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Abstract

In this paper, by the classic Mann-type and Halpern-type algo-
rithms, on the basis of monotone operators with firmly nonexpansive
property, we build Mann-Halpern type and Halpern-Mann type proxi-
mal point algorithms about a zero of monotone operators in Hadamard
space, and prove strong convergence and A—convergence to a zero of

monotone operators, respectively.
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1 Introduction

Let (X,d) be a metric space[ll]. A geodesic path joining z € X to y €
X (or, more briefly, a geodesic from x to y) is a map f from a closed interval
[0,{] C R to X such that f(0) =z, f(I) =y and d(f(t), f(t')) = |t — | for all
t,t' € [0,]. In particular, f is an isometry and d(z,y) = [. The image « of
f is called a geodesic (or metric) segment joining z and y. When it is unique
this geodesic is denoted [z, y]. The space (X, d) is said to be a geodesic space
if every two points of X are joined by a geodesic, and X is said to be uniquely
geodesic if there is exactly one geodesic joining x and y for each z,y € X. A
subset Y C X is said to be convex if Y includes every geodesic segment joining
any two of its points.

A geodesic space (X, d) is a CAT(0) space if it satisfies the following C'N-
inequality for x, zo, 21, 20 € X such that d(zo, 21) = d(z0, 22) = %d(zl, 29):

1 1 1
d*(x, 2) < de(xwﬁ) + §d2($a 22) — ZdQ(ZhZz)'

A complete CAT(0) space is called a Hadamard space.

Berg and Nikolaev[3] introduced the concept of quasi-linearization in CAT(0)
space X. They denoted a vector by ab for (a,b) € X x X and defined the
quasi-linearization map (-, ) : (X x X) x (X x X) — R as follow:

(ab, cd) %[dz(a, d) + (b, ) — d(a, ) — (b, d)],

— — — — — —

for a,b,c,d € X. We can verify (ab, ab) = d*(a,b), (ba, cd) = —(ab, cd), and
— = - = — — ) )
(ab, cd) = (aé, cd) + (eb, cd) for all a,b,c,d,e € X. For a space X, it satisfies
the Cauchy-Schwarz inequality if

(ab, cd) < d(a, b)d(c, d)

for all a,b,c,d € X.It is known[3] that a geodesically connected metric space
X is a CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.

Ahmadi Kakavandi and Amini[l] introduced the concept of dual space of
a complete CAT(0) space X based on a work of Berg and Nikolaev[4]. Also,

we use the following notation:

(az* + By*, zy) = ola”, 2y) + B{y", zy),
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fora, 0 € R, x,y € X,and x*,y* € X*, where X* is the dual space of X.

It is known that the subdifferential of every proper convex and lower semi-
continuous function is maximal monotone in Hilbert spaces, and it satisfies
the range condition. Ahmadi Kakavandi and Amini[l] also introduced the
subdifferential of a proper convex and lower semi-continuous function on a
Hadamard space X as a monotone operator from X to X*.

By the application of the dual theory[1], H.Khatibzadch and S.Ranjbar(2]
have showed that the sequences generated by the Mann-type and the Halpern-
type proximal point algorithm containing the resolvent of a monotone operator
which satisfies range condition are strong convergence and A—convergence
to a zero of a monotone operator in a complete CAT(0) space, respectively.
Hence, we build Mann-Halpern type and Halpern-Mann type proximal point
algorithms about zeros of the subdifferential of proper convex and lower semi-
continuous function in Hadamard space, and prove strong convergence and
A—convergence to a zero of a monotone operator, respectively. Therefore, we
improve and extend their results.

2 Preliminary

Definition 2.1. [4] Let A > 0 and A : X — 2% be a set-valued operator. The
resolvent of A of order X is the set-valued mapping Jy : X — 2% defined by
Ia(z) :={z € X : [}2@] € Az}.

Definition 2.2. [4] Let T : C C X — X be a mapping. We say that T is
—
firmly nonexpansive if d*(Tx, Ty) < (TxTy,zy) for any z,y € C.

Let X be a Hadamard space with dual X* and let A : X — 2% be a
multivalued operator with domain D(A) := {x € X : Az # ()}, rangeR(A) :=
U,ex Az, A7H(2*) := {z € X : 2* € Az} and graph gra(A) = {(z,2*) €
X x X*:xe€ D(A),z* € Ax}.

Definition 2.3. [4] Let X be a Hadamard space with dual X*. The multivalued
operator A : X — 2X7 is:
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(1) monotone if and only if, for all x,y € D(A), * € Ax and y* € Ay,

(2) strictly monotone if and only if for all x,y € D(A), z* € Ax and
yr € Ay,

(3) a—strongly monotone for a > 0 if and only if, for all x,y € D(A),
x* € Az and y* € Ay,

(x* —y*, yz) > ad®(z,y).

Definition 2.4. [4] Let X be a CAT(0) space, xz,y € X, we write (1 —t)z®ty
for the unique point z in the geodesic segment joining from x to y such that
d(z,z) =td(x,y) and d(y,z) = (1 — t)d(x,y). Set [z,y] ={(1—t)x Dty :t €
[0,1]}. A subset C of X is called convez if [x,y] C C for all z,y € C.

Let X be a Hadamard space with dual X* and let f : X — (—o0, +o0]
be a proper function with efficient domain D(f) = {z; f(x) < +o0o}, then the
subdifferential of f is the multifunction df : X — 2% defined by

0f(x) ={a" € X"+ f(2) — f(x) > (2", 22) (z € X)},

when z € D(f) and 0f(z) = (), otherwise.

Lemma 2.5. [5] Let (X,d) be a CAT(0) space. Then, for all z,y,z € X, and
allt € [0,1]:
(1) d*(tz ® (1 —t)y, z) < td*(x,z) + (1 — t)d*(y, z) — t(1 — t)d?*(z,y),
(2) d(tx® (1 —t)y,z) < td(z,2) + (1 —t)d(y, z). In addition, by using (1)
we have
dte ® (1 —t)y,tx ® (1 —t)z] < (1 —1t)d(y, 2).

Lemma 2.6. [4] Let (X,d) be a CAT(0) space and a,b,c € X. Then for each
Ae0,1],

(At @ (1 — Ny, 2) < Nd*(z,2) + (1 = A)?d*(y, 2) + 2M(1 — \) (22, y2).
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Lemma 2.7. [7] Let C be a closed convex subset of a complete CAT(0) space
X, T:C — C be a nonexpansive mapping with a fixed point and uw € C. For
each t € (0,1), set zy = tu @ (1 — t)Tz. Then z; converges ast — 0 to the

unique fized point of T', which is the nearest point to u.

Lemma 2.8. [6] Let C be a closed convex subset of a complete CAT(0) space
X, T :C — C be a nonexpansive mapping with F(T) # 0 and {x,} be a
bounded sequence in C' such that the sequence {d(x,, Tx,)} converges to zero.
Then

lim sup(up, z,p) <0,

where uw € C' and p is the nearest point of F(T) to u.

Lemma 2.9. [4] Let X be a CAT(0) space and Jy is resolvent of the operator
A of order \. We have,

(1) For any A > 0, R(J\) C D(A), F(J\) = A~Y0);

(2) If A is monotone then Jy is a single-valued and firmly nonexpansive
mapping;

(3) If A is monotone and X < p, then d(x, Jyxx) < 2d(z, J,x).

It is well known[4] that if T is a nonexpansive mapping on subset C' of
CAT(0) space X then F(T) is closed and convex. Thus, if A is a monotone
operator on CAT(0) space X then, by parts (1) and (2) of Lemma 2.9, A=*(0)

is closed and convex.

Lemma 2.10. [8] Let (s,) be a sequence of non-negative real numbers satis-
fying
Snt1 < (1= an)sn + anfn + yn,n 2 0,

where , (o), (6,) and (7y,) satisfy the conditions:
(1) (o) C [0,1], >, = 00, or equivalently, []72 (1 — ay,) = 0;
(2) limsup,, 5, < 0;
(3) Y = 0(n >0), > 4, < oo. Then, lim,s, = 0.
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Lemma 2.11. [9] Let (v,,) be a sequence of real numbers such that there exists
a subsequence (Yn,;) of (Yn) such that vn, < Yn,41 for all j = 1. Then there
exists a nondecreasing sequence (my) of positive integers such that the following
two inequalities:

hold for all (sufficiently large) numbers k. In fact, my is the largest number n
in the set {1,2,---  k} such that the condition 7, < Yn+1 holds.

By the Lemma 2.6 of S Saejung and P Yotkaew[10], we can similarly obtain

the following lemma.

Lemma 2.12. Let (s,) be a sequence of nonnegative real numbers, (o) be a
sequence in (0,1) such that ) o, = 00, (t,) be a sequence of real numbers,
and (v,) be a sequence of nonnegative real numbers such that ) v, < oo.
Suppose that

Sn1 < (1 —ap) sy + anty + Ynym = 1.

Iflimsupy,_, . tn, < 0 for every subsequence (sy, ) of (s,) satisfying iminfy o (Sp,+1—
Sn,.) = 0, then lim,s, = 0.

Proof. The proof is split into two cases.

(1) There exists an ng € N such that s,,1 < s, for all n > ng. It follows
then that liminf, . (sp+1—5s,) = 0. Hence limsup,,_, . t, < 0. The conclusion
follows from Lemma 2.10.

(2) There exists a subsequence (s,,;) of (s,) such that s,,, < sp,41 for
all j € N. In this case, we can apply Lemma 2.11 to find a nondecreasing

sequence {ny} of {n} such that n;, — oo and the following two inequalities:
Sng S Sng41 AN S < Syt

hold for all (sufficiently large) numbers k. Since ny — oo, then for arbitrary
e > 0, there is a integer N > 0 such that v,, < e for n, > N. It follows
from the first inequality that liminf; . (S,,+1 — sp,) = 0. This implies that

lim sup;,_, tn, < 0. Moreover, by the first inequality again, we have
Sni+1 < (1 - ank)snk + anktnk + Tni, g (1 - ank)snk+1 + anktnk + &,

this implies a, Sy, +1 < Qi b, + € for arbitrary € > 0. By the arbitrariness of

€, we obtain

ank Snk+1 g Oénktnk .
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In particular, since each «,, > 0, we have s,, 11 < t,,. Finally, it follows from
the second inequality that

lim sup s; < lim sup s,,, 41 < lim supt,, = 0.

k—o00 k—o00 k—o0

Hence lim,,_.,.s, = 0. This completes the proof. O

Lemma 2.13. [2] Suppose (X,d) is a metric space and C' C X. Let (T,,)5% :
C — C be a sequence of nonexpansive mappings with a common fized point

and (x,) be a bounded sequence such that lim,d(x,, T,(z,)) = 0. Then

—

e
lim sup(up, T, (25)p) < lim sup(up, T,p),

n n

where p € (—_, F(T,).

Lemma 2.14. [1] Let f : X — (—o00, +00] be a proper, lower semi-continuous
and convez function on a Hadamard space X with dual X*. Then

(1) f attains its minimum at x € X if and only if 0 € Of (z);

(2) 0f : X — 2%7 is a monotone operator;

(3) for any y € X and o > 0, there exist a unique point © — X such that
(o) € 01(x).

By the (3) of Lemma 2.14, we obtain the subdifferential of a proper, lower

semi-continuous and convex function satisfies the range condition.

Lemma 2.15. [4] Let f : X — (—o0,+00] be a proper, lower semi-continuous

and convex function on a Hadamard space X with dual X*. Then

1
JY e = Argmin{f(z) + —~d?(z, )}
zeX 2\

forall A >0 and z € X.

Lemma 2.16. [11] Let K be a closed convex subset of X, and let f: K — X
be a nonexpansive mapping. Then the conditions (x,) A—converges to x and
d(zp, f(z,)) — 0, imply x € K and f(x) = x.
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3 Main Results

Theorem 3.1. Let X be a Hadamard space and X* be the dual space of X. Let
f: X — (—o0,400] be a proper convex and lower semi-continuous function,
and Of is the subdifferential of f. Suppose (\,) is a sequence of positive real
numbers such that A, = X > 0, (oy,) is a sequence in [0, 1] satisfied ), o, < 00,
and (,) is a sequence in [0,1] satisfied lim B, = 0 and >, [, = co. The
sequence (x,,) generated by the following ]\};’:LOTL—HGZPQTTL hybrid type algorithm:

;

To,u € X,

wy, = argmin{ f(z) + -d*(z,x,)},
reX

Yn = Ay, @ (1 — ap)wy, (3.1)
yeX

Tni1 = Gou @ (1 — B)zn.

\

Then the sequence is convergent strongly to the nearest point of 9f~(0) to u.

Proof. By the Lemma 2.15, the upper algorithm is equivalent to the following
algorithm:
To,u € X,
Yn = @y & (1 — )y, Tn, (3.2)
Tnt1 = Batt & (1 = B1)Jx, Yn,
where we use J,, instead of Ji{ .

Since df71(0) is convex and closed. Set p € Pyp-1(g)u, we have

d(@n+1,p) < Bud(u, p) + (1 = Ba)d(JIx, Yn: D)
< Bud(u, p) + (1 = Bp)and (2, p) + (1 = Ba)(1 — an)d(Jx, 20, p)
< Bud(u, p) + (1 = Bu)d(zn, p) < max{d(u,p), d(zn, p)}
< -+ < max{d(u, p), d(zo, p)},

which implies that (x,) is bounded.
Since d(Jy,xpn,p) < d(zn,p), then (Jy,z,) is also bounded.
By the Lemma 2.5, we have
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& (Tni1,p) = A (Bou ® (1 = Bn)JIr,Yn: D)
< B2 (w,p) + (1 = B.)*d (I, yns 1) + 280(1 — B) (@b, T, yuD)
< B d*(u,p) + (1 = Bn)*(an*d*(zn, p) + (1 — an)*d*(Jx, 7, p))
+2(1 — o) (1 — @) @b, Tn, 2np) + 26(1 — Bo) (@, I, yup)
< (1= B)((1 = 200(1 = 0))d (. p)) + B (u, p)
1+ 28,1 = B){@D, T gnann) + 26u(1 = B) (@, T, D)
+2(1 — )% (1 — @) (@b, In, Tup)
< (1= Bu)d (@, p) + BulBud?(w,p) + 2(1 — B,)(@h, T, xap)
+2(1 — ) d(, )y, ©0)) + 200 (T, I, Tup)
< (1= Ba) (@0, D) + Bu(Bud?(u,p) +2(1 — B){@D, Tr, 2up)
+2(1 = Bp)d(u, p)[and(Tn, ) + (1 — an)d( Iy, Tn, T0)])
+ 200 T, Ty )
< (1= Bu)d (@, p) + BulBud?(u, p) + 2(1 — Bo)(@h, I, xap)
+2(1 — 6,)(1 — ap)d(u, p)d(Jx, T, ) + 20, d (2, p)d( Iy, Tn, P),
which implies
P (n11,9) < (L= B)d(20,p) + Ba(Bud?(, p) + 2(1 = B) (0B, Ty, 20p)
+2(1 = 5,) (1 — ap)d(u, p)d(Jy, Tn, ) + 20,d(20, p)d(JIn, T,y D).
By the Lemma 2.12, it suffices to show that lim sup(S,,, d*(u,p) + 2(1 —

k—o0

B ) (1=, )d(u, p)d( ., Ty s Tmy,) +2(1 — By ) (Up, W>) < 0 for every
subsequence (d(2y,, p)) of (d(xy, p)) satisfying ligriiogf(d(xmﬁl,p)—d@mwp)) 2
0. For this, suppose the subsequence (d(z,, ,p)) satisfied h]?l g}f (d(zpmys1,p) —
d(zpm,,p)) = 0. Then

<hm1nf(d(:ﬁmk+1, p) — d(Tpm,, p))

< hmm (B d(u, p) + (1 = By )d(In,, Ymgs P) — ATy, D))
< hm in f(Brmpd(w, p) + (1 = B )A(Yimg s 2) — (T, D))
hm 1nf(ﬂmkd( p) + (1 = B ) (@m, d(Tm,,, )

+ (1 - amk)d(‘b\mkxmk?p)) - d(xmk7p>>
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< lim inf (B, (d(u, p) — d(2pm, , p))

k—

+ (1 = By ) (1 = amy ) (d( I, Ty, P) — d(@imy 5 D))
< limsup(Byy,, (d(u,p) — d(xmk,p)))

k—o0

+ iminf(1 — G, ) (1 = am, )(d( o, T P) = d(Zy; )
= h]glllol.}f(l - ﬁmk)(l - Oémk)(d(J)\MkSka,p) B d(mmk’p))

< limsup(1 — B, ) (1 — Ozmk)(d(J,\mkamk,P) — d(Tmy, p))

k—o0

< limsup(1l — B, ) (1 — i, ) (d(@y s p) — (T, p)) = 0,

k—o0

hence, klim (d(JIx,n, Ty, P) — d(Timy, p)) = 0. Since Jy, is firmly nonexpansive,

we have
— 1
dQ(J)\nxnap) < <'])\nxnp7 x—nl))> = §(d2(‘]>\nxn7p) + dZ(xnap> - d2(J/\n$n7'rn)>7
which implies d?(Jy,®n, T,) < d*(xy, p) — d*(Jx, Tn, p). Then we can get

dQ(JAmk,xmka xmk) < dz(:ﬂmk,p) - d2<J)\meL‘mk,p),

by the boundedness of (,,,), which implies d(Jy,, Tm,,Zm,) — 0. By the
(3) of Lemma 2.9, we obtain d(Jx%m,,, Tm,) < 2d(Jx,, Tm,, Tm, ), Which implies

d(J\Ty, , Ty, ) — 0. Therefore, by the Lemma 2.8, we have lim sup{(up, Zpm, p) <

k—o0
0, and by the Lemma 2.13, we obtain

lim sup{(up, rm,, Ty, D) < 0.

k—o0

Hence, we get lim sup( 8y, d*(u, p)+2(1— LB, ) (1—am, )d(u, P)A(JIx,, Ty Ty )+

k—o00

-
2(1 = By )(up, Jx,,, Tm,p)) < 0. By the boundedness of (J,z,) and (z,), we
obtain ) 2a,d(z,, p)d(Jy,x,,p) < co. Hence, by the Lemma 2.13, we know
lim d(x,,p) — 0. This completes the proof. O

Theorem 3.2. Let X be a Hadamard space and X* be the dual space of X . Let
f:X — (—o0,400] be a proper convexr and lower semi-continuous function,

and Of is the subdifferential of f. Suppose (\,) is a sequence of positive real
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numbers such that A\, > X > 0, (ay,) is a sequence in [0, 1] satisfied lim «,, =0

and ) o, = o0, and (B,) is a sequence in [0, 1] satisfied limsup 3, < 1. The

sequence (x,,) generated by the following Halpern-Mann hybrid type algorithm.:

;

o, u € X,

Wy, = arggL(in{f(x) + ﬁd%% Tn)},

Yn = anu @ (1 — o )wy, (3.3)
Zp = aryggz(m{f(y) + ﬁdz(% Yn)}s

Tpt1 = ﬁnyn s> (1 - ﬁn)zn

\

Then the sequence is A—convergent to a point p € Of~1(0).

Proof. By the Lemma 2.15, the upper algorithm is equivalent to the following
algorithm:

To,u € X,

Yn = QRU S% (1 - Oén)J)\nl'n, (34)

Tp1 = BnlYn © (1 - ﬁn)JAnym
where we use J,, instead of ij .

Let p € 9f~1(0), we have

d(Tny1,P) < Bud(Yn, p) + (1 = Bn)d(Ix, Yn: P) < d(Yn, D)
< Oénd( ) (1 - Oén>d<J)\n.1'n,p) < @nd(uap> + (1 - Oén)d(l'n,p),

which implies d(z,11,p) < max{d(u,p),d(xo,p)}. Hence, (z,) is a bounded
sequence. Since d(Jy,zn,p) < d(zn,p), then (Jy,z,) is also bounded. Let
max{d(u,p),d(zg,p)} = M. By the assuming, for arbitrary ¢ > 0, there is a
integer N > 0 such that we have a,, < ; for n > N. Therefore, for n > N,

we obtain

£
d(2pg1,p) < d(u,p) - u d(xn,p) < €+ d(xn,p).

By the arbitrariness of ¢, we get d(x,41,p) < d(z,, p), which implies existence



12 Convergence of Proximal Point Algorithms of Mann and Halpern ...
of limd(x,,p). Hence, we have
n

0 = lim[d(zns1,p) — d(wn, p)]
< lim inf[Bad(yn, p) + (1 = Ba)d(JIx, yn, p) = d(n, p)]
< liminflagd(u, p) + (1 = an)d(Jy, 2, p) = d(zn,p)]
< lim sup[ayd(u, p) + (1 — an)d(Jx, Zn, p) — d(2n, p)]

n

< limsup|ay,d(u, p) — and(zn, p)]

= limsup o, [d(u, p) — d(2n, p)] = 0,
which means lim[a,d(u,p) + (1 — ay,)d(Jy, zn, p) — d(zn,p)] = 0. Hence, we

obtain

im[d(Jy, Zn, p) — d(@y, p)] = lim a, [d(Jx, 20, p) — d(u, p)] = 0.

Since J), is firmly nonexpansive, we have

ey

1
dQ(JAn:L‘mp) < <<]Anxnp7 m) = §(d2(‘])\n$nap) + dQ(:L‘n,p) - dz(‘]/\nxn7$n))7

which implies d?(Jy, Z, ) < d*(2,p) — d*(Jx,Tn, p). By the boundedness of
() and (Jy,x,), we get

lim d(Jx, zpn, ) = 0.
Thus, by the (3) of Lemma 2.9, we obtain
d<<])\xm xn) < 2d<J)\n.Tn, l’n),

which implies lim d(Jyz,, z,,) = 0.

If subsequer?ce (zn;) of (x,) is A—convergent to ¢ € X, then we have
d(J\Tn;, Tn;) — 0. Hence, since Jy, is nonexpansive, by the Lemma 2.16, we
have ¢ € 9f~1(0). This completes the proof. O

The following theorem shows that the sequence is A—convergent for classic
Ishikawa type algorithm.



Yue Zhang and Dingping Wu 13

Theorem 3.3. Let X be a Hadamard space and X* be the dual space of X. Let
f:X — (—o0,400] be a proper convexr and lower semi-continuous function,
and Of is the subdifferential of f. Suppose (\,) is a sequence of positive real
numbers such that A\, = X > 0, and (o), (6,) are two sequences in [0, 1]

satisfied limsup o, < 1 and limsup 3, < 1, respectively. The sequence (xy,)

generated by the following Ishikawa type algorithm.:

(

o, u € X,

wy, = arggl(in{f(x) + oo (@, 20) ),

Yn = QpZy O (1 — ap)wp, (3.5)
Zp = arygen;m{f(y) + ﬁdz(% Yn)}s

Tp+1 = ﬁn$n ® (1 - ﬁn)zn

\

Then the sequence is A—convergent to a point p € df~1(0).

Proof. 1t is similar to Theorem 3.2. [
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