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Abstract 

Feature extraction and classification of the histopathological image plays a 

significant role in prediction and diagnosis of diseases, such as breast cancer. The 

common issues of the features matrix are that many of features may not be 

relevant to their diseases. Feature selection has been proved to be an effective way 

to improve the result of many classification methods. In this paper, an adaptive 

sparse support vector is proposed, with the aim of identification features, by 

combining the support vector machine with the weighted L1-norm. Experimental 

results based on a publicly recent breast cancer histopathological image datasets 

show that the proposed method significantly outperforms three competitor 

methods in terms of overall classification accuracy and the number of selected 
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features. Thus, the proposed method can be useful for medical image classification 

in the real clinical practice. 

 

Mathematics Subject Classification: 68T05 

Keywords: sparse support vector machine; lasso; Wilcoxon rank sum test; 

histopathology image; breast cancer; feature selection. 

 

 

1 Introduction  

According to world health organization (WHO), breast cancer among women 

is one of the main causes of cancer deaths in world [1]. However, the early 

diagnosis can increase the survival rates [2]. Several methods of noninvasive 

imaging namely mammograms (X-rays), magnetic resonance imaging (MRI), and 

ultrasonography [3, 4] are available. Recently, histopathological image analysis 

has become a noteworthy research problem in medical imaging [5]. Breast cancer 

diagnosis from a histopathology image is considered as a gold standard in 

diagnosing allowing to narrow borderline diagnosis issued from standard imaging 

methods [6].  

The machine learning methods have been utilized to increase the diagnostic 

accuracy of women breast cancer by embedded into a computer-aided system [7].  

In breast cancer classification, the taxonomy of normal and abnormal patterns of 

the cells is one of the most important and significant processes during the cancer 

diagnosis and drug discovery [8, 9]. It can help to improve the health care of 

patients, and, therefore, the high prediction of cancer has great value in the 

treatment or the therapy [10, 11].  

Support vector machine is a widely-used classification method in different 

classification areas, especially in breast cancer classification [12]. As the number 

of the image features increases, the training time of applying support vector 
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machine increases and also its computational complexity increases [13, 14]. 

Unfortunately, support vector machine cannot automatically handle feature 

selection although it has been proven advantageous in handling binary 

classification [15-21].   

Sparse methods are very effective embedded gene selection methods, which 

connected with many popular classification methods including support vector 

machine logistic regression, and linear discriminate analysis [22-30]. In recent 

years, sparse support vector machine as among all the classification methods, 

those based on sparseness, received much attention. It combines the standard 

support vector machine with a penalty to perform feature selection and 

classification simultaneously. With deferent penalties, several sparse support 

vector machine can be applied, among which are, L1-norm, which is called the 

least absolute shrinkage and selection operator (lasso) [31], smoothly clipped 

absolute deviation (SCAD) [32], elastic net [33], and adaptive L1-norm [34]. 

Unquestionably, L1-norm is considered to be one of the most popular procedures 

in the class of sparse methods. Nonetheless, L1-norm applies the same amount of 

the sparseness to all features, resulting in inconsistent feature selection [34-36].  

To increase the power of informative feature selection, in the present study, 

an efficient feature selection and classification of breast cancer histopathology 

images, which is based on the idea of sparse support vector machine combined 

with Wilcoxon rank sum test, is proposed. More specifically, Wilcoxon rank sum 

test is employed to weight each feature. On the other hand, a sparse support vector 

machine with adaptive L1-norm is utilized, where each significant feature will be 

assigned a weight depending on the Wilcoxon rank sum test value. This weight 

will reflect the importance amount of each feature. Experimentally, 

comprehensive comparisons between our proposed method and other competitor 

methods are performed depending on the BreaKHis database, which contains 

microscopic biopsy images of benign and malignant breast tumors.  

The rest of this paper is organized as follows. Section 2 explains the 
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preliminaries of sparse support vector machine.  The Discrete wavelet transform 

information is explained in section 3. The proposed method with its related 

procedures is described in Section 4. Section 5 introduces the information of the 

experimental study. The experimental results are presented in Section 6. Finally, 

Section 7 draws general conclusions. 

 

 

2 Sparse Support Vector Machine 

The support vector machine (SVM), which originally proposed by Vapnik 

[37], is a well-known and a powerful classification method in the literature 

because of its strong mathematical background and excellent generalization 

performance. The binary classification using SVM has often been adopted in the 

cancer classification research because of its capability of handling nonlinear 

classification and high-dimensional data [8]. However, SVM itself cannot 

eliminate the noisy and irrelevant features [15, 17-21, 38].  

Feature selection is an important tool for classifying the breast cancer. In this 

situation, sparse support vector machine (SSVM), which is considered as one of 

the embedded methods, is of more interest for researchers than the SVM because 

it can perform feature selection and classification simultaneously. An important 

SSVM is with L1-norm (lasso) [21]. 

Features matrix can be described mathematically as a matrix ( )ij n dX x ×= , 

where each column represents a feature and each row represents a sample (tissue) 

for tumor diagnosis. The numerical value of ijx  denotes the value of a specific 

features ( 1,..., )j j d=  in a specific sample ( 1,..., )i i n= . Given a training 

dataset 1{( , )}n
i i iy =x , where i,1 i,2 i,d( , ,..., )i x x x=x  represents a vector of the thi  

feature, and { 1, 1}iy ∈ − +  for 1,...,i n= , where 1iy = +  indicates the thi  

sample is in class 1 (e.g., has cancer) and 1iy = −  indicates the thi  sample is in 
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class 2 (e.g., does not have cancer). Generally, the objective is to classify the new 

sample and identify the relevant feature with high classification accuracy.  

The classical SVM solves the optimization problem by minimizing  

[ ] 2
2

1

1 1 ( ( )) || ||
n

i i
i

y b h
n

λ
+

=

− + +∑ z x z
  

(1) 

where [ ]1 ( ( ))i iy b h
+

− + z x  is the convex hinge loss, the scalar b  is denoted as 

the bias, 2
2|| ||z  is the L2-norm, and 0λ >  is the tuning parameter controlling the 

trade-off between minimizing the hyper-plane coefficients and the classification 

error. Equation (2) is a convex optimization problem and can be solved by the 

method of Lagrange multipliers [15]. The optimization solution can provide a 

unique solution for hyperplane parameters z and b . 

Although SVM is a widely-used classification method in different 

classification areas, it cannot perform feature selection because of using L2-norm. 

This can be a downside when there are many irrelevant features [15, 17, 20, 21, 

39]. To overcome this limitation, those methods for simultaneous feature selection 

and classification are more preferable to achieve better classification accuracy 

with less important features [17]. 

For the purpose of feature selection, several variants of penalties are adopting 

with SVM. Bradley and Mangasarian [40] and Zhu, Rosset, Hastie and Tibshirani 

[21] proposed using L1-norm instead of L2-norm of Eq. (1) to perform variable 

selection and binary classification. Ikeda and Murata [41], Liu, Helen Zhang, Park 

and Ahn [17], and Liu, Lin and Tan [18] proposed Lq-norm with 1q < . 

Furthermore, Zhang, Ahn, Lin and Park [20] proposed the smoothly clipped 

absolute deviation (SCAD) penalty of Fan and Li [32] with SVM. In addition, 

Wang, Zhu and Zou [38] proposed a hybrid huberized SVM by using the elastic 

net penalty. Becker, Toedt, Lichter and Benner [15] proposed a combination of 

ridge and SCAD with SVM.    

Because of the singularity of the L1-norm, SVM with L1-norm can 

automatically select variables by shrinking the hyper-plane coefficients to zero [15, 
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38]. In addition, SCAD has the same behavior as L1-norm [15]. The SSVM with 

L1-norm (SSVM-lasso) and the SSVM with SCAD (SSVM-SCAD) are, 

respectively, defined as 

[ ]
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n

i i
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y b h
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where , 1, 2,...,jz j p=  are the hyper-plane coefficients, 3.7a =  as suggested 

by Fan and Li [32], and 0λ >  is the tuning parameter. 

 

 

3 Discrete Wavelet Transform 

The wavelet series is just a sampled version of continuous wavelet transform 

(CWT) and its computation may consume a significant amount of time and 

resources, depending on the resolution required. The discrete wavelet transform 

(DWT), which is based on sub-band coding is found to yield a fast computation of 

wavelet transform. It is easy to implement and reduces the computation time and 

resources required [42]. 

A two-dimensional scaling function, ( ),x yϕ , and three two-dimensional 

wavelet ( ),H x yψ , ( ),V x yψ  and ( ),D x yψ  are critical elements for wavelet 

transforms in two dimensions [43]. Given separable 2-D scaling and wavelet 

functions, 2-D DWT can be defined as: First, we define the scaled and translated 
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or shifted basis functions which are defined as follows [43]: 

( ) /2
, , , 2 (2 ,2 )j j j

j m n x y x m y nϕ ϕ= − −           (5) 

( ) ( ) { }/2
, , , 2 2 ,2        , , i j i j j

j m n x y x m y n i H V Dψ ψ= − − =      (6) 

where i  is the directional wavelet index. Therefore, 2-D DWT of an image 

( ), f x y  of size  M N× is given by [11]: 
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where 0j  is an arbitrary starting scale, ( )0 , , W j m nϕ  is the approximation 

coefficients for  ( ), f x y  at scale 0j ,  ( ), , iW j m nψ  is the horizontal, 

vertical and diagonal details coefficients at scales 0  j j≥ , and 

2  for jM N= = 0 0,1, , 1,j j= … − , 0,1 , , 2 1jm n = … − . Then the two-dimensional 

DWT can be implemented using digital filters and downsamplers 2↓. 

 

 
Figure 1: The analysis filter bank of the two-dimensional FWT 

 

The block diagram in Figure 1 shows the process of taking the one-dimensional 
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FWT of the rows of ( ), f x y  and the subsequent one-dimensional FWT of the 

resulting columns. Three sets of detail coefficients including the horizontal, 

vertical, and diagonal details are produced. 

Depending on the discrete wavelet transform, specifically, Haar discrete 

wavelet transform based on the 7th  level decomposition, was employed to extract 

the features of the breast cancer histopathology images. At first level of 

decomposition, breast cancer histopathology images were divided into four equal 

size sub-images, namely LL1 (approximation coefficients), LH1 (horizontal 

coefficients), HL1 (vertical coefficient) and HH1 (diagonal coefficient). 

Subsequently at the second level of decomposition LL1 (approximation 

coefficient) sub-image is further decomposed into four equal size sub-images LL2, 

LH2, HL2 and HH2. Continuously until we reach the seventh level of 

decomposition. In this manner 28 sub-images have been formed from every 

channel (red, green and blue). Thus, 28 x 3 sub-images have been established from 

the original image. Then nine of the traditional statistical features (Mean, Standard 

deviation, skewness, kurtosis, Entropy, energy, root mean square, Mean absolute 

deviation, Median Absolute Deviation) are calculated. As a result, 756 features are 

extracted for each histopathology image of the breast cancer.   

 

 

4 The Proposed Method 

In the context of breast cancer classification, the goal of feature selection is to 

improve classification performance. High dimensionality of features can 

negatively influence the classification performance of a classifier by increasing the 

risk of overfitting and lengthening the computational time. Therefore, removing 

irrelevant and noisy features from the original features matrix is essential for 

applying classification methods. 

It is worthwhile to highlight that our contribution of this paper comes from 
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the following issue. Although SSVM with L1-norm can be applied directly to the 

breast cancer classification, this method may select irrelevant features because 

L1-norm has the inconsistent property in feature selection. In other words, the 

estimates of the SSVM with L1-norm can be biased for large hyper-plane 

coefficients because larger coefficients will take larger penalties. Compared with 

L1-norm, SSVM with SCAD generally suffer from non-convexity although SSVM 

with SCAD proved its consistency in feature selection.  

Consequently, efficient feature selection is proposed. It is based on the idea 

of SSVM with L1-norm combined with Wilcoxon rank sum test. More specifically, 

Wilcoxon rank sum test is employed to weight each feature. On the other hand, the 

SSVM with adaptive L1-norm is utilized, where each significant feature will be 

assigned a weight depending on the Wilcoxon rank sum test value. This weight 

will reflect the importance amount of each feature. 

 

 

4.1 Weight Calculation 

In practice, feature matrix contains irrelevant or noisy features leading to low 

performance with less classification accuracy. As a consequence, analyzing 

feature in terms of their importance has become a necessary task. To determine the 

weight for each feature, the Wilcoxon rank sum test [44] is utilized as 

1 2

( ) ( )( ) (( ) 0), 1, 2,...,j j
i k

i N k N
s j I j p

∈ ∈

= − ≤ =∑ ∑ x x         (9) 

where ( )I ⋅  is the discrimination function and it is defined as 

1
( )

0
if I is true

I
if I is not true


⋅ = 

           (10) 
( )j
ix  is the value of the sample i  in the feature j , and 1N  and 2N  are 

the index sets of different classes of samples. Equation (5), ( )s j , represents the 

measurement of the difference between the two classes. The feature j  can be 
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considered important when Eq. (5) is close to 0 or when it is close to the max 

value of  1 2n n , where 1 1| |n N=  and 2 2| |n N= .  

Liao, Li and Luo [44] quantify the feature significance by the following 

feature ranking criterion  

1 2( ) max{ ( ), ( )}.q j s j n n s j= −            (11) 

Depending on Eq. (7), an important feature, with ( )s j  closed to 0 or to 

1 2n n , will receive large value of ( )q j , while an irrelevant feature will receive a 

small value of ( )q j .  

To enforce discriminative penalty on each feature according to importance 

degree in classification, Park, Shiraishi, Imoto and Miyano [45] proposed the 

following weight 

1

( )1/ [ * ], 1, 2,..., .
( )

j p

j

q jw p j p
q j

=

= =

∑
          (12) 

According to Equation (8), the important feature will receive small amount of 

weight, while the irrelevant feature will receive relatively large amount of weight. 

By this weighting procedure, the L1-norm can reduce the inconsistent property in 

feature selection.  

 

 

4.2 Breast Cancer Classification 

After assigning each feature with its related weight, the SSVM with adaptive 

L1-norm is utilized to select the informative features with high classification 

accuracy. The detailed of the adaptive SSVM (ASSVM) computation is described 

in Algorithm 1. The ASSVM equation has a convex form, which ensures the 

existence of global maximum point and can be efficiently solved. 
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Algorithm 1:  The computation of ASSVM 

Step 1: Find , 1, 2,..., .jw j p=   

Step 2: Define i j iw=x x  

Step 3: Solve the ASSVM, 

[ ]
1

1 1 ( ( )) .
n

i i
i

y b h
n

λ
+

=

− + +∑ z x z  

 

 

5 Experimental Study 

5.1 Datasets Description 
The dataset that has been exploited is related to The BreaKHis database, 

which contains microscopic biopsy images of benign and malignant breast tumors 

[4]. This dataset is related to the pathological anatomy and cytopathology 

laboratory of Parana, Brazil. This database, BreaKH, is composed of 7909 

clinically representative microscopic images of breast tumor tissue images 

collected from 82 patients using different magnifying factors: 40X, 100X, 200X, 

and 400X, with 24 benign and 58 malignant samples. A summary of this database 

is listed in Table 1. 

 

Table 1: Summary of the BreaKH database. 

Magnification Benign Malignant 
40X 625 1370 
100X 644 1437 
200X 623 1390 
400X 588 1232 

 

5.2 Performance Evaluation 
In order to evaluate the predictive performance of the proposed method, two 

performance metrics are implemented, specifically: (1) patient classification rate 
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(PCR) and (2) overall classification accuracy (OCA). The PCR stands for the 

proportion of correctly classified benign class and malignant class within the 

patient. The PCR can define as: 

P n= 100%
n

CR correct

total

×             (13) 

where ncorrect  is the number of correctly classified cancer images for the patient 

j and ntotal  is the number of cancer images of patient j .  

The OCA can define as: 

1OCA= 100%
n

p

j
j

patients

PCR
= ×
∑

            (14) 

where n patients  is the number of patients. Generally, the closer value to 1, the 

better overall classification performance is.  

 

 
5.3 Experimental Setting 

To demonstrate the usefulness of the proposed method, comprehensive 

comparative experiments with the SSVM-lasso, SSVM-SCAD, and the classical 

SVM are conducted. To do so, the data matrix is randomly partitioned into the 

training dataset and the test dataset, where 70% of the samples are selected for 

training dataset and the rest 30% are selected for testing dataset. For a fair 

comparison and for alleviating the effect of the data partition, all the used 

classification methods are evaluated, for their classification performance metrics 

using 10 folds cross validation, averaged over 10 partitioned times. 

Depending on the training dataset, the tuning parameter value, λ , for each 

used classification method was fixed as 0 100λ≤ ≤ . For the SCAD penalty, the 

constant a  was set to equal 3.7 as it suggested by Fan and Li [32]. The 

implementations of these used methods are provided in the R-package: penalized 

SVM.  
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6 Experimental Results 

6.1 Classification Performance 

Table 2 summarizes, on average, the overall classification accuracy for the 

training and testing datasets of applying the ASSVM, SSVM-SCAD, SSVM-lasso, 

and the SVM. In addition, it summarizes the number of the selected features. The 

number in parenthesis is the corresponding standard deviation. 

Beginning with the magnification 40X, regarding the overall classification 

accuracy and based on the training dataset, the proposed method, ASSVM, 

achieves 95.37%, defeating SSVM-SCAD, SSVM-lasso, and the SVM by 4.40%, 

5.50%, and 7.63%, respectively. In addition, SSVM-SCAD secondly comes with 

90.97% and better than SSVM-lasso and SVM. Depending on the testing dataset, 

the ASSVM is better than the others in terms of overall classification accuracy 

because it achieved 94.97%, which is 6.37%, 7.95%, and 10.64% better than 

SSVM-SCAD, SSVM-lasso, and the SVM, respectively.  

In the magnification 100X, based on the training dataset, the ASSVM 

provides enhancement over the SSVM-SCAD and the SSVM-lasso by 3.82% and 

5.91%, respectively. Once again, based on the testing dataset, the proposed 

method beats both SSVM-SCAD and SSVM-lasso in terms of overall 

classification accuracy.  

Looking at the magnification 200X, the overall classification performance of 

the proposed method is comparable with SSVM-SCAD, SSVM-lasso, and SVM 

performing best among them. In terms of overall classification accuracy, the OCA 

obtained from the proposed method was 96.28% for the training dataset and 

94.54% for the testing dataset. This indicates the superiority of the proposed 

method as compared to SSVM-SCAD, SSVM-lasso, and SVM.  

At the end, regarding the magnification 400X, the ASSVM shows a 

considerable dominance against SSVM-SCAD, SSVM-lasso, and SVM. It 

achieved the higher overall classification accuracy for both the training and testing 
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datasets. SSVM-SCAD and SSVM-lasso attain mediocre performance as they 

provide results that are inferior to AHP but better than SVM. 

The number of features selected by each method is an important factor. 

Methods selecting more features tend to overfit the data. Hence, methods with a 

small number of selected features are preferred. For a comparison of methods in 

terms of the number of selected features, the ASSVM outperformed SSVM-SCAD 

and SSVM-lasso. For instance, in magnification 40X, ASSVM selected 6 features 

compared to 17 and 22 features for the SSVM-SCAD and SSVM-lasso, 

respectively.  

 

Table 2: Classification performance of the ASSVM, SSVM-SCAD, SSVM-lasso 

and SVM 

Methods Training 
dataset 

Testing 
dataset 

# selected 
features 

 OCA OCA  
40X    
   ASSVM  95.37  

(0.09) 
94.97 
(0.003) 

6 

   SSVM-SCAD 90.97 
(0.011) 

88.60 
(0.007) 

17 

   SSVM-lasso 89.87 
(0.011) 

87.02 
(0.007) 

22 

   SVM  87.74 
(0.013) 

84.33 
(0.007) 

All 

100X    
   ASSVM  95.75 

(0.008) 
93.62 
(0.007) 

10 

   SSVM-SCAD 91.93 
(0.008) 

88.49 
(0.008) 

19 

   SSVM-lasso 89.84 
(0.008) 

86.15 
(0.008) 

24 

   SVM  85.60 
(0.011) 

81.80 
(0.009) 

All 

200X    
   ASSVM  96.28 

(0.008) 
94.54 
(0.005) 

8 

   SSVM-SCAD 91.02 
(0.011) 

89.56 
(0.007) 

14 
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   SSVM-lasso 86.29 
(0.011) 

89.35 
(0.007) 

20 

   SVM  86.28 
(0.013) 

82.39 
(0.008) 

All 

400X    
   ASSVM  95.68 

(0.008) 
94.42 
(0.005) 

8 

   SSVM-SCAD 90.63 
(0.011) 

88.68 
(0.007) 

13 

   SSVM-lasso 88.59 
(0.011) 

84.96 
(0.007) 

19 

   SVM  84.28 
(0.013) 

80.91 
(0.008) 

All 

 
 

 

6.2 Statistical Significance Test 

For further ability confirmation of the proposed method in selecting the most 

relevant features with high classification performance, a pairwise comparison 

between the proposed method and each competitor method was utilized using 

Mann–Whitney U test. This test was performed depending on the area under the 

curve (AUC) of the training dataset. Table 3 reports the Mann–Whitney U test 

results at significance level 0.05α = . As shown in Table 3, the AUC of the 

proposed method is statistically significant better than those of SSVM-SCAD, 

SSVM-lasso and SVM. 

 

Table 3: P-values for the Mann–Whitney U test of our proposed method results 

with three competitor methods. (*) means that the two methods have significant 

differences 

Pairwise comparison p-value 

ASSVM vs SSVM-SCAD 0.0017(*) 
ASSVM vs SSVM-lasso 0.0011(*) 
ASSVM vs SVM 0.0001(*) 
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7 Conclusion 
This paper presents an adaptive sparse support vector machine by combining 

the support vector machine with the weighted L1-norm to classify the breast 

cancer histopathology images. Our proposed method was experimentally tested 

and compared with other existing methods. The superior classification 

performance of the proposed method was shown through the overall classification 

accuracy and the Mann–Whitney U test for the AUC. Furthermore, ASSVM 

performs remarkably well in terms of the number of selected features as compared 

to SSVM-SCAD, SSVM-lasso. Consequently, the results confirm that ASSVM is 

a promising feature selection method for medical image classification.  

Funding: This research did not receive any specific grant from funding agencies 

in the public, commercial, or not-for-profit sectors. 
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