in table 3.  
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Using the formula                                             

                         
m

n

m n

n m



= 


 

 

Where n is the variable, and m is the parameters. 

 

 
0 2 3 1 3

2 3 3 3 1 3

( )
0.00396

( ) ( )( ) ( )

R ck ck q

ck ck ck q


      


            

+ + +
= − = −

+ + + + + + +
 

 

 

0

1

1 3

2 3 3 3 1 3

( )( )
0.4008

( ) ( )( )

R ck q

ck ck ck q


    


          

+ + +
= =

+ + + + + +
 

 

 

0

3

3 3

2 3 3 3 1 3

0.4008
( ) ( )( )

R ck

ck ck ck q


 


          
= =

+ + + + + +
 

 

 

0 1 3

2 3 3 3 1 3

( )
0.0109

( ) ( )( )

R

q

ck qq

q ck ck ck q

  


            

+
= − =

+ + + + + + + +
 

 

 
0 3 3 1 3

2 3 3 3 1 3

( )
0.1329

( ) ( )( ) ( )

R ck ck

ck ck ck q q


      


            

+ +
= − = −

+ + + + + + + +
 

 

 
0 2 3 3 3

2 3 3 3 1 3

( )
0.16292

( ) ( )( )

R ck ck

ck ck ck q


     


             

+ +
= − =

+ + + + + + + +
 

 

0

3

3

1 3

1 0.3909
R

k

k

k k



= − =

+ +
 

 

0

1

1

1 3

0.30
R

k

k

k k



= − = −

+ +
 

 

0 0.4966
R






  
− = −

+ +
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Table 3: Sensitivity Index of Parameters 

 

Table 3 above shows the positive and negative impact of each parameters of the 

reproduction ratio. Thus increasing (decreasing) the indices of those parameters 

with positive sign ( 
1 , 3 , q , 3k ) while others are kept constant, reduces or 

increases 0R . That means increasing 
1 and 3  by 10% increases(decreases)  

0R by 4%. 

Remark: Sensitivity indices of 
0R were evaluated at the baseline parameter values 

of table 4 below. 

 

4. Numerical Simulation 

In this section, the behavior of the model system (1-8) was investigated numerically 

using a fourth order Runge-Kutta scheme. Numerical simulations were performed 

with values and parameters given in the table 4 below.  

 

 

 

 

 

Parameters Description Sensitivity Index 

  Progression rate of unscreened infective to 

AIDS class 

-0.4966 

  Rate at which treated infectives move to 

full blown AIDS 

-0.00396 

1  The rate at which unaware infective 

transmit infection 

0.4008 

3  The rate at which treated infective transmit 

infection 

0.4008 

q  Progression rate at which aware infective 

move to AIDS class 

0.0109 

3k  Progression rate of exposed to unaware 

infected class 

0.3909 

1k
 

The rate at which the exposed receive 

treatment  

-0.30 

  Rate at which infective seek treatment. -0.1329 

  Progression rate at which unaware 

infective become aware. 

0.16292 

c Number of sexual partners 1.00 
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Table 4: Parameters and Values                                                           

Parameters Values Reference Parameters Values Reference 

  0.17 Marsudi, et al 
3k  0.67 Estimated 

  0.104 Estimated 
2k  0.9 Estimated 

  0.74 Estimated 
1k  0.33 Estimated 

  0.001 Safiel, et al g  0.090 Yusuf et al 

1  0.86 Safiel, et al   0.98 Safiel, et al 

3  0.15 Marsudi, et al   0.65 Safiel, et al 

2  0.72 Estimated   0.97 Estimated 

q  0.02 Safiel, et al c 1 Safiel, et al 
  0.01 Yusuf, et al 

 

The initial values are ( )0 10000S = , ( )0 300Z = , ( )0 100E = , ( )0 200R = ,

( )0 1300uI = , ( )0 150SI = , ( )0 500TI = , ( )0 20A = , ( )0 12570N = (Assumed 

Values). 

The final time was 30t years= . Figure 2 shows the numerical solutions to system 

(1-8) for the initial conditions and baseline parameter values given in table 3.  

 

 

Figure 2(a): Susceptible Population against time 
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Figure 2(b): Exposed Population against time 

 

 

Figure 2(c): Treated Un-infectives against time 
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Figure 2(d): Recovered Population against time 

 

Figure 2(e): Unscreened Infectives 
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Figure 2(f): Screened Infectives against time 

 

 

 

Figure 2(g): Treated Infectives against time 
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Figure 2(h): AIDS Population against time 

 

4.1 Impact of early treatment on UI   and 0R  

 

 
 

Figure 3(a): Impact of Early Treatment on Unscreened Infectives against time 
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Figure 3(b): Impact of Early Treatment on Reproduction Ratio 

 

4.2 Impact of treatment on 𝑰𝑻 & 𝑰𝑺 

 

 

Figure 4(a): Impact of Treatment on Treated Infectives against time 
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Figure 4(b): Impact of Treatment on Screened Infectives against time 

 

5. Results and Discussion 

The Susceptible population ( )S t  against time (Fig. 2(a)), clearly shows a rapid 

exponential decline from the initial value to zero. Exposed population ( )E t  against 

time (Fig. 2(b)), we observe a sharp rise from the initial value to reach a maximum, 

and gradually declines exponentially to a steady state. Treated un-infectives 

population Z( )t  against time (Fig. 2(c)), we observe steady rise to a peak and 

gradually reduced. People get recovered from treatment. Treated Recovered 

population ( )R t  against time (Fig. 2(d)), we observe a sharp rise in recovered 

population and gradually reduce, implying that People become susceptible again 

since ART does not provide permanent immunity to HIV. Unscreened Infectives 

population ( )UI t  against time (Fig. 2(e)), there is a sharp rise in the number of 

unscreened infectives and eventually drop as a result of screening and treatment 

respectively. Screened infectives population ( )
S

I t  against time (Fig. 2(f)), we 

observed a sharp rise in the number of screened infectives at initial stage and 

gradually exhibits a decline as a result of treatment which lead to the decrease of 

AIDS patients. Treated infectives population ( )TI t  against time (Fig. 2(g)), we 

observed a continuous rise as a result of treatment, which leads to the decline of 

AIDS patients. AIDS population ( )A t  against time (Fig. 2(h)), we observe a sharp 

rise as a result initial influx from unscreened infectives, screened infectives and 

gradually reduces as natural and disease induced death. 

Figure 3 shows the impact of early treatment on unscreened infectives and on 
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reproduction ratio. figure 3(a) shows the variation of proportion of unscreened 

infectives at different values of 1k . We observed that increase in early treatment 

reduces the unscreened infectives. Taking drastic measure before 72hours of HIV 

exposure reduces the chance of becoming infectives. Figure 3(b) shows the impact 

factor of 1k and   to reproduction ratio. We observed increase early treatment 

reduces the effective reproduction number than  . If they strictly adhere to 

treatment to reduce viral load. We encourage treatment as early as possible to avoid 

being infected. 

Figure 4 shows the impact of   on TI  and SI . Figure 4(a) shows the impact of 

variation proportion of   on treated infectives. We observe increase in   

increases proportion of treated infectives. Figure 4(b) shows the impact of variation 

of   on screened infectives. Increase in different values reduces screened 

infectives. Treatment is encouraged to be given to screened infectives immediately 

after being diagnosed of HIV. 

 

6. Conclusion 

The results of this study provide some insight on the impact of early treatment on 

disease transmission dynamics of HIV/AIDS. The stability of disease-free 

equilibrium was investigated, the results showed that the disease dies out when the 

basic reproduction ratio is less than unity. We also carried out sensitivity analysis 

to determine the relevant parameter in the control of the disease. We found out that 

reduction of rate of transmission of exposed individual of becoming infected is best 

ideal in controlling the proliferation of the disease. Furthermore, qualitative analysis 

of the model was investigated using Runge Kutta scheme. We observe increase in 

early treatment reduces the rate of infection. Furthermore, we compare the impact 

of treatment initiated within 72 hours and after 72 hours in the control of HIV. We 

observed early initiation treatment within 72hours of exposure leads to a drastic 

decline in the reproduction number. While treatment that commences after 72hours 

of exposure only maintain reproduction number. 

We recommend that those exposed to blood, genital secretion or body fluids of HIV 

potentially infected person, to enroll in post exposure prophylaxis within 48-

72hours of exposure. As well as making sure that Anti-HIV drugs are made 

accessible to people since timing is very essential in PEP Initiation. 
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