Convergence of Proximal Point Algorithms of Mann and Halpern Hybrid Types to a Zero of Monotone Operators in CAT(0) Spaces

Yue Zhang ${ }^{1}$ and Dingping Wu ${ }^{2}$

Abstract

In this paper, by the classic Mann-type and Halpern-type algorithms, on the basis of monotone operators with firmly nonexpansive property, we build Mann-Halpern type and Halpern-Mann type proximal point algorithms about a zero of monotone operators in Hadamard space, and prove strong convergence and Δ-convergence to a zero of monotone operators, respectively.

Mathematics Subject Classification(2010): 47H09; 47H10
Keywords: Monotone operators; Mann-Halpern type; Halpern-Mann type; Proximal point algorithms; Hadamard space; Δ-convergence; Strong convergence

[^0]
1 Introduction

Let (X, d) be a metric space[11]. A geodesic path joining $x \in X$ to $y \in$ X (or, more briefly, a geodesic from x to y) is a map f from a closed interval $[0, l] \subset R$ to X such that $f(0)=x, f(l)=y$ and $d\left(f(t), f\left(t^{\prime}\right)\right)=\left|t-t^{\prime}\right|$ for all $t, t^{\prime} \in[0, l]$. In particular, f is an isometry and $d(x, y)=l$. The image α of f is called a geodesic (or metric) segment joining x and y. When it is unique this geodesic is denoted $[x, y]$. The space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each $x, y \in X$. A subset $Y \subseteq X$ is said to be convex if Y includes every geodesic segment joining any two of its points.

A geodesic space (X, d) is a $\operatorname{CAT}(0)$ space if it satisfies the following $C N$ inequality for $x, z_{0}, z_{1}, z_{2} \in X$ such that $d\left(z_{0}, z_{1}\right)=d\left(z_{0}, z_{2}\right)=\frac{1}{2} d\left(z_{1}, z_{2}\right)$:

$$
d^{2}\left(x, z_{0}\right) \leqslant \frac{1}{2} d^{2}\left(x, z_{1}\right)+\frac{1}{2} d^{2}\left(x, z_{2}\right)-\frac{1}{4} d^{2}\left(z_{1}, z_{2}\right)
$$

A complete CAT(0) space is called a Hadamard space.
Berg and Nikolaev[3] introduced the concept of quasi-linearization in $\operatorname{CAT}(0)$ space X. They denoted a vector by $\overrightarrow{a b}$ for $(a, b) \in X \times X$ and defined the quasi-linearization map $\langle\cdot, \cdot\rangle:(X \times X) \times(X \times X) \rightarrow R$ as follow:

$$
\langle\overrightarrow{a b}, \overrightarrow{c d}\rangle=\frac{1}{2}\left[d^{2}(a, d)+d^{2}(b, c)-d^{2}(a, c)-d^{2}(b, d)\right],
$$

for $a, b, c, d \in X$. We can verify $\langle\overrightarrow{a b}, \overrightarrow{a b}\rangle=d^{2}(a, b),\langle\overrightarrow{b a}, \overrightarrow{c d}\rangle=-\langle\overrightarrow{a b}, \overrightarrow{c d}\rangle$, and $\langle\overrightarrow{a b}, \overrightarrow{c d}\rangle=\langle\overrightarrow{a e}, \overrightarrow{c d}\rangle+\langle\overrightarrow{e b}, \overrightarrow{c d}\rangle$ for all $a, b, c, d, e \in X$. For a space X, it satisfies the Cauchy-Schwarz inequality if

$$
\langle\overrightarrow{a b}, \overrightarrow{c d}\rangle \leqslant d(a, b) d(c, d)
$$

for all $a, b, c, d \in X$.It is known[3] that a geodesically connected metric space X is a CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.

Ahmadi Kakavandi and Amini[1] introduced the concept of dual space of a complete CAT(0) space X based on a work of Berg and Nikolaev[4]. Also, we use the following notation:

$$
\left\langle\alpha x^{*}+\beta y^{*}, \overrightarrow{x y}\right\rangle:=\alpha\left\langle x^{*}, \overrightarrow{x y}\right\rangle+\beta\left\langle y^{*}, \overrightarrow{x y}\right\rangle,
$$

for $\alpha, \beta \in R, x, y \in X$, and $x^{*}, y^{*} \in X^{*}$, where X^{*} is the dual space of X.
It is known that the subdifferential of every proper convex and lower semicontinuous function is maximal monotone in Hilbert spaces, and it satisfies the range condition. Ahmadi Kakavandi and Amini[1] also introduced the subdifferential of a proper convex and lower semi-continuous function on a Hadamard space X as a monotone operator from X to X^{*}.

By the application of the dual theory[1], H.Khatibzadch and S.Ranjbar[2] have showed that the sequences generated by the Mann-type and the Halperntype proximal point algorithm containing the resolvent of a monotone operator which satisfies range condition are strong convergence and Δ-convergence to a zero of a monotone operator in a complete CAT(0) space, respectively. Hence, we build Mann-Halpern type and Halpern-Mann type proximal point algorithms about zeros of the subdifferential of proper convex and lower semicontinuous function in Hadamard space, and prove strong convergence and Δ-convergence to a zero of a monotone operator, respectively. Therefore, we improve and extend their results.

2 Preliminary

Definition 2.1. [4] Let $\lambda>0$ and $A: X \rightarrow 2^{X^{*}}$ be a set-valued operator. The resolvent of A of order λ is the set-valued mapping $J_{\lambda}: X \rightarrow 2^{X}$ defined by $J_{\lambda}(x):=\left\{z \in X:\left[\frac{1}{\lambda} \overrightarrow{z x}\right] \in A z\right\}$.

Definition 2.2. [4] Let $T: C \subset X \rightarrow X$ be a mapping. We say that T is firmly nonexpansive if $d^{2}(T x, T y) \leqslant\langle\overrightarrow{T x T y}, \overrightarrow{x y}\rangle$ for any $x, y \in C$.

Let X be a Hadamard space with dual X^{*} and let $A: X \rightarrow 2^{X^{*}}$ be a multivalued operator with domain $D(A):=\{x \in X: A x \neq \emptyset\}$, range $R(A):=$ $\bigcup_{x \in X} A x, A^{-1}\left(x^{*}\right):=\left\{x \in X: x^{*} \in A x\right\}$ and $\operatorname{graph} \operatorname{gra}(A):=\left\{\left(x, x^{*}\right) \in\right.$ $\left.X \times X^{*}: x \in D(A), x^{*} \in A x\right\}$.

Definition 2.3. [4] Let X be a Hadamard space with dual X^{*}. The multivalued operator $A: X \rightarrow 2^{X^{*}}$ is:
(1) monotone if and only if, for all $x, y \in D(A), x^{*} \in A x$ and $y^{*} \in A y$,

$$
\left\langle x^{*}-y^{*}, \overrightarrow{y x}\right\rangle \geqslant 0 ;
$$

(2) strictly monotone if and only if for all $x, y \in D(A), x^{*} \in A x$ and $y^{*} \in A y$,

$$
\left\langle x^{*}-y^{*}, \overrightarrow{y x}\right\rangle>0 ;
$$

(3) α-strongly monotone for $\alpha>0$ if and only if, for all $x, y \in D(A)$, $x^{*} \in A x$ and $y^{*} \in A y$,

$$
\left\langle x^{*}-y^{*}, \overrightarrow{y x}\right\rangle \geqslant \alpha d^{2}(x, y) .
$$

Definition 2.4. [4] Let X be a CAT(0) space, $x, y \in X$, we write $(1-t) x \oplus t y$ for the unique point z in the geodesic segment joining from x to y such that $d(x, z)=t d(x, y)$ and $d(y, z)=(1-t) d(x, y)$. Set $[x, y]=\{(1-t) x \oplus t y: t \in$ $[0,1]\}$. A subset C of X is called convex if $[x, y] \subset C$ for all $x, y \in C$.

Let X be a Hadamard space with dual X^{*} and let $f: X \rightarrow(-\infty,+\infty]$ be a proper function with efficient domain $D(f)=\{x ; f(x)<+\infty\}$, then the subdifferential of f is the multifunction $\partial f: X \rightarrow 2^{X^{*}}$ defined by

$$
\partial f(x)=\left\{x^{*} \in X^{*}: f(z)-f(x) \geqslant\left\langle x^{*}, \overrightarrow{x z}\right\rangle(z \in X)\right\}
$$

when $x \in D(f)$ and $\partial f(x)=\emptyset$, otherwise.

Lemma 2.5. [5] Let (X, d) be a $C A T(0)$ space. Then, for all $x, y, z \in X$, and all $t \in[0,1]$:
(1) $d^{2}(t x \oplus(1-t) y, z) \leqslant t d^{2}(x, z)+(1-t) d^{2}(y, z)-t(1-t) d^{2}(x, y)$,
(2) $d(t x \oplus(1-t) y, z) \leqslant t d(x, z)+(1-t) d(y, z)$. In addition, by using (1) we have

$$
d[t x \oplus(1-t) y, t x \oplus(1-t) z] \leqslant(1-t) d(y, z) .
$$

Lemma 2.6. [4] Let (X, d) be a $C A T(0)$ space and $a, b, c \in X$. Then for each $\lambda \in[0,1]$,

$$
d^{2}(\lambda x \oplus(1-\lambda) y, z) \leqslant \lambda^{2} d^{2}(x, z)+(1-\lambda)^{2} d^{2}(y, z)+2 \lambda(1-\lambda)\langle\overrightarrow{x z}, \overrightarrow{y z}\rangle
$$

Lemma 2.7. [7] Let C be a closed convex subset of a complete CAT(0) space $X, T: C \rightarrow C$ be a nonexpansive mapping with a fixed point and $u \in C$. For each $t \in(0,1)$, set $z_{t}=t u \oplus(1-t) T z_{t}$. Then z_{t} converges as $t \rightarrow 0$ to the unique fixed point of T, which is the nearest point to u.

Lemma 2.8. [6] Let C be a closed convex subset of a complete CAT(0) space $X, T: C \rightarrow C$ be a nonexpansive mapping with $F(T) \neq \emptyset$ and $\left\{x_{n}\right\}$ be a bounded sequence in C such that the sequence $\left\{d\left(x_{n}, T x_{n}\right)\right\}$ converges to zero. Then

$$
\limsup _{n}\left\langle\overrightarrow{u p}, \overrightarrow{x_{n} p}\right\rangle \leqslant 0
$$

where $u \in C$ and p is the nearest point of $F(T)$ to u.

Lemma 2.9. [4] Let X be a $C A T(0)$ space and J_{λ} is resolvent of the operator A of order λ. We have,
(1) For any $\lambda>0, R\left(J_{\lambda}\right) \subset D(A), F\left(J_{\lambda}\right)=A^{-1}(0)$;
(2) If A is monotone then J_{λ} is a single-valued and firmly nonexpansive mapping;
(3) If A is monotone and $\lambda \leqslant \mu$, then $d\left(x, J_{\lambda} x\right) \leqslant 2 d\left(x, J_{\mu} x\right)$.

It is well known[4] that if T is a nonexpansive mapping on subset C of CAT(0) space X then $F(T)$ is closed and convex. Thus, if A is a monotone operator on CAT(0) space X then, by parts (1) and (2) of Lemma 2.9, $A^{-1}(0)$ is closed and convex.

Lemma 2.10. [8] Let $\left(s_{n}\right)$ be a sequence of non-negative real numbers satisfying

$$
s_{n+1} \leqslant\left(1-\alpha_{n}\right) s_{n}+\alpha_{n} \beta_{n}+\gamma_{n}, n \geqslant 0
$$

where, $\left(\alpha_{n}\right),\left(\beta_{n}\right)$ and $\left(\gamma_{n}\right)$ satisfy the conditions:
(1) $\left(\alpha_{n}\right) \subset[0,1], \sum_{n} \alpha_{n}=\infty$, or equivalently, $\prod_{n=1}^{\infty}\left(1-\alpha_{n}\right)=0$;
(2) $\lim \sup _{n} \beta_{n} \leqslant 0$;
(3) $\gamma_{n} \geqslant 0(n \geqslant 0), \sum_{n} \gamma_{n}<\infty$. Then, $\lim _{n} s_{n}=0$.

Lemma 2.11. [9] Let $\left(\gamma_{n}\right)$ be a sequence of real numbers such that there exists a subsequence $\left(\gamma_{n_{j}}\right)$ of $\left(\gamma_{n}\right)$ such that $\gamma_{n_{j}}<\gamma_{n_{j}+1}$ for all $j \geqslant 1$. Then there exists a nondecreasing sequence $\left(m_{k}\right)$ of positive integers such that the following two inequalities:

$$
\gamma_{m_{k}} \leqslant \gamma_{m_{k}+1} a n d \gamma_{k} \leqslant \gamma_{m_{k}+1}
$$

hold for all (sufficiently large) numbers k. In fact, m_{k} is the largest number n in the set $\{1,2, \cdots, k\}$ such that the condition $\gamma_{n}<\gamma_{n+1}$ holds.

By the Lemma 2.6 of S Saejung and P Yotkaew[10], we can similarly obtain the following lemma.

Lemma 2.12. Let $\left(s_{n}\right)$ be a sequence of nonnegative real numbers, $\left(\alpha_{n}\right)$ be a sequence in $(0,1)$ such that $\sum_{n} \alpha_{n}=\infty,\left(t_{n}\right)$ be a sequence of real numbers, and $\left(\gamma_{n}\right)$ be a sequence of nonnegative real numbers such that $\sum_{n} \gamma_{n}<\infty$. Suppose that

$$
s_{n+1} \leqslant\left(1-\alpha_{n}\right) s_{n}+\alpha_{n} t_{n}+\gamma_{n}, n \geqslant 1
$$

If $\lim \sup _{k \rightarrow \infty} t_{n_{k}} \leqslant 0$ for every subsequence $\left(s_{n_{k}}\right)$ of $\left(s_{n}\right)$ satisfying $\liminf _{k \rightarrow \infty}\left(s_{n_{k}+1}-\right.$ $\left.s_{n_{k}}\right) \geqslant 0$, then $\lim _{n} s_{n}=0$.

Proof. The proof is split into two cases.
(1) There exists an $n_{0} \in N$ such that $s_{n+1} \leqslant s_{n}$ for all $n \geqslant n_{0}$. It follows then that $\liminf _{n \rightarrow \infty}\left(s_{n+1}-s_{n}\right)=0$. Hence $\lim \sup _{n \rightarrow \infty} t_{n} \leqslant 0$. The conclusion follows from Lemma 2.10.
(2) There exists a subsequence $\left(s_{m_{j}}\right)$ of $\left(s_{n}\right)$ such that $s_{m_{j}}<s_{m_{j}+1}$ for all $j \in N$. In this case, we can apply Lemma 2.11 to find a nondecreasing sequence $\left\{n_{k}\right\}$ of $\{n\}$ such that $n_{k} \rightarrow \infty$ and the following two inequalities:

$$
s_{n_{k}} \leqslant s_{n_{k}+1} \text { and } s_{k} \leqslant s_{n_{k}+1}
$$

hold for all (sufficiently large) numbers k. Since $n_{k} \rightarrow \infty$, then for arbitrary $\varepsilon>0$, there is a integer $N>0$ such that $\gamma_{n_{k}}<\varepsilon$ for $n_{k} \geqslant N$. It follows from the first inequality that $\liminf _{k \rightarrow \infty}\left(s_{n_{k}+1}-s_{n_{k}}\right)=0$. This implies that $\lim \sup _{k \rightarrow \infty} t_{n_{k}} \leqslant 0$. Moreover, by the first inequality again, we have

$$
s_{n_{k}+1} \leqslant\left(1-\alpha_{n_{k}}\right) s_{n_{k}}+\alpha_{n_{k}} t_{n_{k}}+\gamma_{n_{k}} \leqslant\left(1-\alpha_{n_{k}}\right) s_{n_{k}+1}+\alpha_{n_{k}} t_{n_{k}}+\varepsilon
$$

this implies $\alpha_{n_{k}} s_{n_{k}+1} \leqslant \alpha_{n_{k}} t_{n_{k}}+\varepsilon$ for arbitrary $\varepsilon>0$. By the arbitrariness of ε, we obtain

$$
\alpha_{n_{k}} s_{n_{k}+1} \leqslant \alpha_{n_{k}} t_{n_{k}}
$$

In particular, since each $\alpha_{n_{k}}>0$, we have $s_{n_{k}+1} \leqslant t_{n_{k}}$. Finally, it follows from the second inequality that

$$
\lim _{\sup _{k \rightarrow \infty}} s_{k} \leqslant \lim \sup _{k \rightarrow \infty} s_{n_{k}+1} \leqslant \lim \sup _{k \rightarrow \infty} t_{n_{k}}=0
$$

Hence $\lim _{n \rightarrow \infty} s_{n}=0$. This completes the proof.

Lemma 2.13. [2] Suppose (X, d) is a metric space and $C \subset X$. Let $\left(T_{n}\right)_{n=1}^{\infty}$: $C \rightarrow C$ be a sequence of nonexpansive mappings with a common fixed point and $\left(x_{n}\right)$ be a bounded sequence such that $\lim _{n} d\left(x_{n}, T_{n}\left(x_{n}\right)\right)=0$. Then

$$
\limsup _{n}\left\langle\overrightarrow{u p}, \overrightarrow{T_{n}\left(x_{n}\right) p}\right\rangle \leqslant \limsup _{n}\left\langle\overrightarrow{u p}, \overrightarrow{x_{n} p}\right\rangle
$$

where $p \in \bigcap_{n=1}^{\infty} F\left(T_{n}\right)$.

Lemma 2.14. [1] Let $f: X \rightarrow(-\infty,+\infty]$ be a proper, lower semi-continuous and convex function on a Hadamard space X with dual X^{*}. Then
(1) f attains its minimum at $x \in X$ if and only if $0 \in \partial f(x)$;
(2) $\partial f: X \rightarrow 2^{X^{*}}$ is a monotone operator;
(3) for any $y \in X$ and $\alpha>0$, there exist a unique point $x \rightarrow X$ such that $[\alpha \overrightarrow{x y}] \in \partial f(x)$.

By the (3) of Lemma 2.14, we obtain the subdifferential of a proper, lower semi-continuous and convex function satisfies the range condition.

Lemma 2.15. [4] Let $f: X \rightarrow(-\infty,+\infty]$ be a proper, lower semi-continuous and convex function on a Hadamard space X with dual X^{*}. Then

$$
J_{\lambda}^{\partial f} x=\underset{z \in X}{\operatorname{Argmin}}\left\{f(z)+\frac{1}{2 \lambda} d^{2}(z, x)\right\}
$$

for all $\lambda>0$ and $x \in X$.

Lemma 2.16. [11] Let K be a closed convex subset of X, and let $f: K \rightarrow X$ be a nonexpansive mapping. Then the conditions $\left(x_{n}\right) \Delta$-converges to x and $d\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow 0$, imply $x \in K$ and $f(x)=x$.

3 Main Results

Theorem 3.1. Let X be a Hadamard space and X^{*} be the dual space of X. Let $f: X \rightarrow(-\infty,+\infty]$ be a proper convex and lower semi-continuous function, and ∂f is the subdifferential of f. Suppose $\left(\lambda_{n}\right)$ is a sequence of positive real numbers such that $\lambda_{n} \geqslant \lambda>0,\left(\alpha_{n}\right)$ is a sequence in $[0,1]$ satisfied $\sum_{n} \alpha_{n}<\infty$, and $\left(\beta_{n}\right)$ is a sequence in $[0,1]$ satisfied $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n} \beta_{n}=\infty$. The sequence $\left(x_{n}\right)$ generated by the following Mann-Halpern hybrid type algorithm:

$$
\left\{\begin{array}{l}
x_{0}, u \in X \tag{3.1}\\
w_{n}=\underset{x \in X}{\operatorname{argmin}}\left\{f(x)+\frac{1}{2 \lambda_{n}} d^{2}\left(x, x_{n}\right)\right\} \\
y_{n}=\alpha_{n} x_{n} \oplus\left(1-\alpha_{n}\right) w_{n} \\
z_{n}=\underset{y \in X}{\operatorname{argmin}}\left\{f(y)+\frac{1}{2 \lambda_{n}} d^{2}\left(y, y_{n}\right)\right\} \\
x_{n+1}=\beta_{n} u \oplus\left(1-\beta_{n}\right) z_{n}
\end{array}\right.
$$

Then the sequence is convergent strongly to the nearest point of $\partial f^{-1}(0)$ to u.
Proof. By the Lemma 2.15, the upper algorithm is equivalent to the following algorithm:

$$
\left\{\begin{array}{l}
x_{0}, u \in X \tag{3.2}\\
y_{n}=\alpha_{n} x_{n} \oplus\left(1-\alpha_{n}\right) J_{\lambda_{n}} x_{n} \\
x_{n+1}=\beta_{n} u \oplus\left(1-\beta_{n}\right) J_{\lambda_{n}} y_{n}
\end{array}\right.
$$

where we use $J_{\lambda_{n}}$ instead of $J_{\lambda_{n}}^{\partial f}$.
Since $\partial f^{-1}(0)$ is convex and closed. Set $p \in P_{\partial f^{-1}(0)} u$, we have

$$
\begin{aligned}
d\left(x_{n+1}, p\right) & \leqslant \beta_{n} d(u, p)+\left(1-\beta_{n}\right) d\left(J_{\lambda_{n}} y_{n}, p\right) \\
& \leqslant \beta_{n} d(u, p)+\left(1-\beta_{n}\right) \alpha_{n} d\left(x_{n}, p\right)+\left(1-\beta_{n}\right)\left(1-\alpha_{n}\right) d\left(J_{\lambda_{n}} x_{n}, p\right) \\
& \leqslant \beta_{n} d(u, p)+\left(1-\beta_{n}\right) d\left(x_{n}, p\right) \leqslant \max \left\{d(u, p), d\left(x_{n}, p\right)\right\} \\
& \leqslant \cdots \leqslant \max \left\{d(u, p), d\left(x_{0}, p\right)\right\},
\end{aligned}
$$

which implies that $\left(x_{n}\right)$ is bounded.
Since $d\left(J_{\lambda_{n}} x_{n}, p\right) \leqslant d\left(x_{n}, p\right)$, then $\left(J_{\lambda_{n}} x_{n}\right)$ is also bounded.
By the Lemma 2.5, we have

$$
\begin{aligned}
d^{2}\left(x_{n+1}, p\right)= & d^{2}\left(\beta_{n} u \oplus\left(1-\beta_{n}\right) J_{\lambda_{n}} y_{n}, p\right) \\
\leqslant & \beta_{n}{ }^{2} d^{2}(u, p)+\left(1-\beta_{n}\right)^{2} d^{2}\left(J_{\lambda_{n}} y_{n}, p\right)+2 \beta_{n}\left(1-\beta_{n}\right)\left\langle\overrightarrow{u p}, \overrightarrow{J_{\lambda_{n}} y_{n} p}\right\rangle \\
\leqslant & \beta_{n}{ }^{2} d^{2}(u, p)+\left(1-\beta_{n}\right)^{2}\left(\alpha_{n}{ }^{2} d^{2}\left(x_{n}, p\right)+\left(1-\alpha_{n}\right)^{2} d^{2}\left(J_{\lambda_{n}} x_{n}, p\right)\right) \\
& +2\left(1-\beta_{n}\right)^{2} \alpha_{n}\left(1-\alpha_{n}\right)\left\langle\overrightarrow{x_{n} p}, \overrightarrow{J_{\lambda_{n}} x_{n} p}\right\rangle+2 \beta_{n}\left(1-\beta_{n}\right)\left\langle\overrightarrow{u p}, \overrightarrow{J_{\lambda_{n}} y_{n} p}\right\rangle \\
\leqslant & \left(1-\beta_{n}\right)\left(\left(1-2 \alpha_{n}\left(1-\alpha_{n}\right)\right) d^{2}\left(x_{n}, p\right)\right)+\beta_{n}{ }^{2} d^{2}(u, p) \\
& +2 \beta_{n}\left(1-\beta_{n}\right)\left\langle\overrightarrow{u p}, \overrightarrow{J_{\lambda_{n}} y_{n} J_{\lambda_{n}} x_{n}}\right\rangle+2 \beta_{n}\left(1-\beta_{n}\right)\left\langle\overrightarrow{u p}, \overrightarrow{J_{\lambda_{n}} x_{n} p}\right\rangle \\
& +2\left(1-\beta_{n}\right)^{2} \alpha_{n}\left(1-\alpha_{n}\right)\left\langle\overrightarrow{x_{n} p}, \overrightarrow{J_{\lambda_{n}} x_{n} p}\right\rangle \\
\leqslant & \left(1-\beta_{n}\right) d^{2}\left(x_{n}, p\right)+\beta_{n}\left(\beta_{n} d^{2}(u, p)+2\left(1-\beta_{n}\right)\left\langle\overrightarrow{u p}, \overrightarrow{J_{\lambda_{n}} x_{n} p}\right\rangle\right. \\
& \left.+2\left(1-\beta_{n}\right) d(u, p) d\left(y_{n}, x_{n}\right)\right)+2 \alpha_{n}\left\langle\overrightarrow{x_{n} p}, \overrightarrow{J_{\lambda_{n} x_{n} p}}\right. \\
\leqslant & \left(1-\beta_{n}\right) d^{2}\left(x_{n}, p\right)+\beta_{n}\left(\beta_{n} d^{2}(u, p)+2\left(1-\beta_{n}\right)\left\langle\overrightarrow{u p}, \overrightarrow{J_{\lambda_{n}} x_{n} p}\right\rangle\right. \\
& +2\left(1-\beta_{n}\right) d(u, p)\left[\alpha_{n} d\left(x_{n}, x_{n}\right)+\left(1-\alpha_{n}\right) d\left(J_{\left.\left.\left.\lambda_{n} x_{n}, x_{n}\right)\right]\right)}\right.\right. \\
& +2 \alpha_{n}\left\langle\overrightarrow{x_{n} p}, \overrightarrow{J_{\lambda_{n}} x_{n} p}\right\rangle \\
\leqslant & \left(1-\beta_{n}\right) d^{2}\left(x_{n}, p\right)+\beta_{n}\left(\beta_{n} d^{2}(u, p)+2\left(1-\beta_{n}\right)\left\langle\overrightarrow{u p}, \overrightarrow{J_{\lambda_{n}} x_{n} p}\right\rangle\right. \\
& \left.+2\left(1-\beta_{n}\right)\left(1-\alpha_{n}\right) d(u, p) d\left(J_{\lambda_{n}} x_{n}, x_{n}\right)\right)+2 \alpha_{n} d\left(x_{n}, p\right) d\left(J_{\lambda_{n}} x_{n}, p\right)
\end{aligned}
$$

which implies

$$
\begin{aligned}
d^{2}\left(x_{n+1}, p\right) \leqslant & \left(1-\beta_{n}\right) d^{2}\left(x_{n}, p\right)+\beta_{n}\left(\beta_{n} d^{2}(u, p)+2\left(1-\beta_{n}\right)\left\langle\overrightarrow{u p}, \overrightarrow{J_{\lambda_{n}} x_{n} p}\right\rangle\right. \\
& \left.+2\left(1-\beta_{n}\right)\left(1-\alpha_{n}\right) d(u, p) d\left(J_{\lambda_{n}} x_{n}, x_{n}\right)\right)+2 \alpha_{n} d\left(x_{n}, p\right) d\left(J_{\lambda_{n}} x_{n}, p\right)
\end{aligned}
$$

By the Lemma 2.12, it suffices to show that $\limsup \left(\beta_{m_{k}} d^{2}(u, p)+2(1-\right.$ $\left.\left.\beta_{m_{k}}\right)\left(1-\alpha_{m_{k}}\right) d(u, p) d\left(J_{\lambda_{m_{k}}} x_{m_{k}}, x_{m_{k}}\right)+2\left(1-\beta_{m_{k}}\right)\left\langle\overrightarrow{u p}, \stackrel{k \rightarrow \infty}{J_{\lambda_{m_{k}}} x_{m_{k}} p}\right\rangle\right) \leqslant 0$ for every subsequence $\left(d\left(x_{m_{k}}, p\right)\right)$ of $\left(d\left(x_{n}, p\right)\right)$ satisfying $\liminf _{k \rightarrow \infty}\left(d\left(x_{m_{k}+1}, p\right)-d\left(x_{m_{k}}, p\right)\right) \geqslant$ 0 . For this, suppose the subsequence $\left(d\left(x_{m_{k}}, p\right)\right)$ satisfied $\liminf _{k \rightarrow \infty}\left(d\left(x_{m_{k}+1}, p\right)-\right.$ $\left.d\left(x_{m_{k}}, p\right)\right) \geqslant 0$. Then

$$
\begin{aligned}
0 \leqslant & \liminf _{k \rightarrow \infty}\left(d\left(x_{m_{k}+1}, p\right)-d\left(x_{m_{k}}, p\right)\right) \\
\leqslant & \liminf _{k \rightarrow \infty}\left(\beta_{m_{k}} d(u, p)+\left(1-\beta_{m_{k}}\right) d\left(J_{\lambda_{m_{k}}} y_{m_{k}}, p\right)-d\left(x_{m_{k}}, p\right)\right) \\
\leqslant & \liminf _{k \rightarrow \infty}\left(\beta_{m_{k}} d(u, p)+\left(1-\beta_{m_{k}}\right) d\left(y_{m_{k}}, p\right)-d\left(x_{m_{k}}, p\right)\right) \\
\leqslant & \liminf _{k \rightarrow \infty}\left(\beta_{m_{k}} d(u, p)+\left(1-\beta_{m_{k}}\right)\left(\alpha_{m_{k}} d\left(x_{m_{k}}, p\right)\right.\right. \\
& \left.\left.+\left(1-\alpha_{m_{k}}\right) d\left(J_{\lambda_{m_{k}}} x_{m_{k}}, p\right)\right)-d\left(x_{m_{k}}, p\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \liminf _{k \rightarrow \infty}\left(\beta_{m_{k}}\left(d(u, p)-d\left(x_{m_{k}}, p\right)\right)\right. \\
&\left.+\left(1-\beta_{m_{k}}\right)\left(1-\alpha_{m_{k}}\right)\left(d\left(J_{\lambda_{m_{k}}} x_{m_{k}}, p\right)-d\left(x_{m_{k}}, p\right)\right)\right) \\
& \leqslant \limsup _{k \rightarrow \infty}\left(\beta_{m_{k}}\left(d(u, p)-d\left(x_{m_{k}}, p\right)\right)\right) \\
&+\liminf _{k \rightarrow \infty}\left(1-\beta_{m_{k}}\right)\left(1-\alpha_{m_{k}}\right)\left(d\left(J_{\lambda_{m_{k}}} x_{m_{k}}, p\right)-d\left(x_{m_{k}}, p\right)\right) \\
&=\liminf _{k \rightarrow \infty}\left(1-\beta_{m_{k}}\right)\left(1-\alpha_{m_{k}}\right)\left(d\left(J_{\lambda_{m_{k}}} x_{m_{k}}, p\right)-d\left(x_{m_{k}}, p\right)\right) \\
& \leqslant \limsup _{k \rightarrow \infty}\left(1-\beta_{m_{k}}\right)\left(1-\alpha_{m_{k}}\right)\left(d\left(J_{\lambda_{m_{k}}} x_{m_{k}}, p\right)-d\left(x_{m_{k}}, p\right)\right) \\
& \leqslant \limsup _{k \rightarrow \infty}\left(1-\beta_{m_{k}}\right)\left(1-\alpha_{m_{k}}\right)\left(d\left(x_{m_{k}}, p\right)-d\left(x_{m_{k}}, p\right)\right)=0,
\end{aligned}
$$

hence, $\lim _{k \rightarrow \infty}\left(d\left(J_{\lambda_{m_{k}}} x_{m_{k}}, p\right)-d\left(x_{m_{k}}, p\right)\right)=0$. Since $J_{\lambda_{n}}$ is firmly nonexpansive, we have

$$
d^{2}\left(J_{\lambda_{n}} x_{n}, p\right) \leqslant\left\langle\overrightarrow{J_{\lambda_{n}} x_{n} p}, \overrightarrow{x_{n} p}\right\rangle=\frac{1}{2}\left(d^{2}\left(J_{\lambda_{n}} x_{n}, p\right)+d^{2}\left(x_{n}, p\right)-d^{2}\left(J_{\lambda_{n}} x_{n}, x_{n}\right)\right)
$$

which implies $d^{2}\left(J_{\lambda_{n}} x_{n}, x_{n}\right) \leqslant d^{2}\left(x_{n}, p\right)-d^{2}\left(J_{\lambda_{n}} x_{n}, p\right)$. Then we can get

$$
d^{2}\left(J_{\lambda_{m_{k}}} x_{m_{k}}, x_{m_{k}}\right) \leqslant d^{2}\left(x_{m_{k}}, p\right)-d^{2}\left(J_{\lambda_{m_{k}}} x_{m_{k}}, p\right)
$$

by the boundedness of $\left(x_{m_{k}}\right)$, which implies $d\left(J_{\lambda_{m_{k}}} x_{m_{k}}, x_{m_{k}}\right) \rightarrow 0$. By the (3) of Lemma 2.9, we obtain $d\left(J_{\lambda} x_{m_{k}}, x_{m_{k}}\right) \leqslant 2 d\left(J_{\lambda_{m_{k}}} x_{m_{k}}, x_{m_{k}}\right)$, which implies $d\left(J_{\lambda} x_{m_{k}}, x_{m_{k}}\right) \rightarrow 0$. Therefore, by the Lemma 2.8, we have $\limsup _{k \rightarrow \infty}\left\langle\overrightarrow{u p}, \overrightarrow{x_{m_{k}} p}\right\rangle \leqslant$ 0 , and by the Lemma 2.13, we obtain

$$
\limsup _{k \rightarrow \infty}\left\langle\overrightarrow{u p}, \overrightarrow{J_{\lambda_{m_{k}}} x_{m_{k}} p}\right\rangle \leqslant 0 .
$$

Hence, we get $\limsup \left(\beta_{m_{k}} d^{2}(u, p)+2\left(1-\beta_{m_{k}}\right)\left(1-\alpha_{m_{k}}\right) d(u, p) d\left(J_{\lambda_{m_{k}}} x_{m_{k}}, x_{m_{k}}\right)+\right.$ $2\left(1-\beta_{m_{k}}\right)\left\langle\overrightarrow{u p}, \overrightarrow{\left.J_{\lambda_{k}} x_{m_{k}} p\right\rangle}\right\rangle \leqslant 0$. By the boundedness of $\left(J_{\lambda_{n}} x_{n}\right)$ and $\left(x_{n}\right)$, we obtain $\sum_{n} 2 \alpha_{n} d\left(x_{n}, p\right) d\left(J_{\lambda_{n}} x_{n}, p\right)<\infty$. Hence, by the Lemma 2.13, we know $\lim _{n \rightarrow \infty} d\left(x_{n}, p\right) \rightarrow 0$. This completes the proof.

Theorem 3.2. Let X be a Hadamard space and X^{*} be the dual space of X. Let $f: X \rightarrow(-\infty,+\infty]$ be a proper convex and lower semi-continuous function, and ∂f is the subdifferential of f. Suppose $\left(\lambda_{n}\right)$ is a sequence of positive real
numbers such that $\lambda_{n} \geqslant \lambda>0,\left(\alpha_{n}\right)$ is a sequence in $[0,1]$ satisfied $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n} \alpha_{n}=\infty$, and $\left(\beta_{n}\right)$ is a sequence in $[0,1]$ satisfied $\limsup _{n \rightarrow \infty} \beta_{n}<1$. The sequence $\left(x_{n}\right)$ generated by the following Halpern-Mann hybrid type algorithm:

$$
\left\{\begin{array}{l}
x_{0}, u \in X \tag{3.3}\\
w_{n}=\underset{x \in X}{\operatorname{argmin}}\left\{f(x)+\frac{1}{2 \lambda_{n}} d^{2}\left(x, x_{n}\right)\right\} \\
y_{n}=\alpha_{n} u \oplus\left(1-\alpha_{n}\right) w_{n} \\
z_{n}=\underset{y \in X}{\operatorname{argmin}}\left\{f(y)+\frac{1}{2 \lambda_{n}} d^{2}\left(y, y_{n}\right)\right\} \\
x_{n+1}=\beta_{n} y_{n} \oplus\left(1-\beta_{n}\right) z_{n}
\end{array}\right.
$$

Then the sequence is Δ-convergent to a point $p \in \partial f^{-1}(0)$.

Proof. By the Lemma 2.15, the upper algorithm is equivalent to the following algorithm:

$$
\left\{\begin{array}{l}
x_{0}, u \in X \tag{3.4}\\
y_{n}=\alpha_{n} u \oplus\left(1-\alpha_{n}\right) J_{\lambda_{n}} x_{n} \\
x_{n+1}=\beta_{n} y_{n} \oplus\left(1-\beta_{n}\right) J_{\lambda_{n}} y_{n}
\end{array}\right.
$$

where we use $J_{\lambda_{n}}$ instead of $J_{\lambda_{n}}^{\partial f}$.
Let $p \in \partial f^{-1}(0)$, we have

$$
\begin{aligned}
d\left(x_{n+1}, p\right) & \leqslant \beta_{n} d\left(y_{n}, p\right)+\left(1-\beta_{n}\right) d\left(J_{\lambda_{n}} y_{n}, p\right) \leqslant d\left(y_{n}, p\right) \\
& \leqslant \alpha_{n} d(u, p)+\left(1-\alpha_{n}\right) d\left(J_{\lambda_{n}} x_{n}, p\right) \leqslant \alpha_{n} d(u, p)+\left(1-\alpha_{n}\right) d\left(x_{n}, p\right)
\end{aligned}
$$

which implies $d\left(x_{n+1}, p\right) \leqslant \max \left\{d(u, p), d\left(x_{0}, p\right)\right\}$. Hence, $\left(x_{n}\right)$ is a bounded sequence. Since $d\left(J_{\lambda_{n}} x_{n}, p\right) \leqslant d\left(x_{n}, p\right)$, then $\left(J_{\lambda_{n}} x_{n}\right)$ is also bounded. Let $\max \left\{d(u, p), d\left(x_{0}, p\right)\right\}=M$. By the assuming, for arbitrary $\varepsilon>0$, there is a integer $N>0$ such that we have $\alpha_{n}<\frac{\varepsilon}{M}$ for $n>N$. Therefore, for $n>N$, we obtain

$$
d\left(x_{n+1}, p\right) \leqslant d(u, p) \cdot \frac{\varepsilon}{M}+d\left(x_{n}, p\right) \leqslant \varepsilon+d\left(x_{n}, p\right)
$$

By the arbitrariness of ε, we get $d\left(x_{n+1}, p\right) \leqslant d\left(x_{n}, p\right)$, which implies existence
of $\lim _{n} d\left(x_{n}, p\right)$. Hence, we have

$$
\begin{aligned}
0 & =\lim _{n}\left[d\left(x_{n+1}, p\right)-d\left(x_{n}, p\right)\right] \\
& \leqslant \liminf _{n}\left[\beta_{n} d\left(y_{n}, p\right)+\left(1-\beta_{n}\right) d\left(J_{\lambda_{n}} y_{n}, p\right)-d\left(x_{n}, p\right)\right] \\
& \leqslant \liminf _{n}\left[\alpha_{n} d(u, p)+\left(1-\alpha_{n}\right) d\left(J_{\lambda_{n}} x_{n}, p\right)-d\left(x_{n}, p\right)\right] \\
& \leqslant \limsup _{n}\left[\alpha_{n} d(u, p)+\left(1-\alpha_{n}\right) d\left(J_{\lambda_{n}} x_{n}, p\right)-d\left(x_{n}, p\right)\right] \\
& \leqslant \limsup _{n}\left[\alpha_{n} d(u, p)-\alpha_{n} d\left(x_{n}, p\right)\right] \\
& =\limsup _{n} \alpha_{n}\left[d(u, p)-d\left(x_{n}, p\right)\right]=0
\end{aligned}
$$

which means $\lim _{n}\left[\alpha_{n} d(u, p)+\left(1-\alpha_{n}\right) d\left(J_{\lambda_{n}} x_{n}, p\right)-d\left(x_{n}, p\right)\right]=0$. Hence, we obtain

$$
\lim _{n}\left[d\left(J_{\lambda_{n}} x_{n}, p\right)-d\left(x_{n}, p\right)\right]=\lim _{n} \alpha_{n}\left[d\left(J_{\lambda_{n}} x_{n}, p\right)-d(u, p)\right]=0
$$

Since $J_{\lambda_{n}}$ is firmly nonexpansive, we have

$$
d^{2}\left(J_{\lambda_{n}} x_{n}, p\right) \leqslant\left\langle\overrightarrow{J_{\lambda_{n}} x_{n} p}, \overrightarrow{x_{n} p}\right\rangle=\frac{1}{2}\left(d^{2}\left(J_{\lambda_{n}} x_{n}, p\right)+d^{2}\left(x_{n}, p\right)-d^{2}\left(J_{\lambda_{n}} x_{n}, x_{n}\right)\right)
$$

which implies $d^{2}\left(J_{\lambda_{n}} x_{n}, x_{n}\right) \leqslant d^{2}\left(x_{n}, p\right)-d^{2}\left(J_{\lambda_{n}} x_{n}, p\right)$. By the boundedness of $\left(x_{n}\right)$ and $\left(J_{\lambda_{n}} x_{n}\right)$, we get

$$
\lim _{n} d\left(J_{\lambda_{n}} x_{n}, x_{n}\right)=0
$$

Thus, by the (3) of Lemma 2.9, we obtain

$$
d\left(J_{\lambda} x_{n}, x_{n}\right) \leqslant 2 d\left(J_{\lambda_{n}} x_{n}, x_{n}\right)
$$

which implies $\lim _{n} d\left(J_{\lambda} x_{n}, x_{n}\right)=0$.
If subsequence $\left(x_{n_{j}}\right)$ of $\left(x_{n}\right)$ is Δ-convergent to $q \in X$, then we have $d\left(J_{\lambda} x_{n_{j}}, x_{n_{j}}\right) \rightarrow 0$. Hence, since $J_{\lambda_{n}}$ is nonexpansive, by the Lemma 2.16, we have $q \in \partial f^{-1}(0)$. This completes the proof.

The following theorem shows that the sequence is Δ-convergent for classic Ishikawa type algorithm.

Theorem 3.3. Let X be a Hadamard space and X^{*} be the dual space of X. Let $f: X \rightarrow(-\infty,+\infty]$ be a proper convex and lower semi-continuous function, and ∂f is the subdifferential of f. Suppose $\left(\lambda_{n}\right)$ is a sequence of positive real numbers such that $\lambda_{n} \geqslant \lambda>0$, and $\left(\alpha_{n}\right),\left(\beta_{n}\right)$ are two sequences in $[0,1]$ satisfied $\limsup \alpha_{n}<1$ and $\lim \sup \beta_{n}<1$, respectively. The sequence $\left(x_{n}\right)$ generated by the following Ishikawa type algorithm:

$$
\left\{\begin{array}{l}
x_{0}, u \in X \tag{3.5}\\
w_{n}=\underset{x \in X}{\operatorname{argmin}}\left\{f(x)+\frac{1}{2 \lambda_{n}} d^{2}\left(x, x_{n}\right)\right\} \\
y_{n}=\alpha_{n} x_{n} \oplus\left(1-\alpha_{n}\right) w_{n} \\
z_{n}=\underset{y \in X}{\operatorname{argmin}}\left\{f(y)+\frac{1}{2 \lambda_{n}} d^{2}\left(y, y_{n}\right)\right\} \\
x_{n+1}=\beta_{n} x_{n} \oplus\left(1-\beta_{n}\right) z_{n}
\end{array}\right.
$$

Then the sequence is Δ-convergent to a point $p \in \partial f^{-1}(0)$.

Proof. It is similar to Theorem 3.2.

References

[1] B. Ahmadi Kakavandi and M. Amini, Duality and subdifferential for convex functions on complete $C A T(0)$ metric spaces, Nonlinear Analysis, 73(10), (2010), 3450-3455.
[2] S. Ranjbar and H. Khatibzadeh, Strong and Δ-Convergence to a Zero of a Monotone Operator in CAT(0) Spaces, Mediterranean Journal of Mathematics, 14(2), (2017), 56.
[3] I.D. Berg and I.G. Nikolaev, Quasilinearization and curvature of Aleksandrov spaces, Geometriae Dedicata, 133(1), (2008), 195-218.
[4] H. Khatibzadeh and S. Ranjbar, Monotone operators and the proximal point algorithm in complete CAT(0) metric spaces, Journal of the Australian Mathematical Society, 2016:1-21.
[5] S. Dhompongsa and B. Panyanak, On Δ-convergence theorems in $\operatorname{CAT}(0)$ spaces, Pergamon Press, Inc., 2008.
[6] H. Khatibzadeh and S. Ranjbar, A variational inequality in complete CAT(0) spaces, Journal of Fixed Point Theory and Applications, 17(3), (2015), 557-574.
[7] W.A. Kirk, Geodesic Geometry and Fixed Point Theory, II, 9, (2003), 113-142.
[8] H.K. Xu, Iterative Algorithms for Nonlinear Operators, Journal of the London Mathematical Society, 66(1), (2002), 240-256.
[9] Paul-Emile Maing, The viscosity approximation process for quasinonexpansive mappings in Hilbert spaces, Computers and Mathematics with Applications, 59(1), (2010), 74-79.
[10] S. Saejung and P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Analysis Theory Methods and Applications, 75(2), (2012), 742-750.
[11] W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Analysis Theory Methods and Applications, 68(12), (2008), 3689-3696.

[^0]: ${ }^{1}$ College of Applied Mathematics, Chengdu University of Information Technology. E-mail: 513595779@qq.com
 ${ }^{2}$ College of Applied Mathematics, Chengdu University of Information Technology. E-mail: wdp68@163.com

