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Abstract 

An advanced non-linear finite element method is proposed for effective 

calculations on the prediction of contact mechanics in rolling bearings. The 

advanced Augmented Lagrange formulation dealing with non-linear contact 

problems is adopted. The displacements are approached by using weighted 

functions, which are called as state variables. Then, the energy equilibrium 

equations are integrated and are enforced to be equal to zero in a minimization 

problem of the total potential energy. The bodies in contact, i.e. the bearing 

elements, are modeled using conventional finite element techniques, in which 

typical values of mechanical properties are implemented for the bearing materials. 

Thus, the global stiffness matrix and the corresponding forces and displacement 

vectors can be assembled. The contact pressure distributions due to the maximum 

loads of the rolling elements calculated from the numerical solutions. The 

maximum contact pressures between the rolling elements and raceway obtained 
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from the finite element analysis are compared with the contact pressures 

calculated using analytical solutions available in the open literature. The 

agreement between the results of the two methods demonstrates the accuracy of 

the proposed technique.  

 

Mathematics Subject Classification: 74-02; 74M15; 74R99; 74S05 

Keywords: Rolling bearings; Contact; 

 

 

1  Introduction  

Bearings are vital machine components in a variety applications of 

mechanical structures allowing a relative rotational motion of other machine 

elements like shafts under minimal frictional energy loss. In the design process of 

a bearing imposed in a cyclic fatigue load, the bearing selection using the classic 

empiric-analytical machine design process could be characterized as a 

conservative technique. Furthermore, the detailed examination through 

experiments [1] of the structural integrity and expected design lives of bearings 

under actual operational conditions is essentially a timely and economically 

expensive procedure, since the bearings are needed to be put in a test apparatus 

rotated under external loads, while extensive testing time is necessary in order to 

duplicate the failure modes of bearings.  

 An efficient method to answer the question of the same problem is obviously 

the development of analytical based solutions. An early attempt, in which the 

determination of static load distributions from elastic contacts in rolling element 

bearings, is presented in [2]. In this effort, a method is presented for recording the 

elastic roll body contacts in the load zone for both radial and thrust rolling element 

bearings subjected to various static loading conditions. An equation for the 

prediction of the maximum load on a rolling element based on experimental 
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observations presented by Stribeck [3], while Harris [4] proposed analytical 

methods to determine the static load distribution for radial as well as thrust rolling 

elements. Zhao et al. [5] analyzed the relationship between the equilibrium 

equation of the gyroscopic torque of a rolling element and the coefficient of 

friction between the rolling element and groove, for the high-speed angular 

contact ball bearing showing that at a certain rotational speed, the selection of 

axial force should consider the combined influence of contact force, gyroscopic 

torque, and coefficient of friction. In a recent study, Xi et al. [6] developed a 

contact trajectory model of ball bearings under the dynamic condition by the 

means of the development of the integrated multi-body dynamics and 

multi-freedom kinematics with the multi-interfacial contact mechanics. Other 

theoretical studies consider investigation on contact simulation of the high angular 

contact thrust ball bearing [7], contact analysis of deep groove ball bearings in 

multibody systems [8], the relationship between stiffness and preload for an 

angular contact ball bearing [9], and the contribution of the deflection of tapered 

roller bearings to the misalignment of the pinion in a pinion-rack transmission 

[10]. 

Hertz theory concerns only local structural deformations of contact areas of 

bearings and the total deformation of the rolling element, outer ring and inner ring 

as well as bearing housings cannot be included [11]. Thus, Hertz theory is not 

precise enough for contact analysis of the ball bearings when the structural 

deformation is very large. An alternative, which can approach more efficiently the 

problem, is the Finite Element Method (FEM). Since FEM can be used for 

efficient predictions, many numerical efforts have been presented in the literature 

modeling the possible damage or defects that could be developed during rolling 

bearing operation. Vijay et al. [12] presented a three-dimensional Finite Element 

(FE) modeling approach to include the effects of microstructure topology and 

material anisotropy in a polycrystalline microstructural bearing steel subject to 

rolling contact fatigue (RCF) loading. Walvekar et al. [13] developed an approach 
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to simulate 3D experimental (RCF) spalls using a 2D FE model introducing a new 

concept of dividing the 3D Hertzian pressure profile into 2D sections and utilizing 

them in a 2D continuum damage mechanics RCF model. Yang et al. [14] obtained 

the contact stress and vibration characteristic curves of rolling bearings 

establishing numerical models of rolling bearings with different local defect fault 

poisons. Zhang et al. [15] provided insights into the localized stress in a defect 

zone of the rolling bearings when the rolling elements pass through the defect 

using an explicit dynamic FE model of a rolling bearing with an artificial round 

defect in its outer raceway. 

In the present work, an advanced non-linear finite element method is 

proposed for effective numerical calculations that can lead to an advanced 

prediction of rolling bearing contact mechanics. The bearing parts are modeled 

using conventional finite element techniques, while the non-linear contact is 

modeled by the advanced Augmented Lagrange formulation. The displacements in 

contact area are approached by using weighted functions and the energy 

equilibrium equations are integrated as well as are enforced to be equal to zero in 

a minimization problem of the total potential energy. Thus, the global stiffness 

matrix and the corresponding forces and displacement vectors can be assembled 

and the equilibrium equations are solved using non-linear techniques. The 

maximum contact pressures due to the maximum loads of the rolling elements are 

calculated from the numerical solutions. The results are compared with the contact 

pressures calculated using analytical solutions available in the open literature.  

 

 

2  Computational Approach 

The subjected load under the operational conditions leads rolling elements to 

extend their initial contact with raceway. The simultaneous rotation of a supported 

shaft causes alternative loadings and, thus, the surface fatigue is the expected 
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failure mode in such an application. In an attempt to predict this failure, contact 

mechanics analysis is needed. In order to approach numerically this phenomenon, 

non-linear FE techniques may be required. However, available analytical method 

should be utilized for reasons of validation and optimization of the proposed FE 

model. Therefore, the numerical approach of contact problem is presented and is 

optimized, firstly, comparing classic contact problems, in which Hertz’s analytical 

solution are available and then the optimized models are employed in rolling 

bearing applications.     

 

2.1 Fundamental equations 
As every static problem, in the contact problem between two bodies, the 

fundamental equations that should be approached by FEM are the stress 

equilibrium equations described by the following equation 

𝛁𝝈 + 𝒃 = 𝟎,        (1) 

where 𝝈 is the stress tensor and 𝒃 is the vector of the body forces. 

Here, the assumption of no one body force is applied (𝐛 = 𝟎), since the effect 

of body forces is negligible comparing to the operational loading. Moreover, the 

elements are formulated in plane stress conditions (𝜎𝑧 = 𝜏𝑧𝑥 = 𝜏𝑧𝑦 = 0). Hence, 

the equilibrium equations become  
𝜕𝜎𝑥
𝜕𝑥

+ 𝜕𝜎𝑥𝑧
𝜕𝑧

= 0       (2) 

𝜕𝜎𝑥𝑧
𝜕𝑥

+ 𝜕𝜎𝑧
𝜕𝑧

= 0       (3) 

Concerning the materials behavior, here, it is considered to be elastic one, and thus, 

stress-strain relation is given by the following equation 

𝜎𝑖 = 𝐶𝑖𝑗𝜀𝑗   ∀{𝑖, 𝑗} = {1,2, … ,6}  ⇔𝝈 = [C]𝜺       (4) 

where [C] is the stiffness matrix, which is the inverse of the compliance matrix [S], 
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[𝑆] = [𝐶−1] =

⎣
⎢
⎢
⎢
⎢
⎡

1/𝛦 −𝜈/𝛦 −𝜈/𝛦
−𝜈/𝛦 1/𝛦 −𝜈/𝛦
−𝜈/𝛦 −𝜈/𝛦 1/𝛦

0            0       0 
  0            0         0    

0            0         0

 

         
0    0 0
0    0 0
0    0 0

       1/𝐺 0 0
        0 1/𝐺 0
         0 0 1/𝐺⎦

⎥
⎥
⎥
⎥
⎤

   (5) 

where 𝜈 is Poisson’s ratio, 𝛦  is the modulus of elasticity and 𝐺  is the shear 

modulus of the material. 

 Considering plane stress conditions and isotropic materials, the linear 

constitutive equations are given by 

𝜎𝑥 = 𝛦
(1+𝜈)(1−2𝜈)

�(1 + 𝜈)𝜀𝑥 + 𝑣𝜀𝑦�      (6) 

𝜎𝑦 = 𝛦
(1+𝜈)(1−2𝜈)

�𝑣𝜀𝑥 + (1− 𝜈)𝜀𝑦�     (7) 

 The compatibility equations expressing the relationship between strains and 

displacements and considering infinitesimal are 

                 𝜀𝑖𝑗 = 1
2
�𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖
�       (8) 

In the plane stress case the equations become 

𝜀𝑥 = 𝜕𝑢𝑥
𝜕𝑥

, 𝜀𝑦 = 𝜕𝑢𝑦
𝜕𝑦

, 𝜀𝑧 = 𝜕𝑢𝑧
𝜕𝑧

, 𝛾𝑥𝑦 = 2𝜀𝑦𝑥 = 𝜕𝑢𝑥
𝜕𝑦

+ 𝜕𝑢𝑦
𝜕𝑥

.  (9) 

 

 

2.2 Numerical approach of static contact problem 

In the finite element method, the direct result of the analysis is usually the 

generalized displacements for elasticity problems. Here, these displacements can 

be considered as weighted functions and are called state variables. The weighted 

functions are integrated in respect of volumes or areas in 2D problems of 

contacted bodies. This can be expressed as 
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𝛿𝚷 = −∫ 𝛿𝜺𝒖𝑻𝑪𝜺𝑑𝐴 + ∮ 𝛿𝒖�𝒇𝛤𝝈𝑑𝑆 = 0,𝛤𝜎𝛢       (10) 

where the first term is the variation of the elastic energy and the second term is the 

work variation of the surface loads. This integral equation express the 

minimization of the potential energy of the whole system. 

In this way, the static contact problem is transformed to a minimization 

problem, in which the objective function is the total potential energy 𝛱(𝒖) of the 

bodies in contact. Therefore, the problem can be defined as  

min 𝛱(𝒖)          (11) 

s.t. 𝑔𝑗(𝒖) ≤ 0, 𝑗 = 1, … , 𝑛           (12) 
where 𝒖 is the matrix of the nodal displacement’s and the decision variable, 

while 𝑔𝑗(𝒖) describes the 𝑛 constraints expressing no penetration conditions 

between the bodies in contact. For these constraints, it is defined that 𝑔𝑗(𝒖) < 0 

when the bodies are separated, 𝑔𝑗(𝒖) = 0  when the bodies are in contact, 

𝑔𝑗(𝒖) > 0 when the bodies penetrate in each other. The total potential energy 

𝛱(𝒖)  for the contact problem between two bodies subjected in small 

deformations can be described as  

             𝛱(𝐮) = 𝛱𝐴(𝐮) +  𝛱𝐵(𝐮) = 1
2
�
𝐮𝛢
𝐮𝐵�

𝛵
�𝐊𝑨 𝟎
𝟎 𝐊𝑩

� �
𝐮𝐴
𝐮𝐵� − �𝐟𝐴𝐟𝐵

�
𝛵
�
𝐮𝐴
𝐮𝐵�,   (13) 

where 𝐊i are the stiffness matrices, 𝐮𝑖 are the deformation vector of each body 

and 𝐟𝑖  are the vectors of external loads. For simplicity reasons, the previous 

variables become 𝐊, 𝐮 and 𝐟 and the total potential energy is given as 

𝛱(𝐮) = 1
2
𝐮𝛵𝐊𝐮− 𝐟𝛵𝐮.         (14) 

Several constrained minimization algorithms can be used to solve the 

minimization problem of Eq. (2) such as the Penalty Method, the Lagrange 

Multipliers Method and the Augmented Lagrangian Method (ALM) [16]. In the 

ALM, the contact constraints are considered in this formulation using penalizing 

coefficients and Lagrange multipliers, penalizing the non-penetration restrictions 

violations in the same form of the Penalty method, and solving the constrained 
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minimization problem through the solution of sequential unconstrained 

minimization problems with the updating of Lagrange multipliers in the solution 

process [17]. 

 The ALM is given by 

 𝐿𝑎𝑢𝑚 = 𝛱(𝐮) + 𝝀𝑡𝑔(𝐮) + 1
2
𝑟[𝑔(𝐮)]+2 ,       (15) 

where [x]+ represents the maximum value of the parameter into the brackets, 𝑟  

is the penalty coefficient 𝑔(𝐮) = [𝑔1(𝐮),𝑔2(𝐮), … ,𝑔𝑛(𝐮)] is the and 𝝀 is the 

Lagrange multiplier vector.  
 The gradient of the ALM function is  

  ∇𝐿𝑎𝑢𝑚 = ∇𝛱(𝐮) + 𝝀𝑡∇𝑔(𝐮) + [𝑔(𝐮)]+∇𝑔(𝐮),      (16) 

which verifies that the penetration restriction satisfies 𝑔(𝐮∗) = 0 at the optimum 

point 𝐮∗. In the optimum point, it is that 

  ∇𝐿𝑎𝑢𝑚 = ∇𝛱(𝐮) + 𝝀𝑡∇𝑔(𝐮∗) = 𝟎,  for every 𝑟.       (17) 

The penalty method coefficients as well as the Lagrange multipliers, can be 

up to date in a Newton – Raphson method in order to obtain a non-linear solution. 

The contact pressure P in ALM is defined as 

     𝑃 = �                   0,   𝑖𝑓 𝑔 < 0
𝐾𝑛𝑔 + 𝜆𝑖+1, 𝑖𝑓  𝑔 ≥ 0 

�        (18) 

𝜆𝑖+1 is the Lagrange multiplier in 𝑖 + 1  iteration, and 𝐾𝑛 is the normalized 

contact stiffness, while 

   𝜆𝑖+1 = �𝜆𝑖 + 𝐾𝑛𝑔, 𝑖𝑓|𝑔| > 𝑚
𝜆𝑖 ,               𝑖𝑓|𝑔| ≤ 𝑚

�              (19) 

where m is the penetration tolerance during the non-linear solution. If the 

penetration is less than m, the Lagrange multipliers are not up-to-date.  

The contact problem can be integrated in the potential function adding the 

contact terms, as calculated by the ALM, into the global stiffness matrix of the 

model.  
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2.3 Nonlinear solution 

In the FE model the continuum bodies in contact are discretized using 

conventional 4-noded rectangular linear elements. For reasons of completeness, 

someone can find their formulation and corresponding elemental stiffness matrix 

in [18]. As described in the previous section, the stiffness in the contact region 

varies, and thus, an incremental non-linear procedure is required to approach the 

solution. The dependence of the stiffness matrix and nodal forces on nodal 

displacements and their equilibrium is described by the following matrix equation 

[𝐊(𝐮)]{𝐮} = {𝐟(𝐮)}         (20) 

The incremental process chosen here is the Newton – Raphson method [19]. 

Given an initial value, the method generates values that are incrementally 

converged to the root of the equation based on 𝐮 values of the previous iteration 

for the determination of 𝐊(𝐮), 

   {𝐮𝒓+𝟏} = [𝐊(𝒖)𝒓]−𝟏{𝐟}         (21) 

using the following convergence criterion 

�𝒖𝒓+𝟏� = {𝒖𝒓} + {𝛥𝒖𝒓}         (22) 

  |[𝐊]{𝐮}− {𝐟}| ≤ 𝜺.        (23) 

where r is the number of iteration and 𝜺 corresponds to infinitesimal values. It is 

clear that the equilibrium between the internal and external forces is checked in 

every step. After the solution convergence, the nodal displacement calculated in 

the last iteration can be used in order to calculate the stresses and strains in every 

node using the following equations 

𝜀𝑖𝑗 ≅
1
2
�Δ𝑢𝑖
Δ𝑥𝑗

+ Δ𝑢𝑗
Δ𝑥𝑖
�     ∀{𝑖, 𝑗} = {1,2}           (24) 

   𝜎𝑖 = 𝐶𝑖𝑗𝜀𝑗    ∀{𝑖, 𝑗} = {1,2,3}         (25) 

where 𝐶𝑖𝑗 is the appropriate elastic modulus for each direction. 
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3  Results and Discussion  

3.1 Optimum values of contact parameters 

The contact parameter Kn has to be evaluated in the numerical model in order 

to predict with the optimum accuracy the contact mechanics characteristics and 

the overall mechanical behavior of rolling bearings. For this reason, some simpler 

contact problems of elastic bodies, like a cylinder in contact with a plane surface, 

are used as benchmarks. Different values of contact parameters are tested and the 

results compared with corresponding ones evaluated by the Hertz contact theory. 

Then the values fitting best the analytical ones are chosen as the optimal ones and 

are used for the modelling of the rolling bearing.    

 

3.1.1 Hertz’s solutions 

The solution for the contact between elastic bodies was derived by Hertz [20]. 

For the evaluation of the contact pressure p between two faces the     

𝜕𝑢�𝑧1
𝜕𝑥

+ 𝜕𝑢�𝑧2
𝜕𝑥

= − 2
𝜋𝛦∗ ∫

𝑝(𝑠)
𝑥−𝑠

𝑑𝑠𝛼
−𝛼                 (26) 

where 𝑢�𝑧1 and 𝑢�𝑧2 are the displacements of points of the two bodies in the 

contact region, x is the coordinate in horizontal direction, 𝛼 is the half contact 

length with 

      𝛼2𝐷 = �3𝑃𝑅
4𝐸∗

�
1/3

, 𝛼3𝐷 = �4𝑃𝑅
𝜋𝛦∗

       (27) 

where R is the cylinder radius, and 𝛦∗ is the equivalent modulus of elasticity 

calculated by the following equation   

                          1
𝐸∗

= 1−𝑣12

𝐸1
+ 1−𝑣22

𝐸2
                (28) 

where 𝐸𝑖 , and 𝑣𝑖 are the modulus of elasticity and Poisson ratio of the two bodies. 

The solution of Eq. (26) is [20] 

 𝑝(𝑥) = 2𝑃
𝜋𝛼2

(𝛼2 − 𝑥2)1 2⁄        (29) 
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where P is the applied load. The maximum contact pressure is given by the 

following equation 

   𝑝𝑜2𝐷 = 3𝑃
2𝜋𝛼2

= �6𝑃𝐸
∗2

𝜋3𝑅2
�
1/3

,  𝑝03𝐷 = 2𝑃
𝜋𝛼

= �𝑃𝐸
∗

𝜋𝑅
�
1 2⁄

    (30) 

 

3.1.2 Numerical vs analytical results 

Considering the case described in Fig. 1, the FE models are developed and 

analyzed based on the approach presented in Section 2. Here, the parameters are 

chosen to be R = 10 mm, and P = 3 kN/mm. The material properties are 

considered as E1 = E2 = 200 GPa and v1 = v2 = 0.3. Using the same values the 

contact pressure is calculated using also the analytical method.  

 

P

R

2 R

x
z

10R
 

 

Figure 1:  Geometry and meshing details of benchmark contact problem  

 

 

The first set of tests concerns the meshing optimization in terms of accuracy. 

The chosen discretization of the continuum bodies, particularly in the contact 

region is presented in Figure 1. This choice outcomes form the results depicted in 

Figure 2a, applying the appropriate number of divisions in contact surfaces in 
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order the numerical solution to converge with the analytical one. 

 The optimum value of Kn is the main issue optimizing the accuracy of the 

proposed model. Testing different values, it is observed from Figure 2b that a 

value Kn = 20, is the appropriate one in order to analytical and numerical solutions 

converge in terms of pmax. Figure 2c reveals that this value is also reasonable in 

terms of α as well. Therefore, it is concluded that the optimum value of Kn is 20.      
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Figure 2:  Optimum values of contact parameters in terms of (a) mesh,  

              (b) pmax, and (c) α  
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For a further validation of the optimized model, stress analysis results 

calculated by the numerical approach and corresponding ones from analytical 

methods [20] are also compared. This comparison is presented in Fig. 3. It is 

noticed that a reasonable accuracy between the methods concerning the normal 

stresses σx (Fig. 3a), and σx (Fig. 3b) occurs. Therefore, the proposed model can be 

assumed as a reliable one and may be applied in order to calculate effectively 

corresponding contact mechanics results in rolling bearings.   
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Figure 3:  Normal stress (a) σx, and (b) σz 

 

 

3.2 Numerical Solutions in Rollling Bearings 

Since, the numerical techniques is now fully defined, a specific roller bearing 

with 18 rolling elements is analyzed using the proposed procedure. The materials 

properties are Ε = 200 GPa, ν = 0.3. In order to examine the accuracy of the 

present method also in rolling bearings, some analytical calculations are also 

adopted for reasons of comparisons. The geometry of the specific application and 

the corresponding model is presented in Fig. 4. The outer diameter of outer ring is 
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100 𝑚𝑚, its thickness as well the diameter of roller elements is 20 𝑚𝑚. 

 The boundary conditions of the problem concerns a displacement restriction 

on the outer surface of the outer ring. The inner ring and the supported shaft are 

modeled as one body since they are considered to have the same material 

properties. Here, it is assumed a vertical static load Ptotal, which simulates the 

loading under operation conditions. 

 

 

 
 

(a) (b) 

 

Figure 4:  Roller bearing with 18 rolling elements (a) Geometry, and  

              (b) FE model 

 

 Applying Ptotal = 60kN/mm to the numerical model, the non-linear analysis 

reveals the solution. Fig. 5a presents maximum contact pressure in the contact area 

of every rolling element according to its angular position. These results are 

compared with corresponding ones based on Person theory and the analytical 

modifications found in [21]. A sensible agreement between the methods can be 

observed. Notice that the discrepancy does not exceed the value of 5% in all cases. 

Tests and comparisons with different loading magnitudes has given similar results.   
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Figure 5:  Maximum contact pressure distribution in the roller bearing   

  

 

Applying a greater loading Ptotal = 600kN/mm, the results are now directed 

on the stress distribution into the roiling bearing elements. Focused on the rolling 

element with the maximum contact pressure the normal stresses regarding the 

local vertical axis of the elements are calculated and are presented in Fig. 6. 

Comparisons with analytical solutions [21] reveal again the excdllent accuracy of 

the proposed method. 

 

  
(a) (b) 

 

Figure 6:  Normal stresses in the region of rolling element with the highest   

         contact pressure (a) σx, and (b) σz 
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5  Conclusion 

In this paper, a systematic numerical procedure was developed for an 

accurate and efficient contact mechanics analysis on rolling elements and 

cylindrical roller of rolling bearings. The method combines conventional FEM 

techniques for the rolling element modeling, the ALM, and iterative methods in 

order to solve the non-linear contact problem. For optimization reasons, simpler 

contact mechanics problems are firstly analyzed and optimum values of contact 

parameters are extracted according to the comparisons with analytical methods. In 

this way, it was clear that the accuracy of the proposed techniques essentially 

improved. The optimized modeling observations were applied, then, on a specific 

rolling bearing configuration. The obtained results revealed contact mechanics 

characteristics like maximum contact pressures. Comparisons with other analytical 

techniques available in the open literature demonstrated the overall accuracy of 

the propose procedure on the mechanical analysis of rolling bearing. Based on the 

present technique, advanced analysis can be also conducted in a future work, since 

more complicated phenomena like a damage may be inserted in the model, and 

corresponding accurate predictions may be revealed.      
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