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1 Introduction

Let (X, d) be a metric space[11]. A geodesic path joining x ∈ X to y ∈
X(or, more briefly, a geodesic from x to y) is a map f from a closed interval

[0, l] ⊂ R to X such that f(0) = x, f(l) = y and d(f(t), f(t′)) = |t− t′| for all

t, t′ ∈ [0, l]. In particular, f is an isometry and d(x, y) = l. The image α of

f is called a geodesic (or metric) segment joining x and y. When it is unique

this geodesic is denoted [x, y]. The space (X, d) is said to be a geodesic space

if every two points of X are joined by a geodesic, and X is said to be uniquely

geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X. A

subset Y ⊆ X is said to be convex if Y includes every geodesic segment joining

any two of its points.

A geodesic space (X, d) is a CAT(0) space if it satisfies the following CN -

inequality for x, z0, z1, z2 ∈ X such that d(z0, z1) = d(z0, z2) = 1
2
d(z1, z2):

d2(x, z0) 6 1

2
d2(x, z1) +

1

2
d2(x, z2)− 1

4
d2(z1, z2).

A complete CAT(0) space is called a Hadamard space.

Berg and Nikolaev[3] introduced the concept of quasi-linearization in CAT(0)

space X. They denoted a vector by
−→
ab for (a, b) ∈ X × X and defined the

quasi-linearization map 〈·, ·〉 : (X ×X)× (X ×X) → R as follow:

〈−→ab,
−→
cd〉 =

1

2
[d2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)],

for a, b, c, d ∈ X. We can verify 〈−→ab,
−→
ab〉 = d2(a, b), 〈−→ba,

−→
cd〉 = −〈−→ab,

−→
cd〉, and

〈−→ab,
−→
cd〉 = 〈−→ae,

−→
cd〉+ 〈−→eb,−→cd〉 for all a, b, c, d, e ∈ X. For a space X, it satisfies

the Cauchy-Schwarz inequality if

〈−→ab,
−→
cd〉 6 d(a, b)d(c, d)

for all a, b, c, d ∈ X.It is known[3] that a geodesically connected metric space

X is a CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.

Ahmadi Kakavandi and Amini[1] introduced the concept of dual space of

a complete CAT(0) space X based on a work of Berg and Nikolaev[4]. Also,

we use the following notation:

〈αx∗ + βy∗,−→xy〉 := α〈x∗,−→xy〉+ β〈y∗,−→xy〉,
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for α, β ∈ R, x, y ∈ X, and x∗, y∗ ∈ X∗, where X∗ is the dual space of X.

It is known that the subdifferential of every proper convex and lower semi-

continuous function is maximal monotone in Hilbert spaces, and it satisfies

the range condition. Ahmadi Kakavandi and Amini[1] also introduced the

subdifferential of a proper convex and lower semi-continuous function on a

Hadamard space X as a monotone operator from X to X∗.

By the application of the dual theory[1], H.Khatibzadch and S.Ranjbar[2]

have showed that the sequences generated by the Mann-type and the Halpern-

type proximal point algorithm containing the resolvent of a monotone operator

which satisfies range condition are strong convergence and ∆−convergence

to a zero of a monotone operator in a complete CAT(0) space, respectively.

Hence, we build Mann-Halpern type and Halpern-Mann type proximal point

algorithms about zeros of the subdifferential of proper convex and lower semi-

continuous function in Hadamard space, and prove strong convergence and

∆−convergence to a zero of a monotone operator, respectively. Therefore, we

improve and extend their results.

2 Preliminary

Definition 2.1. [4] Let λ > 0 and A : X → 2X∗
be a set-valued operator. The

resolvent of A of order λ is the set-valued mapping Jλ : X → 2X defined by

Jλ(x) := {z ∈ X : [ 1
λ
−→zx] ∈ Az}.

Definition 2.2. [4] Let T : C ⊂ X → X be a mapping. We say that T is

firmly nonexpansive if d2(Tx, Ty) 6 〈−−−→TxTy,−→xy〉 for any x, y ∈ C.

Let X be a Hadamard space with dual X∗ and let A : X → 2X∗
be a

multivalued operator with domain D(A) := {x ∈ X : Ax 6= ∅}, rangeR(A) :=⋃
x∈X Ax, A−1(x∗) := {x ∈ X : x∗ ∈ Ax} and graph gra(A) := {(x, x∗) ∈

X ×X∗ : x ∈ D(A), x∗ ∈ Ax}.

Definition 2.3. [4] Let X be a Hadamard space with dual X∗. The multivalued

operator A : X → 2X∗
is:
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(1) monotone if and only if, for all x, y ∈ D(A), x∗ ∈ Ax and y∗ ∈ Ay,

〈x∗ − y∗,−→yx〉 > 0;

(2) strictly monotone if and only if for all x, y ∈ D(A), x∗ ∈ Ax and

y∗ ∈ Ay,

〈x∗ − y∗,−→yx〉 > 0;

(3) α−strongly monotone for α > 0 if and only if, for all x, y ∈ D(A),

x∗ ∈ Ax and y∗ ∈ Ay,

〈x∗ − y∗,−→yx〉 > αd2(x, y).

Definition 2.4. [4] Let X be a CAT(0) space, x, y ∈ X, we write (1− t)x⊕ ty

for the unique point z in the geodesic segment joining from x to y such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y). Set [x, y] = {(1− t)x⊕ ty : t ∈
[0, 1]}. A subset C of X is called convex if [x, y] ⊂ C for all x, y ∈ C.

Let X be a Hadamard space with dual X∗ and let f : X → (−∞, +∞]

be a proper function with efficient domain D(f) = {x; f(x) < +∞}, then the

subdifferential of f is the multifunction ∂f : X → 2X∗
defined by

∂f(x) = {x∗ ∈ X∗ : f(z)− f(x) > 〈x∗,−→xz〉 (z ∈ X)},

when x ∈ D(f) and ∂f(x) = ∅, otherwise.

Lemma 2.5. [5] Let (X, d) be a CAT(0) space. Then, for all x, y, z ∈ X, and

all t ∈ [0, 1]:

(1) d2(tx⊕ (1− t)y, z) 6 td2(x, z) + (1− t)d2(y, z)− t(1− t)d2(x, y),

(2) d(tx⊕ (1− t)y, z) 6 td(x, z) + (1− t)d(y, z). In addition, by using (1)

we have

d [tx⊕ (1− t)y, tx⊕ (1− t)z] 6 (1− t)d(y, z).

Lemma 2.6. [4] Let (X, d) be a CAT(0) space and a, b, c ∈ X. Then for each

λ ∈ [0, 1],

d2(λx⊕ (1− λ)y, z) 6 λ2d2(x, z) + (1− λ)2d2(y, z) + 2λ(1− λ)〈−→xz,−→yz〉.
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Lemma 2.7. [7] Let C be a closed convex subset of a complete CAT(0) space

X, T : C → C be a nonexpansive mapping with a fixed point and u ∈ C. For

each t ∈ (0, 1), set zt = tu ⊕ (1 − t)Tzt. Then zt converges as t → 0 to the

unique fixed point of T , which is the nearest point to u.

Lemma 2.8. [6] Let C be a closed convex subset of a complete CAT(0) space

X, T : C → C be a nonexpansive mapping with F (T ) 6= ∅ and {xn} be a

bounded sequence in C such that the sequence {d(xn, Txn)} converges to zero.

Then

lim
n

sup〈−→up,−→xnp〉 6 0,

where u ∈ C and p is the nearest point of F (T ) to u.

Lemma 2.9. [4] Let X be a CAT(0) space and Jλ is resolvent of the operator

A of order λ. We have,

(1) For any λ > 0, R(Jλ) ⊂ D(A), F (Jλ) = A−1(0);

(2) If A is monotone then Jλ is a single-valued and firmly nonexpansive

mapping;

(3) If A is monotone and λ 6 µ, then d(x, Jλx) 6 2d(x, Jµx).

It is well known[4] that if T is a nonexpansive mapping on subset C of

CAT(0) space X then F (T ) is closed and convex. Thus, if A is a monotone

operator on CAT(0) space X then, by parts (1) and (2) of Lemma 2.9, A−1(0)

is closed and convex.

Lemma 2.10. [8] Let (sn) be a sequence of non-negative real numbers satis-

fying

sn+1 6 (1− αn)sn + αnβn + γn, n > 0,

where , (αn), (βn) and (γn) satisfy the conditions:

(1) (αn) ⊂ [0, 1],
∑

n αn = ∞, or equivalently,
∏∞

n=1(1− αn) = 0;

(2) lim supnβn 6 0;

(3) γn > 0(n > 0),
∑

n γn < ∞. Then, limnsn = 0.
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Lemma 2.11. [9] Let (γn) be a sequence of real numbers such that there exists

a subsequence (γnj
) of (γn) such that γnj

< γnj+1 for all j > 1. Then there

exists a nondecreasing sequence (mk) of positive integers such that the following

two inequalities:

γmk
6 γmk+1andγk 6 γmk+1

hold for all (sufficiently large) numbers k. In fact, mk is the largest number n

in the set {1, 2, · · · , k} such that the condition γn < γn+1 holds.

By the Lemma 2.6 of S Saejung and P Yotkaew[10], we can similarly obtain

the following lemma.

Lemma 2.12. Let (sn) be a sequence of nonnegative real numbers, (αn) be a

sequence in (0, 1) such that
∑

n αn = ∞, (tn) be a sequence of real numbers,

and (γn) be a sequence of nonnegative real numbers such that
∑

n γn < ∞.

Suppose that

sn+1 6 (1− αn)sn + αntn + γn, n > 1.

If lim supk→∞tnk
6 0 for every subsequence (snk

) of (sn) satisfying lim infk→∞(snk+1−
snk

) > 0, then limnsn = 0.

Proof. The proof is split into two cases.

(1) There exists an n0 ∈ N such that sn+1 6 sn for all n > n0. It follows

then that lim infn→∞(sn+1−sn) = 0. Hence lim supn→∞tn 6 0. The conclusion

follows from Lemma 2.10.

(2) There exists a subsequence (smj
) of (sn) such that smj

< smj+1 for

all j ∈ N . In this case, we can apply Lemma 2.11 to find a nondecreasing

sequence {nk} of {n} such that nk →∞ and the following two inequalities:

snk
6 snk+1 and sk 6 snk+1

hold for all (sufficiently large) numbers k. Since nk → ∞, then for arbitrary

ε > 0, there is a integer N > 0 such that γnk
< ε for nk > N . It follows

from the first inequality that lim infk→∞(snk+1 − snk
) = 0. This implies that

lim supk→∞tnk
6 0. Moreover, by the first inequality again, we have

snk+1 6 (1− αnk
)snk

+ αnk
tnk

+ γnk
6 (1− αnk

)snk+1 + αnk
tnk

+ ε,

this implies αnk
snk+1 6 αnk

tnk
+ ε for arbitrary ε > 0. By the arbitrariness of

ε, we obtain

αnk
snk+1 6 αnk

tnk
.
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In particular, since each αnk
> 0, we have snk+1 6 tnk

. Finally, it follows from

the second inequality that

lim sup
k→∞

sk 6 lim sup
k→∞

snk+1 6 lim sup
k→∞

tnk
= 0.

Hence limn→∞sn = 0. This completes the proof.

Lemma 2.13. [2] Suppose (X, d) is a metric space and C ⊂ X. Let (Tn)∞n=1 :

C → C be a sequence of nonexpansive mappings with a common fixed point

and (xn) be a bounded sequence such that limnd(xn, Tn(xn)) = 0. Then

lim sup
n

〈−→up,
−−−−−→
Tn(xn)p〉 6 lim sup

n
〈−→up,−→xnp〉,

where p ∈ ⋂∞
n=1 F (Tn).

Lemma 2.14. [1] Let f : X → (−∞, +∞] be a proper, lower semi-continuous

and convex function on a Hadamard space X with dual X∗. Then

(1) f attains its minimum at x ∈ X if and only if 0 ∈ ∂f(x);

(2) ∂f : X → 2X∗
is a monotone operator;

(3) for any y ∈ X and α > 0, there exist a unique point x → X such that

[α−→xy] ∈ ∂f(x).

By the (3) of Lemma 2.14, we obtain the subdifferential of a proper, lower

semi-continuous and convex function satisfies the range condition.

Lemma 2.15. [4] Let f : X → (−∞, +∞] be a proper, lower semi-continuous

and convex function on a Hadamard space X with dual X∗. Then

J∂f
λ x = Argmin

z∈X
{f(z) +

1

2λ
d2(z, x)}

for all λ > 0 and x ∈ X.

Lemma 2.16. [11] Let K be a closed convex subset of X, and let f : K → X

be a nonexpansive mapping. Then the conditions (xn) ∆−converges to x and

d(xn, f(xn)) → 0, imply x ∈ K and f(x) = x.
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3 Main Results

Theorem 3.1. Let X be a Hadamard space and X∗ be the dual space of X. Let

f : X → (−∞, +∞] be a proper convex and lower semi-continuous function,

and ∂f is the subdifferential of f . Suppose (λn) is a sequence of positive real

numbers such that λn > λ > 0, (αn) is a sequence in [0, 1] satisfied
∑

n αn < ∞,

and (βn) is a sequence in [0, 1] satisfied lim
n→∞

βn = 0 and
∑

n βn = ∞. The

sequence (xn) generated by the following Mann-Halpern hybrid type algorithm:





x0, u ∈ X,

wn = argmin
x∈X

{f(x) + 1
2λn

d2(x, xn)},

yn = αnxn ⊕ (1− αn)wn,

zn = argmin
y∈X

{f(y) + 1
2λn

d2(y, yn)},

xn+1 = βnu⊕ (1− βn)zn.

(3.1)

Then the sequence is convergent strongly to the nearest point of ∂f−1(0) to u.

Proof. By the Lemma 2.15, the upper algorithm is equivalent to the following

algorithm: 



x0, u ∈ X,

yn = αnxn ⊕ (1− αn)Jλnxn,

xn+1 = βnu⊕ (1− βn)Jλnyn,

(3.2)

where we use Jλn instead of J∂f
λn

.

Since ∂f−1(0) is convex and closed. Set p ∈ P∂f−1(0)u, we have

d(xn+1, p) 6 βnd(u, p) + (1− βn)d(Jλnyn, p)

6 βnd(u, p) + (1− βn)αnd(xn, p) + (1− βn)(1− αn)d(Jλnxn, p)

6 βnd(u, p) + (1− βn)d(xn, p) 6 max{d(u, p), d(xn, p)}
6 · · · 6 max{d(u, p), d(x0, p)},

which implies that (xn) is bounded.

Since d(Jλnxn, p) 6 d(xn, p), then (Jλnxn) is also bounded.

By the Lemma 2.5, we have
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d2(xn+1, p) = d2(βnu⊕ (1− βn)Jλnyn, p)

6 βn
2d2(u, p) + (1− βn)2d2(Jλnyn, p) + 2βn(1− βn)〈−→up,

−−−−→
Jλnynp〉

6 βn
2d2(u, p) + (1− βn)2(αn

2d2(xn, p) + (1− αn)2d2(Jλnxn, p))

+ 2(1− βn)2αn(1− αn)〈−→xnp,
−−−−→
Jλnxnp〉+ 2βn(1− βn)〈−→up,

−−−−→
Jλnynp〉

6 (1− βn)((1− 2αn(1− αn))d2(xn, p)) + βn
2d2(u, p)

+ 2βn(1− βn)〈−→up,
−−−−−−−→
JλnynJλnxn〉+ 2βn(1− βn)〈−→up,

−−−−→
Jλnxnp〉

+ 2(1− βn)2αn(1− αn)〈−→xnp,
−−−−→
Jλnxnp〉

6 (1− βn)d2(xn, p) + βn(βnd
2(u, p) + 2(1− βn)〈−→up,

−−−−→
Jλnxnp〉

+ 2(1− βn)d(u, p)d(yn, xn)) + 2αn〈−→xnp,
−−−−→
Jλnxnp〉

6 (1− βn)d2(xn, p) + βn(βnd
2(u, p) + 2(1− βn)〈−→up,

−−−−→
Jλnxnp〉

+ 2(1− βn)d(u, p)[αnd(xn, xn) + (1− αn)d(Jλnxn, xn)])

+ 2αn〈−→xnp,
−−−−→
Jλnxnp〉

6 (1− βn)d2(xn, p) + βn(βnd
2(u, p) + 2(1− βn)〈−→up,

−−−−→
Jλnxnp〉

+ 2(1− βn)(1− αn)d(u, p)d(Jλnxn, xn)) + 2αnd(xn, p)d(Jλnxn, p),

which implies

d2(xn+1, p) 6 (1− βn)d2(xn, p) + βn(βnd
2(u, p) + 2(1− βn)〈−→up,

−−−−→
Jλnxnp〉

+ 2(1− βn)(1− αn)d(u, p)d(Jλnxn, xn)) + 2αnd(xn, p)d(Jλnxn, p).

By the Lemma 2.12, it suffices to show that lim sup
k→∞

(βmk
d2(u, p) + 2(1 −

βmk
)(1−αmk

)d(u, p)d(Jλmk
xmk

, xmk
)+2(1−βmk

)〈−→up,
−−−−−−→
Jλmk

xmk
p〉) 6 0 for every

subsequence (d(xmk
, p)) of (d(xn, p)) satisfying lim inf

k→∞
(d(xmk+1, p)−d(xmk

, p)) >
0. For this, suppose the subsequence (d(xmk

, p)) satisfied lim inf
k→∞

(d(xmk+1, p)−
d(xmk

, p)) > 0. Then

0 6 lim inf
k→∞

(d(xmk+1, p)− d(xmk
, p))

6 lim inf
k→∞

(βmk
d(u, p) + (1− βmk

)d(Jλmk
ymk

, p)− d(xmk
, p))

6 lim inf
k→∞

(βmk
d(u, p) + (1− βmk

)d(ymk
, p)− d(xmk

, p))

6 lim inf
k→∞

(βmk
d(u, p) + (1− βmk

)(αmk
d(xmk

, p)

+ (1− αmk
)d(Jλmk

xmk
, p))− d(xmk

, p))
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6 lim inf
k→∞

(βmk
(d(u, p)− d(xmk

, p))

+ (1− βmk
)(1− αmk

)(d(Jλmk
xmk

, p)− d(xmk
, p)))

6 lim sup
k→∞

(βmk
(d(u, p)− d(xmk

, p)))

+ lim inf
k→∞

(1− βmk
)(1− αmk

)(d(Jλmk
xmk

, p)− d(xmk
, p))

= lim inf
k→∞

(1− βmk
)(1− αmk

)(d(Jλmk
xmk

, p)− d(xmk
, p))

6 lim sup
k→∞

(1− βmk
)(1− αmk

)(d(Jλmk
xmk

, p)− d(xmk
, p))

6 lim sup
k→∞

(1− βmk
)(1− αmk

)(d(xmk
, p)− d(xmk

, p)) = 0,

hence, lim
k→∞

(d(Jλmk
xmk

, p) − d(xmk
, p)) = 0. Since Jλn is firmly nonexpansive,

we have

d2(Jλnxn, p) 6 〈−−−−→Jλnxnp,
−→xnp〉 =

1

2
(d2(Jλnxn, p) + d2(xn, p)− d2(Jλnxn, xn)),

which implies d2(Jλnxn, xn) 6 d2(xn, p)− d2(Jλnxn, p). Then we can get

d2(Jλmk
xmk

, xmk
) 6 d2(xmk

, p)− d2(Jλmk
xmk

, p),

by the boundedness of (xmk
), which implies d(Jλmk

xmk
, xmk

) → 0. By the

(3) of Lemma 2.9, we obtain d(Jλxmk
, xmk

) 6 2d(Jλmk
xmk

, xmk
), which implies

d(Jλxmk
, xmk

) → 0. Therefore, by the Lemma 2.8, we have lim sup
k→∞

〈−→up,−−→xmk
p〉 6

0, and by the Lemma 2.13, we obtain

lim sup
k→∞

〈−→up,
−−−−−−→
Jλmk

xmk
p〉 6 0.

Hence, we get lim sup
k→∞

(βmk
d2(u, p)+2(1−βmk

)(1−αmk
)d(u, p)d(Jλmk

xmk
, xmk

)+

2(1 − βmk
)〈−→up,

−−−−−−→
Jλmk

xmk
p〉) 6 0. By the boundedness of (Jλnxn) and (xn), we

obtain
∑

n 2αnd(xn, p)d(Jλnxn, p) < ∞. Hence, by the Lemma 2.13, we know

lim
n→∞

d(xn, p) → 0. This completes the proof.

Theorem 3.2. Let X be a Hadamard space and X∗ be the dual space of X. Let

f : X → (−∞, +∞] be a proper convex and lower semi-continuous function,

and ∂f is the subdifferential of f . Suppose (λn) is a sequence of positive real
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numbers such that λn > λ > 0, (αn) is a sequence in [0, 1] satisfied lim
n→∞

αn = 0

and
∑

n αn = ∞, and (βn) is a sequence in [0, 1] satisfied lim sup
n→∞

βn < 1. The

sequence (xn) generated by the following Halpern-Mann hybrid type algorithm:





x0, u ∈ X,

wn = argmin
x∈X

{f(x) + 1
2λn

d2(x, xn)},

yn = αnu⊕ (1− αn)wn,

zn = argmin
y∈X

{f(y) + 1
2λn

d2(y, yn)},

xn+1 = βnyn ⊕ (1− βn)zn.

(3.3)

Then the sequence is ∆−convergent to a point p ∈ ∂f−1(0).

Proof. By the Lemma 2.15, the upper algorithm is equivalent to the following

algorithm: 



x0, u ∈ X,

yn = αnu⊕ (1− αn)Jλnxn,

xn+1 = βnyn ⊕ (1− βn)Jλnyn,

(3.4)

where we use Jλn instead of J∂f
λn

.

Let p ∈ ∂f−1(0), we have

d(xn+1, p) 6 βnd(yn, p) + (1− βn)d(Jλnyn, p) 6 d(yn, p)

6 αnd(u, p) + (1− αn)d(Jλnxn, p) 6 αnd(u, p) + (1− αn)d(xn, p),

which implies d(xn+1, p) 6 max{d(u, p), d(x0, p)}. Hence, (xn) is a bounded

sequence. Since d(Jλnxn, p) 6 d(xn, p), then (Jλnxn) is also bounded. Let

max{d(u, p), d(x0, p)} = M . By the assuming, for arbitrary ε > 0, there is a

integer N > 0 such that we have αn < ε
M

for n > N . Therefore, for n > N ,

we obtain

d(xn+1, p) 6 d(u, p) · ε

M
+ d(xn, p) 6 ε + d(xn, p).

By the arbitrariness of ε, we get d(xn+1, p) 6 d(xn, p), which implies existence
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of lim
n

d(xn, p). Hence, we have

0 = lim
n

[d(xn+1, p)− d(xn, p)]

6 lim inf
n

[βnd(yn, p) + (1− βn)d(Jλnyn, p)− d(xn, p)]

6 lim inf
n

[αnd(u, p) + (1− αn)d(Jλnxn, p)− d(xn, p)]

6 lim sup
n

[αnd(u, p) + (1− αn)d(Jλnxn, p)− d(xn, p)]

6 lim sup
n

[αnd(u, p)− αnd(xn, p)]

= lim sup
n

αn[d(u, p)− d(xn, p)] = 0,

which means lim
n

[αnd(u, p) + (1 − αn)d(Jλnxn, p) − d(xn, p)] = 0. Hence, we

obtain

lim
n

[d(Jλnxn, p)− d(xn, p)] = lim
n

αn[d(Jλnxn, p)− d(u, p)] = 0.

Since Jλn is firmly nonexpansive, we have

d2(Jλnxn, p) 6 〈−−−−→Jλnxnp,
−→xnp〉 =

1

2
(d2(Jλnxn, p) + d2(xn, p)− d2(Jλnxn, xn)),

which implies d2(Jλnxn, xn) 6 d2(xn, p)− d2(Jλnxn, p). By the boundedness of

(xn) and (Jλnxn), we get

lim
n

d(Jλnxn, xn) = 0.

Thus, by the (3) of Lemma 2.9, we obtain

d(Jλxn, xn) 6 2d(Jλnxn, xn),

which implies lim
n

d(Jλxn, xn) = 0.

If subsequence (xnj
) of (xn) is ∆−convergent to q ∈ X, then we have

d(Jλxnj
, xnj

) → 0. Hence, since Jλn is nonexpansive, by the Lemma 2.16, we

have q ∈ ∂f−1(0). This completes the proof.

The following theorem shows that the sequence is ∆−convergent for classic

Ishikawa type algorithm.
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Theorem 3.3. Let X be a Hadamard space and X∗ be the dual space of X. Let

f : X → (−∞, +∞] be a proper convex and lower semi-continuous function,

and ∂f is the subdifferential of f . Suppose (λn) is a sequence of positive real

numbers such that λn > λ > 0, and (αn), (βn) are two sequences in [0, 1]

satisfied lim sup
n→∞

αn < 1 and lim sup
n→∞

βn < 1, respectively. The sequence (xn)

generated by the following Ishikawa type algorithm:





x0, u ∈ X,

wn = argmin
x∈X

{f(x) + 1
2λn

d2(x, xn)},

yn = αnxn ⊕ (1− αn)wn,

zn = argmin
y∈X

{f(y) + 1
2λn

d2(y, yn)},

xn+1 = βnxn ⊕ (1− βn)zn.

(3.5)

Then the sequence is ∆−convergent to a point p ∈ ∂f−1(0).

Proof. It is similar to Theorem 3.2.
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