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Abstract 
 

The response of non-uniform Rayleigh beam resting on bi-parametric subgrades and 

subjected to exponentially varying magnitude moving load is investigated in this 

paper. The governing equation is fourth order partial differential equation with 

variable coefficient. In order to solve this problem, the versatile Galerkin’s method 

is used to reduce the governing equation to a second order ordinary differential 

equation. For the solution of this equation, Laplace transformation and convolution 

theorem are employed. Numerical results in plotted curves are then presented. The 

results show that response amplitude of the non-uniform Rayleigh beam decreases 

as the shear modules (G) increases. Also, the deflection profile of the beam 

decreases with an increasing values of the foundation modulus (k). Furthermore, as 

the values of the axial force (N), rotatory inertia (𝑅0
2), and damping coefficient (𝜀) 

increases, the response amplitudes of the beam subjected to exponentially varying 

magnitude moving load decreases. Finally, it was observed that the non-uniform 

beam undergoes downward deflection profiles from the origin when the effects of 

each of the parameters such as shear modules, rotatory inertia and damping 

coefficient on the beam are considered while upward deflection profiles from the 

origin when the effects of foundation modulus and axial force are noticeable. 
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 Introduction 
  

In recent years considerable attention has been given to the response of elastic 

beams on an elastic foundation which is one of the structural engineering problems 

of theoretical and practical interest. A large number of studies have been devoted to 

the subject. In most of these studies, beam problems have largely been restricted to 

the case when the mass per unit length and moment of inertia of the beam structures 

are constant. In particular, works on non-uniform beam is still not too common in 

the literatures. Also, in most of these studies, Winkler foundation model are been 

considered. Studies in which two parameters foundation models are considered are 

very scanty. 

In the governing equation of a non-uniform beam, the flexural rigidity and mass per 

unit length of the beam become certain functions of the spatial coordinate x. This 

renders the exact solution for the dynamical problem impossible or difficult to 

obtain as the governing partial differential equation now has variable coefficient. 

Amongst some of the earlier researchers that considered the dynamic analysis of 

elastic beam under moving load was Pestel [1] who applied Rayleigh-Ritz 

techniques to reduce the problem defined by a continuous differential equation to 

an approximate system of discrete differential equations with analytic coefficients. 

The system was reduced by a finite difference scheme for solution, but no numerical 

results were presented. Ayre et al [2] similarly used infinite series method to obtain 

the exact solution for the effect of the ratio of the weight of the load to the weight 

of a simply supported beam for a constant moving mass load. Furthermore, Casonik 

et al [3] studied the problem of vibrations of Bernoulli-Euler beams on variable 

winkler foundation. The load acting on the beam in this problem was static, Kenny 

[4] also investigated the dynamic response of infinite beams on elastic foundation 

under the action of moving load of constant speed. He included in the governing 

equation the effect of viscous damping. In more recent development, some of the 

other researchers that considered the dynamic response of elastic structures under 

moving loads include Oni and Awodola [5], Huang and Leissa [6], Muscolino and 

Palmeri [7], Oni and Omolefe [8], Chang and Liu [9]. 

In the above-mentioned researched works, only uniform structural members lie on 

the winkler foundation with foundation stiffness K are considered. However, for 

practical importance, the cross section of some structural members such as bridge, 

girders, hull of ships, concrete slabs etc. vary from one point to another along the 

structural members. Also, Winkler foundation model has shortcomings because of 

its discontinuous behaviour of the surface displacement beyond the load region 

which is contrary to observation made in practice. Thus, researchers who considered 

non-uniform beams resting on non-winkler foundation in their works are: Oni and 

Jimoh [10], Oni and Jimoh [11], Jimoh and Ajoge [12], Jimoh and Ajoge [13], 

Jimoh [14]. 

To the best of authors knowledge, Rayleigh beam moving load problem in which 

the beam under consideration rest on bi-parametric subgrades and is of non-uniform 
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has not been tackled. The present paper is concerned with the response of a non-

uniform Rayleigh elastic beam continuously supported by elastic subgrades and 

traversed by an exponentially varying magnitude moving loads.  

 

 The Governing Equation 
 

The governing partial differential equation that described the dynamic behavior of 

a non-uniform Rayleigh beam resting on bi-parametric subgrades under 

exponentially varying magnitude moving load is given by  

 

𝜕2

𝜕𝑥2
(𝐸𝐼(𝑥)

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
) + 𝜇(𝑥)

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
− 𝑁

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
                     

 

 

      −𝑅0
2  

𝜕

𝜕𝑥
(𝜇(𝑥)

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥𝜕𝑡2
) + 𝜀 

𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
                                                                    

 

 

  = 𝑃(𝑥, 𝑡) − 𝑃𝐺(𝑥, 𝑡)                                                                             (1) 

 

 

Where 

𝜇(𝑥) = variable mass per unit length of the beam 

𝐼(𝑥) = variable moment of inertia 

𝑁 = Axial force 

𝜀 = damping coefficient 

𝑅0
2 = Rotatory inertia 

𝐸 = Young modulus 

𝑥 = spatial coordinate 

𝑡 = time coordinate 

𝑃 = is the applied force (which in this present work is a moving load) 

𝑃𝐺= is the foundation reaction 

The relationship between the foundation reaction and the lateral deflection  𝑌(𝑥, 𝑡) 

is given by Kerr [15] 

 

 

  

𝑃𝐺(𝑥, 𝑡) = − (
𝐺𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
− 𝐾𝑉(𝑥, 𝑡))                                               (2) 

 
Where K and G are foundation stiffness and shear modulus respectively. 

The associated boundary conditions at the ends 𝑥 = 0 and 𝑥 = 𝐿 are given by  
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𝑉(0, 𝑥) = 0 =
𝜕𝑉(𝐿, 𝑡)

𝜕𝑥
                                                                             (3) 

 
and the initial conditions are  

 

𝑉(𝑥, 0) = 0 =
𝜕𝑉(𝑥, 0)

𝜕𝑡
                                                                             (4) 

 

For the variable moment of inertia 𝐼(𝑥) and the mass per unit length 𝜇(𝑥) of the 

beam, we adopt the example in [16] and take  𝐼(𝑥) and 𝜇(𝑥) to be of the form 

 

𝐼(𝑥) =  𝐼0 (1 +
sin 𝜋𝑥

𝐿
)

3

                                                                      (5) 

 

𝜇(𝑥) = 𝑉0 (1 +
sin 𝜋𝑥

𝐿
)                                                                        (6) 

 
Furthermore, the exponentially varying magnitude moving force take the form 

 

𝑃(𝑥, 𝑡) = 𝑃𝑒−𝑑𝑡𝑓(𝑥 − 𝑐𝑡)                                                                     (7) 
 
Where 

𝑃 is the moving force of constant magnitude and 𝑓(∗) is the dirac-delta function. 

By substituting (2), (5), (6) and (7) into (1), we obtain 

 

𝐸𝐼0

𝜕2

𝜕𝑥2
((1 +

sin 𝜋𝑥

𝐿
)

3

 
𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
) + 𝜇0 (1 +

sin 𝜋𝑥

𝐿
)

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑡2
− 𝑁

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
 

 

−𝑅0
2𝜇0  

𝜕

𝜕𝑥
((1 +

sin 𝜋𝑥

𝐿
)

𝜕3𝑉(𝑥, 𝑡)

𝜕𝑥𝜕𝑡2
) + 𝐾𝑉(𝑥, 𝑡) − 𝐺

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
 

 

= 𝑃𝑒−𝑑𝑡𝑓(𝑥 − 𝑐𝑡)                                                                                  (8) 

 

 

 

 

 

 

 

 

 



Dynamic analysis of Non-Uniform Rayleigh beam Resting on……………. 5  

By simplifying (8), we obtain  

 

𝐸𝐼0 (
5

2
+

15 sin 𝜋𝑥

4𝐿
−

sin 3𝜋𝑥

4𝐿
−

3 cos 2𝜋𝑥

2𝐿
)

𝜕4𝑉(𝑥, 𝑡)

𝜕𝑥4
 

 

+ 𝐸𝐼0 (
9𝜋 sin 3𝜋𝑥

4𝐿3
−

15 sin 𝜋𝑥

4𝐿3
−

6𝜋2 cos 2𝜋𝑥

𝐿3
)

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
+ 𝜇0

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑡2
 

 

+ 𝜇0

sin 𝜋𝑥

𝐿

𝜕2𝑌(𝑥, 𝑡)

𝜕𝑥2𝜕𝑡2
− 𝑁

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
− 𝑅0

2𝜇0 (1 + 
sin 𝜋𝑥

𝐿
)

𝜕2𝑌(𝑥, 𝑡)

𝜕𝑥2𝜕𝑡2
 

 

−𝑅0
2

𝜋𝜇0 cos 𝜋𝑥

𝐿

𝜕3𝑌(𝑥, 𝑡)

𝜕𝑥𝜕𝑡2
+  𝜀 

𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
+  𝐾𝑉(𝑥, 𝑡) −  𝐺

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
 

 

= 𝑃𝑒−𝑑𝑡𝑓(𝑥 − 𝑐𝑡)                                                                                             
                                                           (9) 

 

To the best of authors knowledge, a closed form solution to the second order partial 

differential equation (9) does not exist. Consequently, an approximate analytical 

solution is desirable to obtain some vital information about the vibrating system. 

 

 Approximate Analytical Solution of the Mathematical 

problem 
 

In order to solve the beam problem in equation (9) above, we shall use the versatile 

technique called Galerkin’s method. This solution technique involves solving 

equation of the form 

                     Γ(𝑉) − 𝑃 = 0                                                       (10) 

Where  

Γ = the differential operator (linear or non-linear) 

V = the structural displacement 

P = the transverse load acting on the structure 

To this effect, the Galerkin’s method requires that the solution of equation (9) takes 

the form 

 

𝑉𝑘(𝑥, 𝑡) = ∑ 𝑞𝑘(𝑡)𝑄𝑘(𝑥)                                                          (11)

𝑛

𝑘=1

 

 

 

Where 𝑄𝑘(𝑥) is chosen such that the desired boundary conditions are satisfied. 
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Equation (11) when substituted into equation (9) yields 

∑ {
𝐸𝐼0

4
(10 +

15 sin 𝜋𝑥

𝐿
−

sin 3𝜋𝑥

𝐿
−

6 cos 2𝜋𝑥

𝐿
) 𝑄𝑘

𝑖𝑣(𝑥)𝑞𝑘(𝑡)

𝑛

𝑘=1

+
𝐸𝐼0

4𝐿2
(

9𝜋 sin 3𝜋𝑥

𝐿
−

15 sin 𝜋𝑥

𝐿
−

24𝜋2 cos 2𝜋𝑥

𝐿
) 𝑄𝑘

𝑖𝑖(𝑥)𝑞𝑘(𝑡)

+ 𝜇0 (1 +  
sin 𝜋𝑥

𝐿
) 𝑄𝑘(𝑥)�̈�𝑘(𝑡) − 𝑁 𝑄𝑘

𝑖𝑖(𝑥)𝑞𝑘(𝑡)

− 𝑅0
2𝜇0 (1 +  

sin 𝜋𝑥

𝐿
) 𝑄𝑘

𝑖𝑖(𝑥)�̈�𝑘(𝑡) − 𝑅0
2

𝜇0𝜋

𝐿

cos 𝜋𝑥

𝐿
𝑄𝑘

𝑖 (𝑥)�̈�𝑘(𝑡)

+  𝜀 𝑄𝑘(𝑥)�̇�(𝑡) +  𝐾 𝑄𝑘(𝑥)𝑞(𝑡) −  𝐺 𝑄𝑘
𝑖𝑖(𝑥)𝑞𝑘(𝑡)

− 𝑃𝑒−𝑑𝑡𝑓(𝑥 − 𝑐𝑡)}   =   0   

                                                   (12) 

 

In order to determine 𝑞𝑘(𝑡), it is required that the expression on the left hand side 

of equation (13) be orthogonal to the function 𝑄𝑚(𝑥) 

 

∫ ∑ {
𝐸𝐼0

4
(10 +

15 sin 𝜋𝑥

𝐿
−

sin 3𝜋𝑥

𝐿
−

6 cos 2𝜋𝑥

𝐿
) 𝑄𝑘

𝑖𝑣(𝑥)𝑞𝑘(𝑡)

𝑛

𝑘=1

𝐿

0

+
𝐸𝐼0

4𝐿2
(

9𝜋 sin 3𝜋𝑥

𝐿
−

15 sin 𝜋𝑥

𝐿
−

24𝜋2 cos 2𝜋𝑥

𝐿
) 𝑄𝑘

𝑖𝑖(𝑥)𝑞𝑘(𝑡)

+ 𝜇0 (1 +  
sin 𝜋𝑥

𝐿
) 𝑄𝑘(𝑥)�̈�𝑘(𝑡) − 𝑁 𝑄𝑘

𝑖𝑖(𝑥) 𝑞𝑘(𝑡)

− 𝑅0
2𝜇0 (1 +  

sin 𝜋𝑥

𝐿
) 𝑄𝑘

𝑖𝑖(𝑥)�̈�𝑘(𝑡) − 𝑅0
2

𝜇0𝜋

𝐿

cos 𝜋𝑥

𝐿
𝑄𝑘

𝑖 (𝑥)�̈�𝑘(𝑡)

+  𝜀 𝑄𝑘(𝑥)�̇�(𝑡) +  𝐾 𝑄𝑘(𝑥)𝑞(𝑡) −  𝐺 𝑄𝑘
𝑖𝑖(𝑥)𝑞𝑘(𝑡)}  𝑄𝑚(𝑥)𝑑𝑥

=  ∫ 𝑃𝑒−𝑑𝑡𝑓(𝑥 − 𝑐𝑡)
𝐿

0

  𝑄𝑚(𝑥)𝑑𝑥       

         (13)             
 

Since the elastic beam has simple support at x = 0  and  x = L, we choose 

 

𝑄𝑘 (𝑥) =
sin 𝑘𝜋𝑥

𝐿
                                                     (14) 

 

𝑄𝑚 (𝑥) =
sin 𝑚𝜋𝑥

𝐿
                                                   (15) 
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By substituting (14) and (15) into (13), after some rearrangements, and ignoring the 

summation sign, we obtain 

 

∫ { [−𝑅0
2𝜇0 (

𝑘𝜋

𝐿
)

2

(
sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿
+

sin 𝜋𝑥

𝐿

sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

𝐿

0

)    

−  𝑅0
2𝜇0 (

𝑘𝜋

𝐿
)

2 cos 𝜋𝑥

𝐿

cos 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

+ 𝜇0(
sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿
+

sin 𝜋𝑥

𝐿

sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿
)] �̈�𝑘(𝑡)

+ 𝜀
sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿
�̇�𝑘(𝑡)

+ [
𝐸𝐼0

4
(

𝑘𝜋

𝐿
)

4

(
10 sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

+ 15
sin 𝜋𝑥

𝐿

sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿
−

sin 3𝜋𝑥

𝐿

sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

−
6 cos 2𝜋𝑥

𝐿

sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿
)

−
𝐸𝐼0

4𝐿2
(

𝑘𝜋

𝐿
)

2

(
9𝜋2 sin 3𝜋𝑥

𝐿

sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

+
15 sin 𝜋𝑥

𝐿

sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

−
24𝜋2 cos 2𝜋𝑥

𝐿

sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿
)

− (
𝑘𝜋2

𝐿
)

sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿
+ 𝐾

sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

− 𝐺 (
𝑘𝜋2

𝐿
)

sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿
] 𝑞𝑘(𝑡)} 𝑑𝑥

=  ∫ 𝑃𝑒−𝑑𝑡𝑓(𝑥 − 𝑐𝑡)
𝐿

0

 
sin 𝑚𝜋𝑥

𝐿
 𝑑𝑥 =  𝑃𝑒−𝑑𝑡

sin 𝑚𝜋𝑐𝑡

𝐿
    

                                                                    

(16) 

 

Equation (16) can be re-written as  

 

𝑅11�̈�𝑘(𝑡) + 𝑅12�̇�𝑘(𝑡) + 𝑅13𝑞𝑘(𝑡)} =  𝑃𝑒−𝑑𝑡𝑠𝑖𝑛  𝑏0𝑡                    (17) 
 
Where  

𝑅11 = 𝑎1(𝐼1 + 𝐼2) − 𝑎1𝐼3 + 𝜇0(𝐼1 + 𝐼2) = (𝑎1 + 𝑉0)(𝑏1 + 𝑏2) − 𝑎1𝑏3      (18)                                 

 

 𝑅12 =  𝜀 𝐼1                                          (19) 

 



8                                  Jimoh, A. and Ajoge, E. O.    

 

𝑅13 = 𝑎2 (
5

2
𝐼1 +

15

4
𝐼2 −

1

4
𝐼4 −

3

2
𝐼5) − 𝑎3 (

9𝜋2

4𝐿2
𝐼4 −

15

4𝐿2
𝐼2 +

6𝜋2

𝐿2
𝐼5) 

 

+(𝑎4 − 𝑎5 + 𝑘)𝐼1                                      (20) 
 

𝑎1 =  −𝑅0
2𝜇0 (

𝑘𝜋

𝐿
)

2

, 𝑎2 =  𝐸𝐼0  (
𝑘𝜋

𝐿
)

4

. 𝑎3 = 𝐸𝐼0  (
𝑘𝜋

𝐿
)

2

, 𝑎4 = 𝑁 (
𝑘𝜋

𝐿
)

2

, 𝑎5 

 

= 𝐺 (
𝑘𝜋

𝐿
)

2

, 𝑏0 =
𝑚𝜋𝑐

𝐿
                                                         (21)             

 

𝐼1 = ∫
sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥                                                                   (22𝑎) 

 

𝐼2 = ∫
sin 𝜋𝑥

𝐿

sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥                                                      (22𝑏) 

 

𝐼3 = ∫
cos 𝜋𝑥

𝐿

cos 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥                                                   (22𝑐) 

 

𝐼4 = ∫
sin 3 𝜋𝑥

𝐿

sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥                                                     (22𝑑) 

 

𝐼5 = ∫
cos 2 𝜋𝑥

𝐿

sin 𝑘𝜋𝑥

𝐿

sin 𝑚𝜋𝑥

𝐿

𝐿

0

𝑑𝑥                                                   (22𝑒) 

 

Evaluating the integral (22a – 22e), we have 

 

𝐼1 =
𝐿

2
[
sin(𝑘 − 𝑚)

𝑘 − 𝑚
−  

sin(𝑘 + 𝑚)

𝑘 + 𝑚
]                                                            (23𝑎) 

 

𝐼2 =
𝐿

4
[

cos(𝜋+𝑘+𝑚)−1

(𝜋+𝑘+𝑚)
+  

cos(𝜋−𝑘−𝑚)−1

(𝜋−𝑘−𝑚)
+

1−cos(𝜋+𝑘−𝑚)

(𝜋+𝑘−𝑚)
+

1−cos(𝜋−𝑘+𝑚)

(𝜋−𝑘+𝑚)
]                                    (23b) 
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𝐼3 =
𝐿

4
[
1 − cos(𝜋 + 𝑘 + 𝑚)

(𝜋 + 𝑘 + 𝑚)
+  

cos(𝜋 − 𝑘 − 𝑚) − 1

(𝜋 − 𝑘 − 𝑚)
+

cos(𝜋 + 𝑘 − 𝑚) − 1

(𝜋 + 𝑘 − 𝑚)

+
1 − cos(𝜋 − 𝑘 + 𝑚)

(𝜋 − 𝑘 + 𝑚)
]                                                          (23𝑐) 

 

𝐼4 =
𝐿

4
[
cos(3𝜋 + 𝑘 + 𝑚) − 1

(3𝜋 + 𝑘 + 𝑚)
+  

cos(3𝜋 − 𝑘 − 𝑚) − 1

(3𝜋 − 𝑘 − 𝑚)
+

1 − cos(3𝜋 + 𝑘 − 𝑚)

(3𝜋 + 𝑘 − 𝑚)

+
1 − cos(3𝜋 − 𝑘 + 𝑚)

(3𝜋 − 𝑘 + 𝑚)
]                                                         (23𝑑) 

 

𝐼5 =
𝐿

4
[
sin (2𝜋 + 𝑘 − 𝑚)

(2𝜋 + 𝑘 − 𝑚)
+

sin(2𝜋 − 𝑘 + 𝑚)

(2𝜋 − 𝑘 + 𝑚)
−

sin(2𝜋 + 𝑘 + 𝑚)

(2𝜋 + 𝑘 + 𝑚)

−  
sin(2𝜋 − 𝑘 − 𝑚)

(2𝜋 − 𝑘 − 𝑚)
]                                                          (23𝑒) 

 

 
In what follows we subject the ordinary differential equation (17) to a Laplace 

transformation defined as 

 

 𝐿𝑒 (𝑞(𝑡)) = 𝑞(𝑠) = ∫ 𝑞(𝑡)𝑒−𝑠𝑡 𝑑𝑡                                                             
∞

0
(24) 

 

By using the transformation (24) on equation (17) in conjunction with the 

initial conditions (4) upon simplification, we obtain 

 

𝑞𝑘(𝑠) + 𝐵11𝑞𝑘(𝑠) + 𝐵22𝑞𝑘(𝑠) =  𝐵33 (
𝑏0

(𝑏0 + 𝑑)2 + 𝑏0
2)             (25) 

 

Where 

 

𝐵11 =  
𝐵11

𝑅11
, 𝐵22 =  

𝑅13

𝑅11
, 𝐵22 =  

𝑃

𝑅11
                                        (26) 

 

Further simplification of (25) to obtain 

 

𝑞𝑘(𝑠) =  
𝐵33

𝑐1−𝑐2
[(

1

𝑠−𝑐1
) (

𝑏0

(𝑏0+𝑑)2+𝑏0
2) − (

1

𝑠−𝑐2
) (

𝑏0

(𝑏0+𝑑)2+𝑏0
2)]      (27)       
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Where  

𝑐1 =
−𝐵11

2

2
+

√𝐵11
2−4𝐵22

2
, 𝑐1 =

−𝐵11
2

2
−

√𝐵11
2−4𝐵22

2
                  (28) 

   
We adopt the following representation in order to obtain the Laplace inversion of  

 

𝑄1(𝑠) =
1

𝑠−𝑐1
, 𝐻(𝑠) =

𝑏0

𝑠2+𝑏0
2 , 𝑄2(𝑠) =

1

𝑠−𝑐2
                    (29) 

 
Substituting (29) into (27) to obtain  

 

𝑞𝑘(𝑠) =  
𝐵33

𝑐1−𝑐2
(𝑄1(𝑠)𝐻(𝑠) + 𝑄2(𝑠)𝐻(𝑠))                  (30) 

 

We apply convolution theorem defined as  

 

(𝑄𝑖 ∗ 𝐻)(𝑡) = ∫ 𝑄𝑖
𝑡

0
(𝑡 − 𝑢) 𝐻(𝑢)𝑑𝑢,   𝑖 = 1,2 …            (31) 

 

In order to obtain the Laplace inversion of (30) as 

 

𝑞𝑘(𝑡) = ∆ (𝑒𝑐1𝑡 𝐽1 − 𝑒𝑐2𝑡 𝐽2)                        (32) 

 

Where  

∆ =  
𝐵33

𝑐1 − 𝑐2
 

 

 

𝐽1 =  ∫ 𝑒−( 𝑐1+𝑑)𝑢 sin 𝑏0𝑢 𝑑𝑢
𝑡

0
                              (33) 

 

𝐽2 =  ∫ 𝑒−( 𝑐2+𝑑)𝑢 sin 𝑏0𝑢 𝑑𝑢
𝑡

0
                               (34) 

 
By using integration by part, we evaluate integral (33) and (34) to obtain 

 

𝐽1 =
𝑏0

𝑏0
2 + (𝑐1 + 𝑑)2

(1 − 𝑒−( 𝑐1+𝑑)𝑡 cos 𝑏0𝑡 )

−
(𝑐1 + 𝑑)

𝑏0
2 + (𝑐1 + 𝑑)2

𝑒−( 𝑐1+𝑑)𝑡 sin 𝑏0𝑡 (35) 
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𝐽2 =
𝑏0

𝑏0
2 + (𝑐2 + 𝑑)2

(1 − 𝑒−( 𝑐2+𝑑)𝑡 cos 𝑏0𝑡 )

−
(𝑐2 + 𝑑)

𝑏0
2 + (𝑐2 + 𝑑)2

𝑒−( 𝑐2+𝑑)𝑡 sin 𝑏0𝑡                                             (36) 

 

Substituting (35) and (36) into (32) and simplified to obtain 

 

𝑞𝑘(𝑡) =
∆𝑏0

𝑏0
2 + (𝑐1 + 𝑑)2

(𝑒𝑐1𝑡 − 𝑒−𝑑𝑡 cos 𝑏0𝑡 ) −
∆(𝑐1 + 𝑑)𝑒−𝑑𝑡 sin 𝑏0𝑡 

𝑏0
2 + (𝑐1 + 𝑑)2

 

−
∆𝑏0

𝑏0
2 + (𝑐2 + 𝑑)2

(𝑒𝑐2𝑡 − 𝑒−𝑑𝑡 cos 𝑏0𝑡 ) 

    

                                    +
∆(𝑐2 + 𝑑)𝑒−𝑑𝑡 sin 𝑏0𝑡 

𝑏0
2 + (𝑐2 + 𝑑)2

                                                           (37) 

 

 

 
Substituting (37) into (11) to obtain 

 

𝑉𝑘(𝑥, 𝑡) = ∑ [
∆𝑏0

𝑏0
2 + (𝑐1 + 𝑑)2

(𝑒𝑐1𝑡 − 𝑒−𝑑𝑡 cos 𝑏0𝑡 ) −
∆(𝑐1 + 𝑑)𝑒−𝑑𝑡 sin 𝑏0𝑡 

𝑏0
2 + (𝑐1 + 𝑑)2

∞

𝑘=1

−
∆𝑏0

𝑏0
2 + (𝑐2 + 𝑑)2

(𝑒𝑐2𝑡 − 𝑒−𝑑𝑡 cos 𝑏0𝑡 )

+
∆(𝑐2 + 𝑑)𝑒−𝑑𝑡 sin 𝑏0𝑡 

𝑏0
2 + (𝑐2 + 𝑑)2

]
sin 𝑘𝜋𝑥

𝐿
                                                 (38) 

 

 

Equation (38) represents the response amplitude to exponentially varying 

magnitude moving load of non-uniform Rayleigh beam resting on bi-parametric 

subgrades. 
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Figure 1: Deflection profile of non-uniform Rayleigh beam resting on bi-parametric 

subgrades under exponentially varying magnitude moving load for various values of 

foundation modulus (K). 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2: Deflection profile of non-uniform Rayleigh beam resting on bi-parametric 

subgrades under exponentially varying magnitude moving load for various values of 

shear modulus (G). 
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Figure 3: Deflection profile of non-uniform Rayleigh beam resting on bi-parametric 

subgrades under exponentially varying magnitude moving load for various values of 

axial force (N). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Deflection profile of non-uniform Rayleigh beam resting on bi-parametric 

subgrades under exponentially varying magnitude moving load for various values of 

rotary Inertia (R0). 
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Figure 5: Deflection profile of non-uniform Rayleigh beam resting on bi-parametric 

subgrades under exponentially varying magnitude moving load for various values of 

damping coefficient (ƹ). 

 Numerical Analysis and Discussion of Results 

In order to illustrate the foregoing analysis, the non-uniform Rayleigh beam of 

length 12.19 m, velocity of the moving load is taken to be 8.128 m/s are considered. 

Other values used in the analysis are, modulus of elasticity E = 2.10924 × 108 N/m2. 

The constant moment of inertia I0 = 2.876988 × 10-3 m and constant mass per unit 

length of the beam µ0 = 3401.563 kg/m. The values for the foundation modulus (K) 

varies between 5×108 N/m3 and 5×1011 N/m3 while that of the shear modulus (G) 

varies between 50 N/m3 and 5×107 N/m3, values of the axial force (N) is between  

5×1011 N and  5×1012 N, values of the rotator inertia (R0) is between 0 and 100, and 

finally the values of the damping coefficient (𝜀) is between 500 and 900 000. 

Figure 1 display the deflection profile of non-uniform Rayleigh beam under 

exponentially varying moving load. From the figure, it was observed that as the 

values of the foundation modulus (K) increases, the deflection profile of the beam 

decreases upward from the origin. Figure 2 also show that an increase in shear 

modulus (G) will lead to downward decrease in deflection profile of the beam from 

the origin. Similarly, figures 3, 4 and 5 shows that an increase in axial force (N), 

rotatory inertia R0 and damping coefficient will in each case reduce the response 

amplitude of the beam. Finally, it was observed that the shear modulus gave more 

noticeable effect compared to that of the foundation modulus as can be seen in 

figure 1 and 2 respectively. 
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 Conclusion 

The problem of the dynamic response to exponentially varying magnitude moving 

load of non-uniform Rayleigh beam resting on bi-parametric subgrades is 

investigated in this paper. The analytical approximate technique is based on 

Galerkin’s method, Laplace transformation and Convolution theorem. Analytical 

solution and numerical results are presented in graphs as shown above. From the 

figures, increases values of foundation modulus, shear modulus, axial force, rotator 

inertia, and damping coefficient lead to decreases in the response amplitude of the 

non-uniform beam. Furthermore, it was also observed that smaller values of the 

shear modulus are required for noticeable deflection compared to that of foundation 

modulus. Finally, it was observed that rotator inertia has more influence on the non-

uniform beam when compared to other structural parameters. 
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