Powers of the generalized 2-Fibonacci matrices

Maria Adam ${ }^{1}$

Abstract

In this paper, we investigate the closed formulas for the entries of the power of the 2×2 matrix obtained by generalized 2 -step Fibonacci sequence.

Mathematics Subject Classification: 15B48; 11B39
Keywords: Fibonacci numbers; Fibonacci matrices;

1 Introduction

Fibonacci numbers are one of the best-known numerical sequences and have many important applications to a wide variety of research areas such as mathematics, computer science, physics, biology, and statistics. For the applications and the theory of Fibonacci numbers see, e.g. $[3,6,8,9,10$, $12,13,16,17]$ and the references given therein. In $[3,12]$, the well-known Fibonacci sequence is formulated by the recurrence relation $f_{n}=f_{n-1}+f_{n-2}$, $n \geq 3$, with $f_{1}=f_{2}=1$.

[^0]Many authors have considered and discussed the generalizing of the above definition as in the following:

- the k-step Fibonacci sequence is derived by the recurrence relation, $f_{n}=$ $f_{n-1}+f_{n-2}+\cdots+f_{n-k}, n \geq k+1$, with $f_{1}=f_{2}=\ldots=f_{k}=1$, [1, 3, 10, 12],
- the generalized k-step Fibonacci sequence is derived by the recurrence relation, $f_{n}=c_{1} f_{n-1}+c_{2} f_{n-2}+\cdots+c_{k} f_{n-k}, n \geq k+1$, with $f_{1}=f_{2}=$ $\ldots=f_{k}=1$, and $c_{1}, c_{2}, \ldots, c_{k}$ are arbitrary real numbers, $[2,6,8,9,10$, 11, 18].

Furthermore, important relations between the k-step Fibonacci numbers and the special matrices have been investigated; the determinants of the matrices constructed by k-step Fibonacci numbers are obtained in [10] and the properties of the determinants are discussed in [9], the sums of the generalized Fibonacci numbers are derived directly using the matrix representation and method in $[2,4,5,11]$; some closed formulas for the generalized Fibonacci sequence are derived by matrix methods $[8,11,13]$. Recently, two limiting properties concerning the k-step Fibonacci numbers are obtained and related to the spectral radius of the k-Fibonacci matrices in [3], the powers of the k-Fibonacci matrices are investigated and closed formulas for their entries are derived, related to the suitable terms of the k-step Fibonacci sequences as well as the properties of the irreducibility and the primitivity of the associated k-Fibonacci matrices are discussed in [1].

In the present paper, the powers of the generalized 2-Fibonacci matrices are investigated and closed formulas for their entries are derived, which are related to the combinatorial representation of the nonnegative constant real numbers c_{1}, c_{2} defined the associated generalized 2-step Fibonacci sequence.

2 Generalized k-step Fibonacci sequences and matrices

In [2], for the integer $k=1,2, \ldots$, and the nonnegative constant real numbers $c_{1}, c_{2}, \ldots, c_{k}$, where $c_{1}>0$, the n-th term f_{n} of the generalized k-step

Fibonacci sequence, $\left(f_{n}\left(c_{1}, c_{2}, \ldots, c_{k}\right)\right)_{n=1,2, \ldots}$, is defined by the recursive formulation

$$
\begin{align*}
f_{n} & =c_{1} f_{n-1}+c_{2} f_{n-2}+\cdots+c_{k} f_{n-k} \\
& =\sum_{j=1}^{k} c_{j} f_{n-j}, \quad \text { for every } n \geq k+1 \tag{1}
\end{align*}
$$

with

$$
\begin{equation*}
f_{1}=f_{2}=\ldots=f_{k}=1 \tag{2}
\end{equation*}
$$

From $c_{1}>0, c_{2}, c_{3}, \ldots, c_{k} \geq 0$ and (1)-(2), it is obvious that all the terms f_{n} of the generalized k-step Fibonacci sequence $\left(f_{n}\left(c_{1}, c_{2}, \ldots, c_{k}\right)\right)_{n=1,2, \ldots}$ are positive real numbers.

Remark 2.1 (i) From (1)-(2) it is evident that for $k=1$, the n-th term f_{n} of the associated generalized Fibonacci sequence $\left(f_{n}\left(c_{1}\right)\right)_{n=1,2, \ldots}$ is equal to $f_{n}=c_{1}^{n-1}, c_{1}>0$. Hereafter consider $k \geq 2$, since the case $k=1$ is trivial.
(ii) Moreover, notice that for $k \geq 2$, and $c_{1}>0, c_{2}=c_{3}=\ldots=c_{k}=0$, the n-th term f_{n} of the generalized Fibonacci sequence $\left(f_{n}\left(c_{1}, 0, \ldots, 0\right)\right)_{n=1,2, \ldots}$ is equal to $f_{n}=c_{1}^{n-k}, c_{1}>0$. Hereafter consider at least two nonzero coefficients $c_{i}, i=1,2, \ldots, k$, in (1) because otherwise we have a trivial case.
(iii) Using $m=0$, the equations (1)-(2) are derived immediately by the definition of the generalized k, m-step Fibonacci sequence $\left(f_{n}^{\{k, m\}}\left(c_{1}, c_{2}, \ldots, c_{k}\right)\right)_{n=1,2, \ldots}$, [2].
(iv) For $c_{1}=c_{2}=\ldots=c_{k}=1$, the generalized k-step Fibonacci sequence $\left(f_{n}(1,1, \ldots, 1)\right)_{n=1,2, \ldots}$ gives well-known sequences for various values of k. In particular,
-for $k=2$, the equations (1)-(2) give the well-known Fibonacci sequence, $1,1,2,3,5,8,13, \ldots,[1,3,12]$.
-for $k=3$, (1)-(2) give the tribonacci sequence, $1,1,1,3,5,9,17, \ldots,[3$, Remark 2(ii)].
-for $k=4$, (1)-(2) give the tetranacci sequence, $1,1,1,1,4,7,13, \ldots,[3$, Remark 2(iii)].

The generalized k-Fibonacci matrix has been first introduced in [8] and it is defined as the nonnegative $k \times k$ matrix

$$
Q_{k}\left(c_{1}, c_{2}, \ldots, c_{k}\right)=\left[\begin{array}{ccccc}
c_{1} & c_{2} & c_{3} & \cdots & c_{k} \tag{3}\\
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 0
\end{array}\right]
$$

where the first row of the above matrix has entries the nonnegative real numbers $c_{1}>0, c_{2}, c_{3}, \ldots, c_{k} \geq 0$, for $k \geq 2$.

Remark 2.2 (i) In $[2,6,9,10]$, the determinant of the generalized k-Fibonacci matrix in (3) is formulated by

$$
\begin{equation*}
\operatorname{det}\left(Q_{k}\left(c_{1}, c_{2}, \ldots, c_{k}\right)\right)=(-1)^{k+1} c_{k} \tag{4}
\end{equation*}
$$

and the k-th degree characteristic polynomial $x_{Q_{k}\left(c_{1}, c_{2}, \ldots, c_{k}\right)}(\lambda)$ of the generalized k-Fibonacci matrix $Q_{k}\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ has been proved in [8] and it is given by

$$
\begin{equation*}
x_{Q_{k}\left(c_{1}, c_{2}, \ldots, c_{k}\right)}(\lambda)=\lambda^{k}-\sum_{i=1}^{k} c_{i} \lambda^{k-i} . \tag{5}
\end{equation*}
$$

(ii) From (4) it is obvious that $Q_{k}\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ is a nonsingular matrix if and only if $c_{k} \neq 0$, and then all the eigenvalues of $Q_{k}\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ are nonzero.
(iii) The trace of a matrix A is denoted by $\operatorname{tr}(A)$. From (3) it is evident that

$$
\operatorname{tr}\left(Q_{k}\left(c_{1}, c_{2}, \ldots, c_{k}\right)\right)=c_{1}
$$

(iv) For $c_{1}=c_{2}=\ldots=c_{k}=1$, the relationships between the Fibonacci numbers and their associated k-Fibonacci matrices $Q_{k}(1,1, \ldots, 1)$ and the powers of $Q_{k}(1,1, \ldots, 1)$ have been discussed in $[1,3,7,14]$, as well as the properties of the irreducibility and primitivity of $Q_{k}(1,1, \ldots, 1)$ have been investigated in [1].
(v) The generalized 2-Fibonacci matrix is defined by (3) for $k=2, c_{1}>$ $0, c_{2} \geq 0$ and in the following it is formulated as the nonnegative 2×2 matrix

$$
Q_{2}\left(c_{1}, c_{2}\right)=\left[\begin{array}{cc}
c_{1} & c_{2} \tag{6}\\
1 & 0
\end{array}\right]
$$

In the following theorem, the Pascal 's triangle identity is needed, which is formulated as

$$
\begin{equation*}
\binom{n-\tau}{\tau}+\binom{n-\tau}{\tau-1}=\binom{n-\tau+1}{\tau} \tag{7}
\end{equation*}
$$

Theorem 2.3 Let the positive real numbers c_{1}, c_{2} and the associated generalized 2-Fibonacci matrix $Q_{2}\left(c_{1}, c_{2}\right)$ in (6). Let $n \geq 2$, then the n power of $Q_{2}\left(c_{1}, c_{2}\right)$ is defined as

$$
Q_{2}^{n}\left(c_{1}, c_{2}\right)=\left(Q_{2}\left(c_{1}, c_{2}\right)\right)^{n}=\left(Q_{2}\left(c_{1}, c_{2}\right)\right)^{n-1} Q_{2}\left(c_{1}, c_{2}\right)=\left[\begin{array}{cc}
q_{11}^{(n)} & q_{12}^{(n)} \tag{8}\\
& \\
q_{21}^{(n)} & q_{22}^{(n)}
\end{array}\right]
$$

where the positive real numbers $q_{11}^{(n)}, q_{12}^{(n)}, q_{21}^{(n)}, q_{22}^{(n)}$ are given by

$$
\begin{align*}
q_{11}^{(n)} & =\sum_{r=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-r}{r} c_{1}^{n-2 r} c_{2}^{r}, \tag{9}\\
q_{12}^{(n)} & =\sum_{r=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1-r}{r} c_{1}^{n-1-2 r} c_{2}^{r+1}, \tag{10}\\
q_{21}^{(n)} & =\sum_{r=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1-r}{r} c_{1}^{n-1-2 r} c_{2}^{r}, \tag{11}\\
q_{22}^{(n)} & =\sum_{r=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor}\binom{n-2-r}{r} c_{1}^{n-2-2 r} c_{2}^{r+1}, \tag{12}
\end{align*}
$$

and $\lfloor n\rfloor$ denotes the floor function of n.

Proof The proof of (9)-(12) is based on the induction method on n.

For $n=2$, the entries of matrix in (8) are trivially verified by the formulas in (9)-(12), since holds

$$
Q_{2}^{2}\left(c_{1}, c_{2}\right)=\left(Q_{2}\left(c_{1}, c_{2}\right)\right)^{2}=\left[\begin{array}{cc}
c_{1} & c_{2} \tag{13}\\
1 & 0
\end{array}\right]^{2}=\left[\begin{array}{cc}
c_{1}^{2}+c_{2} & c_{1} c_{2} \\
c_{1} & c_{2}
\end{array}\right]=\left[\begin{array}{cc}
q_{11}^{(2)} & q_{12}^{(2)} \\
q_{21}^{(2)} & q_{22}^{(2)}
\end{array}\right]
$$

Notice that combining (6) and (8), the $(n+1)$ power of $Q_{2}\left(c_{1}, c_{2}\right)$ is formulated by

$$
Q_{2}^{n+1}\left(c_{1}, c_{2}\right)=Q_{2}^{n}\left(c_{1}, c_{2}\right) Q_{2}\left(c_{1}, c_{2}\right)=\left[\begin{array}{cc}
q_{11}^{(n)} & q_{12}^{(n)} \tag{14}\\
q_{21}^{(n)} & q_{22}^{(n)}
\end{array}\right]\left[\begin{array}{cc}
c_{1} & c_{2} \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
c_{1} q_{11}^{(n)}+q_{12}^{(n)} & c_{2} q_{11}^{(n)} \\
c_{1} q_{21}^{(n)}+q_{22}^{(n)} & c_{2} q_{21}^{(n)}
\end{array}\right] .
$$

Consider that n is an arbitrary even positive number less than 2 and assume that the formulas in (9)-(10) are true for $n=2 m,(m \in \mathbb{N})$, by (14) the $q_{11}^{(n+1)}$ entry of $Q_{2}^{n+1}\left(c_{1}, c_{2}\right)$ is formulated as

$$
\begin{aligned}
q_{11}^{(n+1)} & =c_{1} q_{11}^{(n)}+q_{12}^{(n)} \\
& =c_{1} \sum_{r=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-r}{r} c_{1}^{n-2 r} c_{2}^{r}+\sum_{r=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1-r}{r} c_{1}^{n-1-2 r} c_{2}^{r+1} \\
& =c_{1} \sum_{r=0}^{m}\binom{n-r}{r} c_{1}^{n-2 r} c_{2}^{r}+\sum_{r=0}^{m-1}\binom{n-1-r}{r} c_{1}^{n-1-2 r} c_{2}^{r+1} \\
& =c_{1}^{n+1}+\sum_{r=1}^{m}\binom{n-r}{r} c_{1}^{n+1-2 r} c_{2}^{r}+\sum_{\tau=1}^{m}\binom{n-\tau}{\tau-1} c_{1}^{n-1-2(\tau-1)} c_{2}^{\tau} \\
& =c_{1}^{n+1}+\sum_{\tau=1}^{m}\binom{n-\tau}{\tau} c_{1}^{n+1-2 \tau} c_{2}^{\tau}+\sum_{\tau=1}^{m}\binom{n-\tau}{\tau-1} c_{1}^{n+1-2 \tau} c_{2}^{\tau} \\
& =c_{1}^{n+1}+\sum_{\tau=1}^{m}\left\{\binom{n-\tau}{\tau}+\binom{n-\tau}{\tau-1}\right\} c_{1}^{n+1-2 \tau} c_{2}^{\tau} .
\end{aligned}
$$

Using (7) in the above equality, it is formulated as

$$
\begin{aligned}
q_{11}^{(n+1)} & =c_{1}^{n+1}+\sum_{\tau=1}^{m}\binom{n-\tau+1}{\tau} c_{1}^{n+1-2 \tau} c_{2}^{\tau} \\
& =\sum_{\tau=0}^{m}\binom{n+1-\tau}{\tau} c_{1}^{n+1-2 \tau} c_{2}^{\tau} \\
& =\sum_{\tau=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n+1-\tau}{\tau} c_{1}^{n+1-2 \tau} c_{2}^{\tau}=\sum_{\tau=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}\binom{n+1-\tau}{\tau} c_{1}^{n+1-2 \tau} c_{2}^{\tau},
\end{aligned}
$$

since n is an even number. Hence, (9) holds also for odd number $n+1$, which completes the induction method for the formula of $q_{11}^{(n)}$. Similarly, it is proved the case for $n=2 m+1, m \in \mathbb{N}$.

Moreover, assuming that the formulas in (11)-(12) are true for $n=2 \nu+1$, $\nu \in \mathbb{N}$, and using analogous statements as in the proof of $q_{11}^{(n)}$, by (14) the $q_{21}^{(n+1)}$ entry of $Q_{2}^{n+1}\left(c_{1}, c_{2}\right)$ is given by

$$
\begin{align*}
q_{21}^{(n+1)} & =c_{1} q_{21}^{(n)}+q_{22}^{(n)} \\
& =c_{1} \sum_{r=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1-r}{r} c_{1}^{n-1-2 r} c_{2}^{r}+\sum_{r=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor}\binom{n-2-r}{r} c_{1}^{n-2-2 r} c_{2}^{r+1} \\
& =\sum_{r=0}^{\nu}\binom{n-1-r}{r} c_{1}^{n-2 r} c_{2}^{r}+\sum_{r=0}^{\nu-1}\binom{n-2-r}{r} c_{1}^{n-2-2 r} c_{2}^{r+1} \\
& =c_{1}^{n}+\sum_{r=1}^{\nu}\binom{n-1-r}{r} c_{1}^{n-2 r} c_{2}^{r}+\sum_{\tau=1}^{\nu}\binom{n-2-(\tau-1)}{\tau-1} c_{1}^{n-2-2(\tau-1)} c_{2}^{\tau} \\
& =c_{1}^{n}+\sum_{\tau=1}^{\nu}\binom{n-1-\tau}{\tau} c_{1}^{n-2 \tau} c_{2}^{\tau}+\sum_{\tau=1}^{\nu}\binom{n-1-\tau}{\tau-1} c_{1}^{n-2 \tau} c_{2}^{\tau} \\
& =c_{1}^{n}+\sum_{\tau=1}^{\nu}\left\{\binom{n-1-\tau}{\tau}+\binom{n-1-\tau}{\tau-1}\right\} c_{1}^{n-2 \tau} c_{2}^{\tau} . \tag{15}
\end{align*}
$$

Using the Pascal 's identity by (7) the equality in (15) can be written as

$$
\begin{aligned}
q_{21}^{(n+1)} & =c_{1}^{n}+\sum_{\tau=1}^{\nu}\binom{n-\tau}{\tau} c_{1}^{n-2 \tau} c_{2}^{\tau} \\
& =\sum_{\tau=0}^{\nu}\binom{n-\tau}{\tau} c_{1}^{n-2 \tau} c_{2}^{\tau} \\
& =\sum_{\tau=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-\tau}{\tau} c_{1}^{n-2 \tau} c_{2}^{\tau}
\end{aligned}
$$

Hence, (11) holds also for odd number $n+1$, which completes the induction method for the formula of $q_{21}^{(n)}$. Similarly, it is proved the case for $n=2 \nu, \nu \in$ \mathbb{N}.

From (14) it is obvious that multiplying the first column of $Q_{2}^{n}\left(c_{1}, c_{2}\right)$ with c_{2} arises the second column of $Q_{2}^{n+1}\left(c_{1}, c_{2}\right)$; hence, using the formulas in (9) and (11), the associated entries of the second column of $Q_{2}^{n+1}\left(c_{1}, c_{2}\right)$ are given, which completes the induction method for (10) and (12), respectively.

Remark 2.4 (i) Consider the special case $c_{1}=c_{2}=1$ in the formulas (9)(12), then the entries of $Q_{2}^{n}(1,1)$ in (8) are formulated as in Theorem 2.3 and the matrix $Q_{2}^{n}(1,1)$ is given by

$$
Q_{2}^{n}(1,1)=\left[\begin{array}{cc}
\sum_{r=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-r}{r} & \sum_{r=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1-r}{r} \tag{16}\\
\sum_{r=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1-r}{r} & \sum_{r=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor}\binom{n-2-r}{r}
\end{array}\right] .
$$

Moreover, the entries of $Q_{2}^{n}(1,1)$ can be related to the suitable terms of the 2-step Fibonacci sequence and the associated formulas have been proved in [1, Theorem 3.4]. In particular, in [1, Remark 3.1(iii)] the formula of $Q_{2}^{n}(1,1)$ has been given as

$$
Q_{2}^{n}(1,1)=\left[\begin{array}{cc}
f_{n+1} & f_{n} \tag{17}\\
f_{n} & f_{n-1}
\end{array}\right]
$$

recall that f_{n+1}, f_{n}, f_{n-1} denote the Fibonacci numbers for $n \geq 2$, which are implied by (1)-(2) for $c_{1}=c_{2}=1$.

Combining the associated formulas in (16) and (17) all the terms of the well-known 2-Fibonacci sequence in Remark 2.1 (iv) can be expressed as a sum of suitable binomial coefficients as following;

$$
f_{n+1}=\sum_{r=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-r}{r}, \text { for } n \geq 2
$$

(ii) The general idea of the Fibonacci cryptography is based on the matrix $Q_{2}^{n}(1,1)$ in (17) of the above Remark 2.4(i), (see, the associated metodology in $[16,17])$. Now, using in the process of the cryptography of an initial message the generalized 2-Fibonacci matrix $Q_{2}^{n}\left(c_{1}, c_{2}\right)$ in (8) for the arbitrary $c_{1}, c_{2}>0$, one can provide higher security for encryption and decryption, since $Q_{2}^{n}\left(c_{1}, c_{2}\right)$ is a nonsingular matrix (see, in the above Remark 2.2 (ii)) and the closed formulas in (9)-(12) for the entries of $Q_{2}^{n}\left(c_{1}, c_{2}\right)$ can be computed a-priori for various values of c_{1}, c_{2}.

References

[1] M. Adam and N. Assimakis, k-step Fibonacci sequences and Fibonacci matrices, Journal of Discrete Mathematical Sciences \& Cryptography, (2016), (in press).
[2] M. Adam, N. Assimakis and G. Tziallas, Generalized k, m-step Fibonacci sequences and matrices, Proceedings of the 12th International Conference of AHA-Algebraic Hyperstructures and its Applications in Int. J. of Algebraic Hyperstructures and Its Applications, 2(1), (2015), 125-134.
[3] M. Adam and N. Assimakis, k-step sum and m-step gap Fibonacci sequence, ISRN Discrete Mathematics, v. 2014, Article ID 374902, (2014), 7 pages, http://dx.doi.org/10.1155/2014/374902.
[4] M.C. Er, The matrices of Fibonacci numbers, The Fibonacci Quarterly, 22(2), (May, 1984), 134-139.
[5] M.C. Er, Sums of Fibonacci numbers by matrix methods, The Fibonacci Quarterly, 22(3), (1984), 204-207.
[6] Xudan Fu and Xia Zhou, On matrices related with Fibonacci and Lucas numbers, Applied Mathematics and Computation, 200, (2008), 96-100.
[7] John Ivie, A general Q-matrix, The Fibonacci Quarterly, 10(3), (1972), 255-264.
[8] Dan Kalman, Generalized Fibonacci numbers by matrix methods, The Fibonacci Quarterly, 20(1), (1982), 73-76.
[9] Erdal Karaduman, On determinants of matrices with general Fibonacci numbers entries, Applied Mathematics and Computation, 167 (2005), 670676.
[10] Erdal Karaduman, An application of Fibonacci numbers in matrices, Applied Mathematics and Computation, 147, (2004), 903-908.
[11] Emrah Kilic, The generalized order-k Fibonacci-Pell sequence by matrix methods, Journal of Computational and Applied Mathematics, 209, (2007), 133-145.
[12] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley \& Sons, Inc., New York, 2001.
[13] G.-Y. Lee, J-S. Kim, S.-H. Cho, Some combinatorial identities via Fibonacci numbers, Discrete Applied Mathematics, 130, (2003), 527-534.
[14] G.-Y. Lee and S.-G. Lee, A note on generalized Fibonacci numbers, The Fibonacci Quarterly, 33(3), (1995), 273-277.
[15] G.-Y. Lee, S.-G. Lee and H.-G. Shin, On the k-Generalized Fibonacci matrix Q_{k}, Linear Algebra and its Applications, 251, (1997), 73-88.
[16] M. Mishra, P. Mishra, M.C. Adhikary and S. Kumar, Image encryption using Fibonacci-Lucas transformation, International Journal on Cryptography and Information Security(IJCIS), 2(3), (September, 2012), 131-141.
[17] L.-P. Shao, Z. Qin, H.-L.Gao and X.-C. Heng, 2D triangular mappings and their applications in scrambling rectangle image, Information Technology Journal, 7(1), (2008), 40-47.
[18] Sheng-liang Yang, On the k-generalized Fibonacci numbers and high-order linear recurrence relations, Applied Mathematics and Computation, 196, (2008), 850-857.

[^0]: ${ }^{1}$ Department of Computer Science and Biomedical Informatics, University of Thessaly, 2-4 Papasiopoulou str., P.O. 35131 Lamia, Greece.
 E-mail: madam@dib.uth.gr,
 Article Info: Received : November 1, 2015. Revised : August 24, 2016.
 Published online : December 20, 2016.

