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Abstract
A stochastic age-structured malaria epidemic model is formulated

and analysed.The proposed stochastic model is a perturbation of a de-
terministic age-structured model where the diffusion terms are driven
by a multidimensional Brownian motion. Numerical simulations show
that sample paths converge to deterministic trajectories when R0 < 1
whereas a significant difference is observed for R0 > 1.
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1 Introduction

Since 1880, malaria is known as an infectious disease caused by the bites of

infected female mosquitoes of the genus Anopheles[9]. With the current global
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warming phenomenon due to climate changes, mosquitoes multiplication is

favoured. According to the World Health Organisation(W.H.O)[18], malaria

is one the main cause of deaths in the world and essentially in sub-Saharan

Africa. Actual estimates indicate that malaria is responsible of about 429

000 deaths annually world wide(2015). Among them, the African continent is

leading with 92% of malaria deaths. High risk groups include pregnant women

and children under five years. It is reported that malaria is responsible for

death of a child each 30 seconds. It has become a major public health problem

in many countries where a significant part of national budgets are oriented

in the national malaria control programmes. The main target of preventive

measures is to reduce the human-mosquito contact such as the use insecticide-

treated mosquito nets, indoor residual spraying and jelly that are repellent to

mosquitoes. There is no licensed malaria vaccines, potential candidates are

undergoing evaluation.

Mathematical models have played a crucial role in understanding its trans-

mission dynamic and are helping in designing control measures and eradica-

tion strategies. Since 1911, Ross proposed the first malaria epidemic model

and suggested the reduction of mosquito population as the main control strat-

egy. In 1957, MacDonald [14] did some modifications to Ross model and

showed that reducing the mosquito population is not enough for eradication

of the disease. More elaborated compartment models have then been used by

different authors, including subdivisions of both human and mosquito popula-

tion into classes such Susceptible-Latent-Infected-Recovered. Effects of impor-

tant parameters influencing the dynamics of the disease have been in studied

in different mathematical models in literature: models considering varying

population sizes [16] through migration[6][20] are proposed. Effects of drugs

resistance[5], acquired immunity in endemic areas[5][22] and duration of the

incubation period[13].

Deterministic models using Ordinary Differential Equations(ODEs) have

been extensively studied in modelling malaria transmission dynamic[5][7] [8][16]

[17]. Recently, age-structured models using Partial Differential Equations(PDEs)

have been used in modelling different diseases[1][12][19][24]. In the present

works, we included two mains features in malaria modelling that are ignored

in the existing models in literature: the age-structure and stochastic effects.

Stochastic models are assumed to be more realistic while studying physical
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phenomena,reason while we decided to include noise terms driven by a multi-

dimensional Brownian motion in the malaria transmission dynamic.

The remainder of this work is structured as follows: in section 2, an age-

structured model is formulated and parameters are explained. Details of the

stochastic model formulation from the deterministic model are given. Section 3

deals with the existence of solutions whereas section 4 is devoted to the study

of steady states of the model. In section 5, stability analysis of the disease

free equilibrium point is investigated. Numerical simulations are presented in

section 6 and a conclusion is given in section 7.

2 Model formulation

2.1 Deterministic model

We consider 4 distinct subclasses in the human population that are: Suscep-

tible, Latent, Infected and Recovered denoted by: Sh, Lh, Ih, Rh respectively.

The total human population is denoted by Nh. The mosquito population is

classified into two compartments namely: Susceptible and Infected denoted by

Sv, Iv. The mosquito total population is denoted by Nv. The recruitment of

new susceptible individuals in the human population is at an age-dependent

birth rate αh(a). A natural death rate µh(a) is imposed to all the human sub-

classes. With a constant biting rate σ, a proportion b of bites produces infec-

tion in human individuals. Among the bites, a proportion c infects susceptible

mosquitoes. Latent individuals become infectious at an age-dependent rate

δ(a). Infected host individuals recover at a rate λ(a) and an additional death

rate η(a) due to the disease is imposed to the infected human subclass. The

recovered individuals return to the susceptible subclass at an age-dependent

rate γ(a). Mosquito population changes through by natural death and birth

rates, λv(a) and µv(a), respectively.

The following system of first order partial differential equations describes
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Figure 1: Flow diagram of malaria transmission dynamic

the dynamic of the malaria disease transmission.





( ∂
∂t

+ ∂
∂a

)Sh(t, a) = αh(a)Nh(t, a)− σbSh(t,a)Iv(t,a)
Nh(t,a)

+ γ(a)Rh(t, a)− µh(a)Sh(t, a),

( ∂
∂t

+ ∂
∂a

)Lh(t, a) = σbSh(t,a)Iv(t,a)
Nh(t,a)

− (δ(a) + µh(a))Lh(t, a),

( ∂
∂t

+ ∂
∂a

)Ih(t, a) = δ(a)Lh(t, a)− (η(a) + λ(a) + µh(a))Ih(t, a),

( ∂
∂t

+ ∂
∂a

)Rh(t, a) = λ(a)Ih(t, a)− (γ(a) + µh(a))Rh(t, a),

( ∂
∂t

+ ∂
∂a

)Sv(t, a) = αv(a)Nv(t, a)− σcSv(t,a)Ih(t,a)
Nh(t,a)

− µv(a)Sv(t, a),

( ∂
∂t

+ ∂
∂a

)Iv(t, a) = σcSv(t,a)Ih(t,a)
Nh(t,a)

− µv(a)Iv(t, a).

(1)

with initial and boundary conditions





Sh(t, 0) = S0
h; Lh(t, 0) = Ih(t, 0) = Rh(t, 0) = 0; Sv(t, 0) = S0

v .

Sh(0, a) = S0h; Lh(0, a) = L0h; Ih(0, a) = I0h; Rh(0, a) = R0h;

Sv(0, a) = S0v; Iv(0, a) = I0v.

The total populations, Nh and Nv are given by Nh = Sh + Lh + Ih + Rh

and Nv = Sv + Iv. Summing equations in (1), we get ( ∂
∂t

+ ∂
∂a

)Nh(t, a) =

(αh − µh)Nv(t, a)− ηIh(t, a)

and ( ∂
∂t

+ ∂
∂a

)Nv(t, a) = (αv − µv)Nv(t, a)
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By rescaling the state variables as





sh(t, a) = Sh(t,a)
Nh(t,a)

, lh(t, a) = Lh(t,a)
Nh(t,a)

, i(t, a) = Ih(t,a)
Nh(t,a)

,

rh(t, a) = Rh(t,a)
Nh(t,a)

, sv(t, a) = Sv(t,a)
Nv(t,a)

, iv(t, a) = Iv(t,a)
N(t,a)

, m = Nv

Nh
,

system (1) is rewritten as





( ∂
∂t

+ ∂
∂a

)sh(t, a) = αh(a)− σbmsh(t, a)iv(t, a) + γ(a)rh(t, a)− µh(a)sh(t, a),

( ∂
∂t

+ ∂
∂a

)lh(t, a) = σbmsh(t, a)iv(t, a)− (δ(a) + µh(a))lh(t, a),

( ∂
∂t

+ ∂
∂a

)ih(t, a) = δ(a)lh(t, a)− (η(a) + λ(a) + µh(a))ih(t, a),

( ∂
∂t

+ ∂
∂a

)rh(t, a) = λ(a)ih(t, a)− (γ(a) + µh(a))rh(t, a),

( ∂
∂t

+ ∂
∂a

)sv(t, a) = αv(a)− σcsv(t, a)ih(t, a)− µv(a)sv(t, a),

( ∂
∂t

+ ∂
∂a

)iv(t, a) = σcsv(t, a)ih(t, a)− µv(a)iv(t, a)

(2)

with initial and boundary conditions





sh(t, 0) = s0
h; lh(t, 0) = ih(t, 0) = rh(t, 0) = 0; sv(t, 0) = s0

v.

sh(0, a) = s0h; lh(0, a) = l0h; ih(0, a) = i0h; rh(0, a) = r0h;

sv(0, a) = s0v; iv(0, a) = i0v.

Let E be a Banach space defined as E := (L1(0, ω))6 (where ω is the

maximum age) endowed with the norm ||φ|| =
∑6

j=1 ||φj||, φ ∈ E. The state

space is given by Ω = {(sh, lh, ih, rh, sv, iv) ∈ E+, 0 6 sh + lh + ih + rh 6 1, 0 6
sv + iv 6 1}, where E+ is the positive cone of E.

2.2 Stochastic model

We derive the stochastic model from the deterministic model using the

approach found in [2], [3], [4] and [15] and references therein. We consider a

small interval of time ∆t in which at most one individual can enter or get out

from a given subclass. Changes are denoted by +1,−1 or 0. The following

table gives the possible changes and their corresponding probabilities.
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Table 1: Table of probabilities associated to each possible transition

(1, 0, 0, 0, 0, 0) αh∆t

(−1, 1, 0, 0, 0, 0) σbmshiv∆t

(1, 0, 0,−1, 0, 0) γrh∆t

(−1, 0, 0, 0, 0, 0) µhsh∆t

(0,−1, 1, 0, 0, 0) δlh∆t

(0,−1, 0, 0, 0, 0) µhlh∆t

(0, 0,−1, 0, 0, 0) ηih∆t

(0, 0,−1, 1, 0, 0) λih∆t

(0, 0,−1, 0, 0, 0) µhih∆t

(0, 0, 0,−1, 0, 0) µhrh∆t

(0, 0, 0, 0, 1, 0) αv∆t

(0, 0, 0, 0,−1, 1) σcsvih∆t

(0, 0, 0, 0,−1, 0) µvsv∆t

(0, 0, 0, 0, 0,−1) µviv∆t

We obtain the following covariance matrix.

V =




V11 −σbmshiv 0 −γrh 0 0

−σbmshiv V22 −δlh 0 0 0

0 −δlh V33 −λih 0 0

−γrh 0 −λih V44 0 0

0 0 0 0 V55 −σcsvih

0 0 0 0 −σcsvih V66




(3)

with V11 = αh + σbmshiv + γrh + µhsh, V22 = σbmshiv + (δ + µh)lh, V33 =

δlh + (η + λ + µh)ih, V44 = λih + (γ + µh)rh, V55 = αv + σcsvih + µvsv,

V66 = σcsvih + µviv.
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The stochastic model is given as follows





( ∂
∂t

+ ∂
∂a

)sh = αh − σbmshiv + γrh − µhsh +
√

αh
dW1

dt
+
√

σbmshiv
dW2

dt

+
√

γrh
dW3

dt
+
√

µhsh
dW4

dt
,

( ∂
∂t

+ ∂
∂a

)lh = σbmshiv − (δ + µh)lh −
√

σbmshiv
dW2

dt
+
√

δlh
dW5

dt
+
√

µhlh
dW6

dt
,

( ∂
∂t

+ ∂
∂a

)ih = δlh − (η + λ + µh)ih −
√

δlh
dW5

dt
+
√

ηih
dW7

dt

+
√

λih
dW8

dt
+
√

µhih
dW8

dt
,

( ∂
∂t

+ ∂
∂a

)rh = λih − (γ + µh)rh −√γrh
dW3

dt
−√λih

dW8

dt
+
√

µhrh
dW10

dt
,

( ∂
∂t

+ ∂
∂a

)sv = αv − σcsvih − µvsv +
√

λv
dW11

dt
+
√

σcsvih
dW12

dt
+
√

µvsv
dW13

dt
,

( ∂
∂t

+ ∂
∂a

)iv = σcsvih − µviv −
√

σcsvih
dW12

dt
+
√

µviv
dW14

dt
.

with initial and boundary conditions





sh(t, 0) = s0
h; lh(t, 0) = ih(t, 0) = rh(t, 0) = 0; sv(t, 0) = s0

v.

sh(0, a) = s0h; lh(0, a) = l0h; ih(0, a) = i0h; rh(0, a) = r0h;

sv(0, a) = s0v; iv(0, a) = i0v.

3 Existence and uniqueness of solutions

3.1 Deterministic model

In order to investigate the existence of solutions for system (2), we rewrite

it in a simplified form as follows.

We define a linear operator A, a generator of a C0-semigroup, by

(Aφ)(x) := (−dφ1

dx
, ...,−dφ6

dx
)T , φi ∈ D(A)

with D(A) := {φ ∈ E : φi ∈ AC[0, ω), φi(0) = 0}, where AC[0, ω) denotes

the space of absolutely continuous functions on [0, ω). We consider a nonlinear
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and Frchet differentiable operator F defined by

F (φ)(x) :=




αh(x)− σbmφ1(x)φ6(x) + γ(x)φ4(x)− µh(x)φ1(x)

σbmφ1(x)φ6(x)− (δ(x) + µh(x))φ2(x)

δ(x)φ2(x)− (η(x) + λ(x) + µh(x))φ3(x)

λ(x)φ3(x)− (γ(x) + µh(x))φ4(x)

αv(x)− σcφ5(x)φ3(x)− µv(x)φ5(x)

σcφ5(x)φ3(x)− µv(x)φ6(x)




(4)

Therefore, system (2) takes the following form




dX
dt

= AX(t) + F (X(t)),

X(0) = X0,
(5)

where X(t) = (sh(., t), lh(., t), ih(., t), rh(., t), sv(., t), iv(., t))
T . It has been shown

in [12] that the Cauchy problem (6) admits a unique positive mild solution with

respect to positive initial conditions.

3.2 Stochastic model

System (4) can be rewritten as




dX = (AX(t) + F (X(t)))dt + G(X(t))dWt,

X(0) = X0,
(6)

where G(X) is a 6 × 14 matrix obtained from system(4). In [21], a proof

of a unique mild solution to (7) is given. The existence and uniqueness are

guaranteed by the global Lipschitz and linear growth conditions of both F and

G. In what follows we show that there exist positive constants L and L′ such

that

||F (X1)− F (X2)||1 ≤ L||X1 −X2||,
||G(X1)−G(X2)||2 ≤ L′||X1 −X2||,

and that there exist positive constants K and K ′ such that

||F (X1)||1 ≤ K(1 + ||X1||),
||G(X1)||2 ≤ K ′(1 + ||X1||).
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Using Young’s inequality for terms in shiv and svih, and applying the triangle

inequality, we obtain

||F (X1)− F (X2)||1 ≤ 3

2
µh|s1h − s2h|+ (2σ + µh)|l1h − l2h|+ (η + 2λ +

3

2
µh)|i1h − i2h|

+(γ + µh)|r1h − r2h|+ 3

2
µv|s1v − s2v|+ 3

2
µv|i1v − i2v|.

Taking L := max(2σ + µh, η + 2λ + 3
2
µh, γ + µh,

3
2
µv),

||F (X1)− F (X2)||1 ≤ L(|s1h − s2h|+ |l1h − l2h|+ |i1h − i2h|
+|r1h − r2h|+ |s1v − s2v|+ |i1v − i2v|) = L||X1 −X2||.

Applying the same approximations, we arrive to similar result for the linear

growth of F .

||F (X)||1 ≤ αh + αv +
3

2
µh|sh|+ (2δ + µh)|lh|+ (η + 2λ +

3

2
µh)|ih|+ (2γ + µh)|rh|

+
3

2
µv|sv|+ 3

2
µv|iv|.

Setting K := max(L, αh + αv)

||F (X)||1 ≤ K(1 + |sh|+ |lh|+ |ih|+ |rh|+ |sv|+ |iv|) = K(1 + ||X||1).

In the same way,by neglecting product terms shiv and svih, we show the fol-

lowing for G.

||G(X1)−G(X2)||2 ≤
[
µh(s

1
h − s2

h)
2 + (2δ + µh)(l

1
h − l2h)

2 + (η + 2λ + µh)(i
1
h − i2h)

2

+(2γ + µh)(r
1
h − r2

h)
2 + µv(s

1
v − s2

v)
2 + µv(i

1
v − i2v)

2
]1/2

,

Taking L′ := max(µv, η + 2λ + µh, 2γ + µh, 2δ + µh), we get

||G(X1)−G(X2)||2 ≤ L′
[
(s1

h − s2
h)

2 + (l1h − l2h)
2 + (i1h − i2h)

2

+(r1
h − r2

h)
2 + (s1

v − s2
v)

2 + (i1v − i2v)
2
]1/2

,

which shows that ||G(X1)−G(X2)||2 ≤ L′||X1 −X2||2. In the same way, the

linear growth of G follows.
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4 Steady state solutions

In this section, we deal with the deterministic model. The perturbation

introduced to get the stochastic model is driven by a Brownian motion, a

stochastic process which vanishes at t = 0. Numerical simulations of sample

paths are used to study the behaviour of the system around the steady states.

4.1 Disease free equilibrium solutions

By setting lh = ih = rh = iv = 0, the steady state of system (2) is given by

solution of the following system





dsh

a
= αh(a)− µh(a)sh(a),

dsv

da
= αv(a)− µv(a)sv(a),

(7)

Thus, the disease free equilibrium point is (s∗h, l
∗
h, i

∗
h, r

∗
h, s

∗
v, i

∗
v) = (1, 0, 0, 0, 1, 0).

4.2 Basic reproduction number

We compute the malaria reproduction number by the next generation ma-

trix method. Let F denotes the vector of terms corresponding to news infec-

tions, ν = ν+ + ν−, where ν+ is the vector of terms corresponding individuals

entering a given compartment and ν− corresponds to individuals going out of

a subclass in each population. We rewrite system (2) starting with equations

with terms containing new infections in the two populations.





( ∂
∂t

+ ∂
∂a

)lh(t, a) = σbmsh(t, a)iv(t, a)− (δ(a) + µh(a))lh(t, a),

( ∂
∂t

+ ∂
∂a

)ih(t, a) = δ(a)lh(t, a)− (η(a) + λ(a) + µh(a))ih(t, a),

( ∂
∂t

+ ∂
∂a

)iv(t, a) = σcsv(t, a)ih(t, a)− µv(a)iv(t, a),

( ∂
∂t

+ ∂
∂a

)sh(t, a) = αh(a)− σbmsh(t, a)iv(t, a) + γ(a)rh(t, a)− µh(a)sh(t, a),

( ∂
∂t

+ ∂
∂a

)rh(t, a) = λ(a)ih(t, a)− (γ(a) + µh(a))rh(t, a),

( ∂
∂t

+ ∂
∂a

)sv(t, a) = αv(a)− σcsv(t, a)ih(t, a)− µv(a)sv(t, a).

(8)

Then, matrices F and ν are given by
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F =




σbmshiv

δlh

σcsvih

0

0

0




ν =




(µh + δ)lh

(η + λ + µh)ih

µviv

σbmshiv − αh − γrh + µhsh

(γ + µh)rh − λih

σcsvih + µvsv − αv




As we have three subclasses containing new infections, the partial deriva-

tives of F and ν with respect to lh, ih and iv are given by the following 3 × 3

matrices F and V , respectively.

F =




0 0 σbmsh

δ 0 0

0 σcsv 0


 V =




µh + δ 0 0

0 η + λ + µh 0

0 0 µv




The spectral radius of the product FV −1 evaluated at the disease free

equilibrium state, corresponds to the basic reproduction number denoted by

R0 and it is given by

R0 = 3

√
σ2δbcm[

µv(µh + δ)(η + λ + µh)
]2 . (9)

4.3 Endemic steady state

We determine the endemic equilibrium state of system (2) when R0 > 1

by solving the following system





dsh(a)
da

= αh(a)− σbmsh(a)iv(a) + γ(a)rh(a)− µh(a)sh(a),

dlh(a)
da

= σbmsh(a)iv(a)− (δ(a) + µh(a))lh(a),

dih(a)
da

= δ(a)lh(a)− (η(a) + λ(a) + µh(a))ih(a),

drh(a)
da

= λ(a)ih(a)− (γ(a) + µh(a))rh(a),

dsv(a)
da

= αv(a)− σcsv(a)ih(a)− µv(a)sv(a),

div(a)
da

= σcsv(a)ih(a)− µv(a)iv(a)

(10)
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with boundary conditions





sh(0) = s0h,

lh(0) = l0h,

ih(0) = i0h,

rh(0) = r0h,

sv(0) = s0v, iv(0) = i0v.

which is rewritten as





dX(a)
da

= F (X(a)),

X(0) = (s0h, l0h, i0h, r0h, s0v, i0v)
T .

(11)

The Cauchy problem (12) where F (X) is globally Lipschitz continuous as

shown in section (2.2) admits a unique solution which corresponds to the en-

demic state of the deterministic model (2). Thus, we have





sh(a)∗∗ =
∫ a

0
[αh(τ)− σbmsh(τ)iv(τ) + γ(τ)rh(τ)− µh(τ)sh(τ)]dτ,

lh(a)∗∗ =
∫ a

0
[σbmsh(τ)iv(τ)− (δ(τ) + µh(τ))lh(τ)]dτ,

ih(a)∗∗ =
∫ a

0
[δ(a)lh(τ)− (η(τ) + λ(τ) + µh(τ))ih(τ)]dτ,

rh(a)∗∗ =
∫ a

0
[λ(τ)ih(τ)− (γ(τ) + µh(τ))rh(τ)]dτ,

sv(a)∗∗ =
∫ a

0
[αv(τ)− σcsv(τ)ih(τ)− µv(τ)sv(τ)]dτ,

iv(a)∗∗ =
∫ a

0
[σcsv(τ)ih(τ)− µv(τ)iv(τ)]dτ

(12)

5 Stability analysis

Theorem 5.1. The disease-free equilibrium state is globally asymptotically

stable if R0 ≤ 1 and (δ + µh)(η + λ + µh)µv < 1.

Proof: We consider the lyapunov function V = Alh + Biv + ih and take its

partial derivative with respect to (t, a).
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(
∂

∂t
+

∂

∂a
)V = A(

∂

∂t
+

∂

∂a
)lh + B(

∂

∂t
+

∂

∂a
)iv + (

∂

∂t
+

∂

∂a
)ih,

= A(σbshiv − (δ + µh)lh) + B(σcsvih − µviv)

+δlh − (η + λ + µh)ih

= [Aσbmsh −Bµv]iv + [Bσcsv − (η + λ + µh)]ih + [−A(δ + µh) + δ]lh

We choose the values of A and B in such way that the coefficients of lh and ih

are equal to zero. That implies,





A = δ
δ+µh

,

B = η+λ+µh

δcsv

(13)

Replacing the values of A and B and evaluating the derivative at the disease

free equilibrium, we obtain

(
∂

∂t
+

∂

∂a
)VDFE =

1

σc(δ + µh)

[
σ2δbcm− (δ + µh)(η + λ + µh)µv

]
iv, (14)

=
1

σc(δ + µh)(δ + µh)(η + λ + µh)µv

[
βR3

0 − 1

]
iv

with β = (δ + µh)(η + λ + µh)µv. Thus, we have ( ∂
∂t

+ ∂
∂a

)VDFE ≤ 0 if R0 ≤ 1.

Therefore, by the LaSalle’s invariance principle, the global asymptotic stability

of the disease-free equilibrium point follows.

6 Numerical simulation

In this section, the numerical method used in our simulations is based

on the finite difference method. Forward in time-backward in age numerical

scheme is used as in[1]. Each equation in system (2) can be rewritten as

(
∂

∂t
+

∂

∂a
)f(t, a) = g(t, a),

and can be approximated by

f(tk+1, ai)− f(tk, ai)

∆t
+

f(tk, ai)− f(tk, ai−1)

∆a
= g(tk, ai).
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(a) Case whereR0 < 1 for the human
population

(b) Mosquito population when
R0 < 1

(c) Human population when R0 > 1 (d) Mosquito population whenR0 > 1

Figure 2: We compare the deterministic and stochastic evolution over time

when R0 < 1 (R0 = 0.10528) and R0 > 1(R0 = 11.885). Sub-figures 2(a)-2(b)

Show an increasing number of susceptible both for humans and mosquitoes over

time. In the other compartments, populations are decreasing, which implies

that the disease will disappear even without intervention. In sub-figures 2(c)-

2(d), we observe that infected individuals are increasing. An intervention is

need to stop the disease progression.

In what follows, we present simulations of the deterministic model (2) and

the stochastic one (4). In figures 2(a)-2(d), the evolution in time of the state

variables shows that the effects of the perturbation are more remarkable when

R0 > 1. In Figures 3-6, we present an age-time evolution of both the deter-

ministic and stochastic case. We observe that stochastic evolution approaches
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the deterministic one when R0 < 1.

(a) Case where R0 < 1 for the deter-
ministic model

(b) Stochastic model when R0 < 1

(c) Deterministic model when R0 > 1 (d) Stochastic model when R0 > 1

Figure 3: The age-time evolution of the deterministic and stochastic models for

the susceptible humans shows that when R0 < 1, the population will continue

to increase. The disease has life effect in lowing susceptible individuals. When

R0 > 1, the susceptible individuals decrease and attain a stable state: the

endemic equilibrium state.
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(a) Deterministic model when R0 < 1 (b) Stochastic model when R0 < 1

(c) Deterministic model when R0 > 1 (d) Stochastic model when R0 > 1

Figure 4: Figure 4 compare infected human individuals for both determinis-

tic and stochastic models. In the case of R0 < 1, the infected individuals

disappear over time whereas an endemic state is reached when R0 > 1.
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(a) Susceptible mosquitoes when
R0 < 1 for the deterministic model

(b) Stochastic model when R0 < 1

(c) Deterministic model when R0 > 1 (d) Stochastic model when R0 > 1

Figure 5: Susceptible mosquito population compared in the deterministic and

stochastic models

7 Conclusion

In this work, we considered an age-structured model and introduced a per-
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(a) Deterministic model when R0 < 1 (b) Stochastic model when R0 < 1

(c) Infected mosquitoes when R0 > 1 (d) Stochastic case when R0 > 1

Figure 6: Comparison between the deterministic and stochastic cases for in-

fected mosquitoes

turbation to the deterministic model. A comparison between sample paths

and deterministic trajectories has been presented. We observed that, when

R0 < 1, the perturbation is inducing small variations in deterministic system
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whereas remarkable differences appears when R0 > 1. The parameters of the

basic reproduction number show that reducing the contact human-mosquito

has large effect in controlling the disease. Therefore, much effort is required to

reduce mosquito biting rate by using protectives tools such insecticide treated

bed nets and indoor residual spraying. In areas of high mosquitoes concen-

tration, reducing the number of biting producing infections in humans is to

be included for an eradication of the disease; more efforts to obtain effective

vaccine are necessary. Effects of migrations on the present model are to be

investigated for future works.
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