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1 Introduction

Radial basis functions (RBFs) have been considered for solving partial dif-

ferential equations in three decades ago [1, 2, 3]. They are appropriate choice

to more traditional methods such as finite differences and finite elements meth-

ods. Part of their attractiveness returns to the fact that without orthogonality

and complicated forms of other interpolants, it is able to approximate the func-

tions with high(exponential) accuracy and fast rate of convergence [1]. Some

other practical interests in RBFs methods are due to: (i) ability to handle

data in multiple dimensions; (ii) flexibility in the node and centers locations;

(iii)They are truly meshless methods; (iv) The RBFs collocation points can be

defined with any interval because RBFs are defined in the whole real line [4].

However there have been some challenges with RBFs approaches. In their stan-

dard formulation, RBFs methods often involve the solution of linear systems

whose system matrices usually are full and severely ill-conditioned, specially,

if certain popular RBFs such as Gaussians or inverse multiquadrics are used

with small values of their associated shape parameter. To be more precise,

the challenges as mentioned in [5] are: serious numerical ill-conditioning for a

fixed N (the number of collocation points or basis functions) and small shape

parameter, similar ill-conditioning problems for a fixed shape parameter and

large N . Also in [6] it has been proved that, if the shape parameter tends to

zero then RBFs interpolation is equivalent to polynomial interpolation on the

same nodes; hence in such a flat limit case the RBFs approximation suffers

of Rung phenomenon. Some of various techniques which have been done to

deal with the above difficulties include changing the basis of the approxima-

tion space, using techniques from complex analysis , applying contour-integral

approach and using specialized preconditioners to the system matrix, see [7, 8]

and references therein. In [9] the authors exploited a connection between Gaus-

sian RBFs (GRBFs) and polynomials using standard tools of potential theory

which provides a simple explicit interpolation formula through the use of some

cardinal functions, so the difficulty of inverting the associated matrix can be

avoided. Furthermore they obtained stable nodes that can prevent the Runge

phenomenon and enable stable approximations.

It is only recently that the integral equations have been considered with the

standard RBFs methods [10, 11, 12]. In contrast collocation schemes have been
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investigated for solving the delay integral and differential equations for a long

time [13, 14, 15, 16, 17, 18, 19, 20]. To our best of knowledge nobody accom-

plished solving the delay Volterra integro-differential equations of pantograph

type with a RBFs collocation method. This paper considers the following Pan-

tograph Volterra Integro-Differential Equation (PVIDE) in bounded domain

y′(t) = g(t) + a(t)y(t) + b(t)y(qt) +

∫ t

0

K0(t, s)y(s)ds

+

∫ qt

0

K1(t, s)y(s)ds, t ∈ [0, T ], 0 < q < 1, (1.1)

y(0) = ȳ0, (1.2)

For implementation of a high accuracy RBFs method, we assume the func-

tions a(t), b(t), g(t), K0(t, s) and K1(t, s) to be sufficiently smooth on their

domains.

The PVIDEs are models of evolutionary problems with memory and have

many applications such as the population dynamics, infectious diseases and

chemical kinetics (see, e.g. , [21] and references therein). Also to study the

existence, uniqueness and regularity of solutions of (1.1) and (1.2), see [15].

There are some existing numerical methods for PVIDEs. In [22] the authors

proposed a collocation method using piecewise polynomials, and analyzed the

global and local orders of superconvergence of the collocation solutions for

(1.1) and (1.2). Also in [23] the author applied a Legendre spectral method

and analyzed the exponential convergence of the method where K0 and K1

are convolution. Our aim throughout this paper is to establish some results

of the paper [9] on the [0, T ], specially the Gaussian RBF (GRBF) explicit

interpolation formula. Then by employing of these results we offer a new

Gaussian collocation method (NGCM) to approximate the solutions of the

PVIDEs (which are often stiff and have oscillation on the related domain)

and their first derivatives. Also we analyze how the problem parameters q

and T and the parameters in our method i.e. N (number of basis functions

or collocation points) and the shape parameter should be selected and how

susceptible the approximations are to changes in the parameters. In addition in

order to challenge the NGCM, we compare with the standard RBFs collocation

methods and a spectral collocation method [24].

The following sections of this paper are structured as follows: in section 2

we describe the properties of radial basis functions and establish the GRBF
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explicit interpolation formula. The NGCM is implemented in section 3. To

support our findings, we present results of numerical experiments in section 4.

The conclusions are discussed in the final section.

2 Basic knowledge about RBFs

In this section, we collect some well-known definitions and properties from

[9, 25] which we shall utilize throughout the paper.

Definition 2.1. Let Πm denotes the subspace of C(Rd) consisting of all alge-

braic polynomials of degree less than m on Rd and φ : Rd → R be a continuous

function. We say that φ is conditionally positive definite of order m ∈ N if

for every finite set of pairwise distinct points X = {ξ1, · · · , ξN} ⊆ Rd and for

every α = (α1, · · · , αN) ∈ RN \ 0 satisfying

N∑
j=1

αjp(ξj) = 0, p ∈ Πm,

the quadric form
N∑
i=1

N∑
j=1

αiαjφ(ξi − ξj)

is positive definite.

Definition 2.2. A function φ : Rd → R is radial in the sense that φ(t) = ϕ(r),

where r = ‖t‖ and ‖ · ‖ is the usual Euclidean norm.

RBFs fall into two main classes: infinitely smooth and including a free param-

eter (shape parameter), such as multiquadrics (ϕ(r) =
√
r2 + c2) and Gaus-

sians (ϕ(r) = e−
r2

c2 ); and piecewise smooth and parameter free, such as cubics

(ϕ(r) = r3) and thin plate splines (ϕ(r) = r2 ln r).

2.1 Standard RBF (SRBF) interpolation

Let f : Rd → R be a continuous function and given a set of distinct

points(centers)
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X = {ξ0, · · · , ξN} in Ω ⊆ Rd. Interpolation of f on X using RBFs usually

takes the following form

INf =
N∑
n=0

λnφ(t− ξn) +
l∑

m=1

αmpm(t), (2.1)

where {pm}lm=1 is a basis for ΠM and λ′s and α′s are coefficients to be deter-

mined.

Equation of (2.1) can be written without the additional polynomial term. In

that case φ must be unconditionally positive definite to ensure the solvability

of the resulting system. (e.g. Gaussian or inverse multiquadric) [26]. Hence

(2.1) can be presented as follow

INf =
N∑
n=0

λnφ(t− ξn), (2.2)

Let the expansion coefficient vector λ be λ = [λ0, · · · , λn]T then from interpo-

lation conditions INf(tn) = f(tn), n = 0, · · · , N we reach a system of linear

equations that can be displayed in matrix form as

Φλ = F, (2.3)

where F = [f(t0), · · · , f(tN)]T , Φij = φ(ti−ξj) and {ti}Ni=0 are the interpolation

points.

Note that for all infinitely smooth RBFs the coefficient matrix Φ in (2.3) is

nonsingular [1]. So the unique interpolant of the form (2.2) can be obtained.

2.2 New GRBFs interpolation

For providing an explicit interpolation formula based on the GRBFs in

(2.2) we choose d = 1 and centers ξn = hn, n = 0, 1, · · · , N, h = T
N

on [0, T ].

Therefor the GRBF approximation is

INf =
N∑
n=0

λne
−
(

t−hn
c

)2

= e−
t2

c2

N∑
n=0

λne
−h2n2

c2 e
2tnh
c2 , (2.4)

following [9], we let β = 2h
c2

= 2T
Nc2

and apply the transformation

s = eβt, s ∈ [1, eβT ],
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to find that

G(s) = INf
( log s

β

)
= e−

N log2 s
2Tβ

N∑
n=0

λ̃ns
n = ψNβ (s)

N∑
n=0

λ̃ns
n, (2.5)

Where the λ′s are independent of s.

From (2.5) it is clear that G
ψN

β
is a polynomial of degree no greater than N . If F

is chosen by interpolation to a given f at N +1 points, then we have following

theorem in the complex plane z = t+ iy.

Theorem: suppose that f is analytic in a closed simply connected region R that

lies inside the strip − π
2β
< Im(z) < π

2β
and that C is simple, closed and recti-

fiable curve that lies in R and contains the interpolation points t0, t1, · · · , tN .

Then the remainder of the GRBF interpolation for f at t can be represented

as the contour integral

f(t)− INf(t) =
βηN(t)

2πi

∫
C

f(z)eβz

ηN(z)(eβz − eβt)
dz,

where

ηN(t) = e−
Nβ
2T

t2
N∏
k=0

(eβt − eβtk).

Proof. Consider the conformal map w = eβz and let g(s) = f
(

log s
β

)
. Under this

transformation, the region R is mapped to a closed simply connected region

that lies in the half-plane Re(w) > 0. Thus g
ψN

β
is analytic in this region in

the w-plane, and we can use the Hermite formula for the error in polynomial

interpolation [27],

g(s)−G(s) = ψNβ (s)
( g(s)

ψNβ (s)
−

N∑
k=0

λ̃ks
k
)

=
ψNβ (s)

∏N
k=0(s− sk)

2πi

∫
C

g(w)

(w − s)ψNβ
∏N

k=0(w − sk)
dw,

where sk = eβtk and C is the image of C in the w-plane. A change of variables

completes the proof.

Using above theorem and if we let µ be the limiting node density function

[28] of nodes on[0, T ] and defining the logarithmic potential function as follow

µβ(z) =
β

2T
Re(z2)−

∫ T

0

log(|eβz − eβt|)µ(t)dt,
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similar to [9] by applying standard potential theory one can prove that the

GRBF interpolant converges exponentially to the target function on [0, T ]

under some conditions.

Now we define an explicit interpolation formula through the following Gaussian

cardinal functions

Ln(t) = e−
Nβ
2T

(t2−t2n)

N∏
j=0

j 6=n

eβt − eβtj

eβtn − eβtj
, (2.6)

It is easy to verify that Ln(tn) = 1, Ln(tj) = 0, j 6= n and by (2.5), Ln(t) ∈
span{e−

(t−ξn)2

c2 }. So we can write the unique GRBF interpolant as

INf(t) =
N∑
n=0

f(tn)Ln(t), (2.7)

3 New Gaussian collocation method (NGCM)

Consider the PVIDE given in (1.1) and (1.2). At first, for ease of applying

the NGCM we restate the initial condition (1.2) as

y(t) = y0 +

∫ t

0

y′(s)ds, (3.1)

so without integration both sides of (1.1) one can approximate the y(t) and

y′(t) using the NGCM naturally. This idea has been used in some literature

[24, 29].

In order to acquire a computationally form of the collocation equations (1.1)

and (3.1), we declare yN and y′N on [0, T ] by (2.7) as

yN = INy(t) =
N∑
k=0

ykLk(t), yk = y(tk), (3.2)

y′N = INy
′(t) =

N∑
k=0

y′kLk(t), y′k = y′(tk), (3.3)

with

Lk(t) =
N∏
j=0

j 6=k

=
e−

β
2T

(t2−t2k)(eβt − eβtj)

eβtk − eβtj
, k = 0, 1, · · · , N, (3.4)
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which is a simple modification of (2.6) that improves the accuracy of approx-

mitions.

As on outcome of the above notations, the collocation equations (1.1) and

(3.1) at the collocation points {ti}Ni=0 turn to

y′i = g(ti) + a(ti)yi + b(ti)yN(qti) +

∫ ti

0

K0(ti, s)yN(s)ds+∫ qti

0

K1(ti, s)yN(s)ds

yi = y0 +

∫ ti

0

y′N(s)ds, i = 0, 1, · · · , N. (3.5)

Now we change the integration intervals to [0, T ] using the following transfor-

mations

s = si(θ) =
ti
T
θ, s = sqi (θ) =

qti
T
θ.

Therefor the above equations become

yi = g(ti) + a(ti)y(ti) + b(ti)yN(qti) +
ti
T

∫ T

0

K0

(
ti, si(θ)

)
yN

(
si(θ)

)
dθ

+
qti
T

∫ T

0

K1

(
ti, qsi(θ)

)
yN

(
qsi(θ)

)
dθ,

yi = y0 +
ti
T

∫ T

0

y′N
(
si(θ)

)
dθ, i = 0, 1, · · · , N. (3.6)

After applying the (3.2) and (3.3) we have

y′i = g(ti) + a(ti)yi + b(ti)
N∑
k=0

Lk(qti)yk +
ti
T

N∑
k=0

( ∫ T

0

K0

(
ti, si(θ)

)
Lk

(
si(θ)

)
dθ

)
yk

+
qti
T

N∑
k=0

( ∫ T

0

K1

(
ti, qsi(θ)

)
Lk

(
qsi(θ)

)
dθ

)
yk,

yi = y0 +
ti
T

N∑
k=0

( ∫ T

0

Lk
(
si(θ)

)
dθ

)
y′k, i = 0, 1, · · · , N.

(3.7)

In order to acquire a succinct notation for the above linear algebraic equations,
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we introduce the matrices and vectors

ȲN = [ȳ0, · · · , ȳ0]
T , Yn = [y0, · · · , yN ]T , Y ′

N = [y′0, · · · , y′N ]T ,

GN = [g(t0), · · · , g(tN)]T ,

DN = diagonal
(
a(t0), · · · , a(tN)

)
, Aq1,N =

(
b(ti)Lk(qti)

)
0≤i,k≤N ,

A2,N =
( ti
T

∫ T

0

K0

(
ti, si(θ)

)
Lk

(
si(θ)

)
dθ

)
0≤i,k≤N

,

Aq3,N =
(qti
T

∫ T

0

K1

(
ti, qsi(θ)

)
Lk

(
qsi(θ)

)
dθ

)
0≤i,k≤N

,

A4,N =
( ti
T

∫ T

0

Lk
(
si(θ)

)
dθ

)
0≤i,k≤N

.

So the corresponding system of linear algebraic equations (3.7) take the fol-

lowing form

Y ′
N = GN + (Dn + Aq1,N + A2,N + Aq3,N)YN ,

YN = ȲN + A4,NY
′
N . (3.8)

We expose (3.8) in a compact form as follow[
BN −IN
IN −A4,N

] [
YN

Y ′
N

]
=

[
−GN

ȲN

]
, (3.9)

where BN = DN + Aq1,N + A2,N + Aq3,N and IN denotes the identity matrix.

In this way, a linear algebraic system is acquired which can be solved with an

appropriate method and yield the unknown vectors YN and Y ′
N .

To accelerate solving the linear algebraic system (3.9) one can approximate

the integral terms in (3.7) by a suitable and high accurate numerical integra-

tion method such as (N + 1)-points Gauss-Legendre, Gauss-Radau or Gauss-

Lobatto quadrature formula concerning the Legendre weight.

4 Numerical results

In this section, we consider two oscillatory PVIDEs, to verify the perfor-

mance of the NGCM. We numerically investigate how the selection of the

parameters q, T,N and β can affect the accuracy and efficiency of the pre-

sented method. The domains size and the value of q determine number of
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oscillations of the exact solution, so we choose T,N and β in such a way that

we can achieve the most accurate results for a given q.

The Gauss-Chebyshev nodes on [0, T ] are used as the collocation points for

the NGCM and the CSCM. For many problems, a Chebyshev distribution of

nodes is a good choice [30]. Also we use the Legendre-Gauss nodes for the

LSCM.

We need the following criterions for studying the convergence behavior of the

presented method.

(i) Absolute error:

Abr = |y(t)− yN(t)|,

(ii) The point-wise L∞ error:

LN = MaxNi=0{Abr(ti)},

where {ti}Ni=0 is the set of collocation points.

(iii) The condition number of the coefficient matrix of the discretization

method:

Ks(A) = ‖A‖s · ‖A−1‖s, s = 2,∞.

All computations are run on a Microsoft PC 32-bit AMD, Dual Core with 2.70

GHz of CPU and 4GB RAM. Also we use Maple 18 software for solving the

linear algebraic systems directly by the LinearSolve command. In addition, for

counteracting influence of rounding errors all calculations are performed using

50 digits precision.

Example 4.1. For the first example we consider the following PVIDE

y′(t) = g(t) + Cos(t)y(t) + Sin(t)y(qt) +

∫ t

0

tsy(s)ds+∫ qt

0

(t− s)y(s)ds, t ∈ [0, T ], (4.1)

where

g(t) =
Cos( t

q
)

q
− Cos(t)Sin

( t
q

)
− Sin2t− q2tSint− q2tSin

( t
q

)
+ qt2Cos

( t
q

)
− qt− q2tCos(t) + q2Sint+ qtCos(t),

and the exact solution is Sin
(
t
q

)
.
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At first we let q = 1 and T = π and solve eq. (4.1) using the standard

Gaussian collocation method (SGCM), the standard inverse multiquadrid col-

location method (SIMCM) and the NGCM. We compare the methods for dif-

ferent values of N . We increase c for the standard methods. Therefor from the

relation β = 2T
Nc2

, β varies with N for the NGCM. By using this relation we

compare the NGCM and the SGCM, specifically. Numerical results are dis-

played in Table 1, fig. 1 .The results show that the convergence rate of NGCM

is much faster than the standard methods. Also we see that the condition

number which relates to the standard methods grows rapidly that is not the

case for the NGCM. Moreover we observe an instable manner in the SGCM

as N and c increase. The situation gets worse for the standard methods when

q < 1. The convergence does not happen due to severe ill-conditioning of

the standard methods. The ill-conditioning makes them too sensitive to small

changes in q. if we let T ≤ 1 for a given q near to 1 and T ≤ 0.5 for q ≤ 0.5

the results get better to some extent, but even in these cases the exponential

convergence can not be obtained and the results are very poor. Perhaps if

we apply an appropriate expensive technique to overcome the ill-conditioning,

performance of the standard methods gets better, however with the NGCM

without using any technique we can achieve excellent results even if we let

q ≤ 0.1.

Now we solve equ. (4.1) with the NGCM for q = 0.1 where T = π and

β = 0.5, also for q = 0.1 where T = π and β varies with N and compare

the results with those obtained with the LSCM and the CSCM. The obtained

results are shown in Table 2 for different values of N . We observe that for the

NGCM when we vary β with N the point-wise L∞ error decreases more rapidly

than while the β is fixed. Also it can be seen that the NGCM gives better

results than the spectral method while the condition number is relatively small

and does not grow in like manner to the spectral method. For the spectral

method we run the Maple program several times to obtain the results, whereas

the exponential convergence is achievable easily by using the NGCM with

relatively large N . So, one can conclude that the spectral method is more

sensitive than the NGCM with respect to q.

Next, we apply the NGCM to approximate the solution of equ. (4.1) for fixed

N = 18 and different values of β when q = 0.1 and T = π. The numerical
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(a) LN (yN ) (b) LN (y′
N )

Figure 1: Comparision between standard RBF methods and NGCM for T = π

and q = 1.

Figure 2: Behavior of the NGCM in terms of the point-wise L∞ error versus

β for N = 12, q = 0.5 and T = π

results are shown in Table 3. Also fig. 2 displays the behavior of the NGCM

in terms of the point-wise L∞ error versus β for N = 12, q = 0.5 and T = π.

Actually we use the Trial & Error technique which is composed of varying

β and selecting the optimal parameter as the one that causes the minimum

point-wise L∞ error. It can be seen from Table 3 and the figure that one can



M. Ghorbanzadeh and O. R. N. Samadi 27

improve the accuracy without extra computations.

(a) Abr(yN ) (b) Abr(y′
N )

Figure 3: Absolute errors for N = 42, q = 0.1, β = 0.1 and T = π

(a) Abr(yN ) (b) Abr(y′
N )

Figure 4: Absolute errors for N = 50, q = 0.05, β = 0.8 and T = 0.7π.
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Table 3: Numerical results of ex.1 when N = 18, q = 0.1, T = π and different

β.
β 3 2 1 0.5 0.3 0.1 0.05 0.01 0.003 0.00005

LN(yN) 7.29e− 1 3.01e− 2 1.69e− 3 3.97e− 4 2.03e− 3 1.85e− 2 2.95e− 2 4.39e− 2 4.72e− 2 4.87e− 2

LN(y′N) 5.50e− 1 9.60e− 2 3.65e− 3 9.74e− 4 5.08e− 3 3.00e− 2 4.94e− 2 7.92e− 2 8.65e− 2 8.97e− 2

Cond2 12262 3670 2379 2380 2381 2381 2381 2381 2381 2381

Cond∞ 45935 15331 10451 40453 10454 10455 10455 10455 10455 10455

In order to show the high performance of the NGCM on the whole domain,

we plot the absolute errors for N = 42, q = 0.1, β = 0.1 and T = π in fig. 3

. Also fig. 4 presents the absolute errors for N = 50, q = 0.05, β = 0.8 and

T = 0.7π.

Example 4.2. The second example is as follow

y′(t) = g(t) + ty(t) + e−q
2ty(qt) +

∫ t

0

Cos
(
q(t− s)

)
y(s)ds+∫ qt

0

q(t− s)y(s)ds, t ∈ [0, T ], (4.2)

where g(t) is given such that the exact solution to be eqtCos
(
t
q

)
.

At first we solve this example for q = 0.01 and β = 0.7 where T is π
4

and π
5

to verify impact of the domains size on the accuracy of the presented method,

where the variation of T is only 0.157. The results for different values of N are

displayed in fig. 5. We see that for the smaller value of T the results are more

accurate. Also in order to see how susceptible the GNCM is to the selection

of β, we solve the equ. (4.2) for q = 0.01, β = 1.5 and T = π
5

and compare

the results with those obtained for β = 0.7, which is depicted in fig. 6. In

addition for q = 0.01, β = 1.5, T = π
5

and N = 55 we compare the numerical

results yN and y′N and the exact solutions y and y′ which are shown in fig. 7.

Furthermore the absolute error of yN and y′N are plotted in fig. 8 respectively.

These results show the flexibility and capability of the NGCM for solving such

oscillatory problem with high oscillation. However the spectral method fails

to converge when q = 0.01 and T = π
5
. Although for T ≤ π

7
the situation gets

better but the obtained results are poor and the exponential convergence can

not be acquired.

Next, for q = 0.09 and T = π we solve the equ. (4.2), when β varies with

N . The numerical results are reported in Table 4. From the Table it can be

seen that the exponential convergence is achievable. A comparison between
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the exact solutions and the numerical solutions when N = 52 and β = 0.4 is

depicted in fig. 9.

(a) LN (yN ) (b) LN (y′
N )

Figure 5: Behavior of the NGCM in terms of the point-wise L∞ error versus

N for q = 0.01 and β = 0.7.

(a) LN (yN ) (b) LN (y′
N )

Figure 6: Behavior of the NGCM in terms of the point-wise L∞ error versus

N for q = 0.01 and T = π
5
.
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(a) y(t) (b) y′(t)

Figure 7: Comparision of Numerical solutions and exact solutions when q =

0.01, T = π
5
, β = 1.5 and N = 55

(a) Abr(yN ) (b) Abr(y′
N )

Figure 8: Absolute errors for q = 0.01, T = π
5
, β = 1.5 and N = 55.

5 Conclusion

In this paper we use a simple explicit interpolation formula based on GRBF

with equally spaced centers to establish a stable collocation method for solving

the PVIDEs. By this method we overcome the ill-conditioning of the interpo-
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(a) y(t) (b) y′(t)

Figure 9: Comparision of Numerical solutions and exact solutions when q =

0.09, T = π, β = 0.4 and N = 52

Table 4: Numerical results of ex.2 when β varies with N and q = 0.09, T = π.
N 16 22 28 34 40 46 52

β 1 0.9 0.8 0.7 0.6 0.5 0.4

LN(yN) 1.69e− 1 2.75e− 4 7.68e− 6 3.60e− 8 6.38e− 11 2.05e− 14 2.67e18

LN(y′N) 5.90e− 1 7.50e− 4 1.25e− 5 7.23e− 8 9.23e− 11 4.66e− 14 5.20e− 18

Cond2 11737 11921 11984 12209 12689 12862 12692

Cond∞ 42300 42075 43917 49038 52749 51762 50109

lation matrix, without applying a special technique. Numerical results show

that the efficiency and stability of the presented method is excellent with re-

spect to standard method especially when q < 1. While comparing with the

spectral method, the NGCM shows better performance and it can be seen that

the spectral method is more sensitive than the NGCM with respect to q. Also

the exponential convergence of the presented method is achievable easily even

for relatively small value of q and relatively large N, however that is not the

case for the spectral method. Furthermore one can improve the accuracy of

the NGCM without extra computation while β decreases. So the NGCM is

a robust method for solving the PVIDEs which is motivated us to extend it

for solving more complicated problems such as fractional pantograph partial

integro-differential equations that remains for future works.
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