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Abstract

In this paper, a novel collaboration scheme of autonomous mobile
robots, which is based on chaos synchronization with application to
complete and fast coverage of the whole workspace, is presented. Each
one of the mobile robots is controlled by the simplest four-dimensional
hyperchaotic Lorenz-type system, producing an unpredictable trajec-

tory. When multiple robots are employed for faster and more complete
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coverage, effective cooperation can be achieved by synchronizing these
chaotic motions. For this reason, the nonlinear open loop controller
to target the synchronization state of chaotic oscillators is adopted.
Computer simulation illustrates that the proposed synchronized chaotic
robots improve the efficiency of the non-synchronized robots in finishing

faster the same coverage work area.

Mathematics Subject Classification: 70E60
Keywords: Autonomous mobile robot; cooperative mission; hyperchaos; syn-

chronization; nonlinear open loop controller; coverage rate

1 Introduction

In the last two decades the design and development of autonomous mobile
robots has become a very interesting research subject because of their civil
or military applications in difficult or dangerous tasks for humans. This class
of robots has the advantage that they can perform a task without continuous
human supervision. Transportation [1], search and rescue of human victims
on disaster places [2], map buildings [3], complete coverage of a terrain [4],
terrain exploration for searching for explosives [5] and surveillance of terrains
[6] are some of the tasks, where autonomous mobile robots can be used with
very satisfactory results.

In the design and development of autonomous mobile robots the fundamen-
tal issues are the locomotion, the sensing, the localization and the navigation.
However, the most challenging of all these issues is the choice of the navigation
strategy, which can be defined as the set of various techniques that allow the
mobile robot to autonomously decide where to move in the workspace in order
to accomplish a given task.

Covering all the possible classes of problems involving navigation strate-
gies, such as the exploration of an initially unknown workspace in order to
discover explosives or the patrolling of a known environment, the key-point is
the robot’s motion planning for the complete and fast workspace scanning. For
accomplishing these requirements, a mobile robot which is capable of crossing

every region, covering systematically the entire workspace, should be designed.
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For achieving the aforementioned requirements Nakamura and Sekiguchi
proposed in 2001 a navigation strategy, which is based on chaotic systems [7].
In that work, the chaotic behavior of a dynamical system is imparted to the
mobile robot’s motion control. Since then, a great number of relative research
works in the field of autonomous mobile robots has been presented, because
the chaotic motion guarantees the scanning of the whole workspace without a

terrain map or motion plan [8-14].

Furthermore a very interesting task, especially the last few years, is the
design and implementation of collaborative schemes of autonomous mobile
robots, for accomplishing faster and with better results various missions, not

only in military operations but also for use in industry.

This work presents a novel strategy of collaborative autonomous mobile
robots, which is based on chaos synchronization scheme with application to
complete and fast coverage of the whole workspace. Each one of the mo-
bile robots is controlled by a nonlinear system, having different initial condi-
tions, producing an unpredictable trajectory. For increasing the desired un-
predictability of robot’s motion, the simplest four-dimensional hyperchaotic
Lorenz-type system is chosen. So, by synchronizing the hyperchaotic motions
of the collaborative autonomous robots the faster and more complete coverage
can be achieved. For this reason, the nonlinear open loop controller to target
the synchronization state chaotic oscillators is adopted. Computer simulation
illustrates that the proposed synchronized mobile robots improve the efficiency

of the non-synchronized robots in finishing faster the same coverage work area.

This paper is organized as follows. In Section 2 the definition of chaotic
systems as well as the case of chaotic synchronization and the description of the
four-dimensional modified Lorenz hyperchaotic system, which has been used,
is given in details. Section 3 presents the recently new proposed nonlinear
open loop control scheme, which is the basic component of this work. The
adopted model of the collaborative mobile robots scheme and the simulation
results of this scheme are described in Section 4. Finally, Section 5 includes

the conclusion remarks and some thoughts for future work.
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2 The Proposed Hyperchaotic System

It is known that nonlinear systems have a very rich dynamic behavior,
showing a variety of dynamical phenomena. Especially, the chaotic behavior
is the reason for which nonlinear systems have been used in many other en-
gineering fields such as communications, control, cryptography, random bits
generators and neuronal networks [15-21]. A nonlinear dynamical system, in
order to be considered as chaotic, must fulfil three basic conditions [22]. Its
periodic orbits must be dense, it must be also topologically mixing and it must

be very sensitive on initial conditions.

From the aforementioned features of chaotic systems, the most important
is the sensitivity on initial conditions. This means, that a small variation on
a system’s initial conditions will produce a totally different chaotic trajectory.
So, this is the basic feature, which contributes to the desired robot’s unpre-

dictable trajectory.

One of the most challenging research task in the field of nonlinear systems
is the synchronization between coupled chaotic systems, due to the fact that is
a rich and multi-disciplinary phenomenon with broad range applications, such
as in a variety of complex physical, chemical, and biological systems as well as
in secure communications, cryptography and broadband communication sys-
tems [23-29]. In more details, synchronization of chaos is a process, where
two or more chaotic systems adjust a given property of their dynamics motion
to a common behavior, such as identical trajectories or phase locking, due to
coupling or forcing. Because of the exponential divergence of the nearby tra-
jectories of a chaotic system, having two chaotic systems being synchronized,
might be a surprise. However, today the synchronization of coupled chaotic
oscillators is a phenomenon well established experimentally and reasonably

well understood theoretically.

The history of chaotic synchronization’s theory began with the study of the
interaction between coupled chaotic systems in the 1980’s and early 1990’s [30-
32]. Since then, a wide range of research activity based on synchronization of
nonlinear systems has risen and a variety of synchronization’s types depending
on the nature of the interacting systems and of the coupling schemes has been
presented. In particular, the phenomenon of complete synchronization is the

most studied type of synchronization. In this case, two coupled chaotic systems
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are leaded to a perfect coincidence of their chaotic trajectories i.e.,
x1(t) = mo(t), t = 00 (1)

Recently, a great interest for dynamical systems with hidden attractors
has been raised. The term “hidden attractor” refers to the fact that in this
class of systems the attractor is not associated with an unstable equilibrium
and thus often goes undiscovered because they may occur in a small region
of parameter space and with a small basin of attraction in the space of initial
conditions [33-38]. Furthermore, systems with hidden attractors have received
attention due to their practical and theoretical importance in other scientific
branches, such as in mechanics (unexpected responses to perturbations in a
structure like a bridge or in an airplane wing) [39, 40].

In this work, the simplest four-dimensional hyperchaotic Lorenz-type sys-
tem [39], which belongs to the aforementioned class of dynamical systems, is
used. This system, which is an extension of a modified Lorenz system, having
only two independent parameters (c, d), is described by the following set of

differential equations:

L 2
% = —1z+u (3)
% = xy—c (4)
L= )

This system has many interesting properties not found in other proposed
systems, such as [39]:

(i) It has very few terms, only seven with two quadratic nonlinearities, and
two parameters.

(ii) All its attractors are hidden.

(iii) It exhibits hyperchaos over a large region of parameter space.

(iv) Its Jacobian matrix has rank less than four everywhere in the space of
the parameters.

(v) It exhibits a quasiperiodic route to chaos with an attracting torus for

some choice of parameters.
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(vi) It has regions in which the torus coexists with either a symmetric pair
of strange attractors or a symmetric pair of limit cycles and other regions
where three limit cycles coexist.

(vii) The basins of attraction have an intricate fractal structure.

(viii) There is a series of Arnold tongues within the quasiperiodic region
where the two fundamental oscillations mode-lock and form limit cycles of
various periodicities.

The proposed system presents limit cycles, quasiperiodicity, chaos, and
hyperchaos, which can make its control difficult in practical applications where
a particular dynamic behavior is desired. However, the very interesting feature
of the specific system is the existence of hyperchaotic state for a range of
d €[0.39, 0.49]. In Figure 1 the phase portrait of z versus z, for ¢ = 2.7
and d = 0.44, for which the system has two positive Lyapunov exponents,
(LE, = 0.12806, LF, = 0.01161, LE; = 0 and LE, = —1.58236), which
is an indication of hyperchaos, is depicted. For the chosen set of system’s
parameters, it is proved that it is also a dissipative system, because LFE; +
LEs+ LEs+ LE, = —1.44269 < 0. Furthermore, the Kaplan-Yorke dimension

of the 4-D hyperchaotic Lorenz system is found as:

LE, + LE, + LE
Dy = 34+ =1 +|LE2|+ 2 —3.0883 (6)
4

3 The Nonlinear Open Loop Control Scheme

As it is known, two identical coupled chaotic systems can be described by

the following system of differential equations:

dx
N (A @
Y~ jw+u, @

where f(z), f(y) € R™ are the flows of the coupled systems. The coupling of
the systems is defined by the Nonlinear Open Loop Controllers (NOLCs), U,
and U, [41]. The error function is given by e = Sy — ax, where « and 3 are

constants. If one applies the Lyapunov Function Stability (LFS) technique,
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Figure 1: Phase portrait of the hyperchaotic attractor in x — z plane, for ¢ =
2.7 and d = 0.44.

a stable synchronization state will be realized when the error function of the
coupled system follows the limit

Jim le(t)[] — oo 9)

so that ax = by. As it is mentioned, the design process of the coupling scheme,
is based on the Lyapunov function

Vie) = %eTe (10)

where T denotes transpose of a matrix and V' (e) is a positive definite function.
For known system’s parameters and with the appropriate choice of the
controllers U, and Uy, the coupled system has dV'(e)/dt < 0. This ensures the
asymptotic global stability of synchronization and thereby realizes any desired
synchronization state.
By using the appropriate NOLCs functions U,, U, and error function’s

parameters «, (3, a unidirectional or bidirectional (mutual) coupling scheme
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can be implemented. In more details, for (U, =0,8=1)or (U, =0,a=1), a
unidirectional coupling scheme is realized, while for U,, U, # 0 and «, 3 # 0,
a bidirectional coupling scheme is realized, respectively. The signs of «, [
play a crucial role to the type of synchronization (complete synchronization
or antisynchronization). On the other hand, the ratio of o and § decides the
amplification or attenuation of one oscillator relative to another one.

In this work, the bidirectional coupling scheme of two coupled systems of
Eqgs. (2)-(5), which are described by the following systems’ equations (11)-(14),
(15)-(18), is adopted.

Coupled Hyperchaotic System-1:

dx

d—tl = 1'2—1'1—|—le (11)

d

ar2 = —xx3+ x4+ U (12)

dt

dx

d—t?) = X1X9 —C-+ ng (13)

dx

d—t4 = —dry +Upn (14)

Coupled Hyperchaotic System-2:

dy,

o T +Upn (15)

d

% = —y3+ys+Up (16)

dys

o = + Uy (17)

dyy

— = —d U 18

dt Y2 + y4 ( )
where Ux = [le, Umg, ng, Ux4]T and Uy = [Uyla Uyg, Uyg, Uy4]T are the NOLCs

functions. The error function is defined by e = By—ax, with e = [ey, €2, €3, e4]”,

T = |11, T2, 73, 74]" and y = [y1, Y2, Y3, 4" - So, the errors dynamics, by taking
the difference of Eqs. (11)-(14) and (15)-(18), are written as:

d
% = ey —e; + U, —aUpn (19)
d62
T = axir3 — Pys +es+ ﬁUy2 —aly (20)
de
d_t3 = —axiT + Byiye — (B — a) + Uy — alys (21)
d

€ = —d62 + 5Uy4 - aU$4 (22)

dt



Christos K. Volos, et al. 133

For stable synchronization e — 0 with ¢ — co. By substituting the condi-
tions in Eqgs. (19)-(22) and taking the time derivative of Lyapunov function

dV (e) de; N des N des N dey
= e— +tey—+e3— +es—

dt Yat U7 ar e Tt dt
e1(ex — e + BUyx — aUy) + ex(axixs — Byiys + es + BUyo —

—alUys) + e3 [—ax1@s + By1ys — ¢(B — @) + BU,1 — alUp ] +
+€4(—d€2 + 5Uy1 — CYUml) (23)

we consider the following NOLC controllers:

1
U;pl — %62 (24)
1
Umg = a(aib'lib'g + e + 64) (25)
1
Um3 = E(—al‘ll’g + 63) (26)
1, d
Uws = E(—§€2 + €4) (27)
and
1
Uyl = %62 (28)
1
Uy2 = B(ﬁyﬂm) (29)
1
Uy = B(—ﬁylyz +¢(B - a)) (30)
1
Uy4 = %(deg) (31)
such that v
dfﬁe) =—el—e;—e5—e] <0 (32)

In Figure 2 the phase portraits of x5 versus x; and y, versus yy, in the case
of bidirectionally coupled hyperchaotic systems with the proposed scheme, are
depicted. Also, in this work, the parameters of the error functions are chosen
as a = 1 and 8 = 3, while the systems’ parameters are ¢ = 2.7, d = 0.44. As
it is concluded, the hyperchaotic attractor of the first system is enlarged three
times, (with black color in Figure 2), in regard to the hyperchaotic attractor of
the second system (with red color in Figure 2). The y; versus z; plot in Figure
3 confirms that the coupled system is in complete synchronization state inde-
pendently of the values of the error’s parameters «, 3. So, the NOLC scheme
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works well in this case, even if the hyperchaotic attractor of the first system

has been amplified in regard to the second one.
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Figure 2: Phase portraits of 25 versus z; (black color) and y, versus y; (red
color), in the case of bidirectionally coupled hyperchaotic systems, for ¢ = 2.7,
d=044 and a=1, = 3.
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Figure 3: Phase portrait of y; versus z1), in the case of bidirectionally coupled
hyperchaotic systems, for ¢ = 2.7, d = 0.44 and o = 1, § = 3. Complete

synchronization state has been achieved.
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4 The Model of the Autonomous Mobile Robot

Many works on kinematic control of chaotic mobile robots is based on
a typical differential motion with two degrees of freedom, composed by two
active, parallel and independent wheels and a third passive wheel [10]. The
active wheels are independently controlled on velocity and rotation sense. The
above mentioned mechanism has been used to the kinematic control of the
robot of this work. So, the proposed mobile robot’s motion is described by
the linear velocity V'(¢) [m/s], the angle 6(¢) [rad] describing the orientation of
the robot, and the angular velocity w(t) [rad/s|. The linear velocity provides
a linear motion of the medium point of the wheels axis, while the direction
velocity provides a rotational motion of the robot’s over the same point. So,

the robot’s motion control is described by the following system.

dX
dy .
db

where, X (¢),Y(¢) is the robot’s position on the plane and 6(¢) is the robot’s
orientation.

Furthermore, in many cases, robots move in spaces with boundaries like
walls or obstacles. So, many robots have sensors, like sonar or infrared devices,
which provide the capability to detect the presence of obstacles or even more
the recognition of the searched objects or intruders. In this work, for a better
understanding of the colaborative mobile robots control scheme we assume
that the robots work in a smooth state space without any sensor. Also, in
this work for integrating the coupled dynamical system into the system of two
collaborative autonomous mobile robots, the following strategy is used. The
parameters x3 and y3 are adopted as the angular position 6 of each robot.
Also, by adding into the dynamical systems (11)-(14) and (15)-(19) the two
following equations (36) and (37), which correspond to mobile robots motion,

two six-dimension systems are created.

X
il Veos(n(t)) (36)
N Vsinmow) (37)

dt
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In previous equations, n is a factor of normalization, so that the parameters
x3 and ys3, of the coupled system, have the same magnitude.

To test the proposed control strategy of the chaotic mobile robot we used
the known coverage rate (C'), which represents the effectiveness, as the amount
of the total surface covered by the robot running the algorithm. The coverage

rate (C) is given by the following equation:

C= % > 10) (38)

where, I(i) for i = 1,..., M, is the coverage situation for each cell in which the

terrain has been divided [42]. This is defined by the following equation.

1, when the cellzis covered
I(i) = (39)

0, when the celli is not covered

The robot’s workplace is supposed to be a square terrain with dimensions M
= 40 x 40 = 1600 cells.

Searching for sets of optimal parameters for the dynamical systems for
generating the best possible patterns is very time-consuming task. So, the
initial conditions of the coupled systems and the factor of normalization n, are
chosen as: (z1, s, x3,24)0 = (0.55, -0.493, -0.08, 0.5), (y1, Y2, y3,Ys)o = (-0.4,
-0.05, 1.45, -0.3) and n = 5. Also, the robots’ initial position and velocity of
the two mobile robots are chosen to be: (Xi,Y7) = (19, 19), (X, Y2) = (-19,
-19) and V' = 5 [n.u.]. Duration for run-time of the simulation is 500 [n.u.].

In Figure 4 the trajectories of the collaborative autonomous robots con-
trolled by coupled hyperchaotic systems, by using the proposed control scheme,
is depicted. In more details, with black color is the trajectory of the first robot
while with red color is the trajectory of the second one. Also, in Figure 5 the
trajectories of the autonomous mobile robots controlled by uncoupled hyper-
chaotic systems is shown. From the comparison of these two robots’ motion
control schemes (coupled and uncoupled systems), one can see that the first
robot follows exactly the same trajectory in the two cases while the second
robot has more dense trajectory in the case of coupled hyperchaotic systems.
Furthermore, the coverage rate, by using the collaborative autonomous robots

controlled by coupled hyperchaotic systems with the proposed control scheme,
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is calculated to be C' = 40%, in contrary to the uncoupled case in which the

coverage rate is only C' = 35%.

Figure 4: Trajectories of the collaborative autonomous robots controlled by
coupled hyperchaotic systems, with (X1,Y7) = (5, 5), (X, Y3) = (-10, -19),
while the duration is 500 [n.u.].

Finally, by choosing the robots’ initial positions (X1, Y]) = (5, 5), (X3, Y3)
= (-10, -19), for which the system of collaborative robots presents the best
workspace’s coverage rate, we run the simulation for bigger duration (2500
[n.u.]), until the mobile robots covers almost the whole terrain C' = 98.31%.
From the simulation process of each autonomous mobile robot we can see that
the aforementioned result of the coverage rate is greater than the coverage rate
of each robot, which is C' = 83.13% for the first and C' = 55.25% for the second

one.
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Figure 5: Trajectories of the autonomous robots controlled by uncoupled hy-
perchaotic systems, with (X7,Y7) = (5, 5), (Xs,Y3) = (-10, -19), while the

duration is 500 [n.u.].

5 Conclusion

In this work, a novel method for the collaboration work of two autonomous
mobile robots, which was based on chaos synchronization by using the Nonlin-
ear Open Loop Control method, was presented. Each one of the mobile robots
was controlled by an hyperchaotic system, producing an unpredictable trajec-
tory. Also, by using this method, the synchronization state with amplification
of system’s hyperchaotic oscillators was adopted in the robots’ control unit.

The proposed approach was followed in order to generate the most unpre-
dictable robots’ trajectories, as well as trajectories with the higher coverage
rate of the specific terrain. Also, it is concluded that the proposed approach
neither requires a map of the workspace nor plans a path through it. Finally,
the proposed scheme of multiple robots had as a consequence the faster and

more complete coverage of the workspace.
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Figure 6: Trajectories of the collaborative autonomous robots controlled by
coupled hyperchaotic systems, with (X1,Y]7) = (5, 5), (X, Y3) = (-10, -19),
while the duration is 2500 [n.u.].

As a future work we plan to use more than two autonomous mobile robots,
which will be driven by coupled, with Nonlinear Open Loop Controllers, hy-
perchaotic systems. Also, a very interesting concept is the experimental veri-

fication of the simulation results.

References
[1] J.H. Suh, Y.J. Lee and K.S. Lee, Object Transportation Control of Coop-

erative AGV Systems Based on Virtual Passivity Decentralized Control
Algorithm, J. Mech. Sc. Techn., 19, (2005), 1720 - 1730.

[2] S. Tadokoro, Rescue Robotics, Springer-Verlag, Berlin Heidelberg, 2010.



140

3]

[4]

[5]

7]

8]

9]

[10]

[11]

[12]

Cooperation of Autonomous Mobile Robots ...

S. Thrun, Robotic Mapping: A Survey. In G. Lakemeyer and B. Nebel
(Ed.), Exploring Artificial Intelligence in the New Millenium, 2002, 1 -
35.

J. Palacin, J.A. Salse, I. Valganon and X. Clua, Building a Mobile Robot
for a Floor-cleaning Operation in Domestic Environments, IEEE Trans.
Instrum. Meas., 53, (2004), 1418 - 1424.

P. Sooraksa and K. Klomkarn, No-CPU Chaotic Robots: From Classroom
to Commerce, IEEE Circuits Syst. Mag., 10, (2010), 46 - 53.

D.R. Corbett, D.W. Gage and D.D. Hackett, Robotic Communications
and Surveillance - The DARPA LANdroids Program, Lecture Notes in
Computer Science, 7106/2011, (2011), 749 - 758.

Y. Nakamura and A. Sekiguchi, The Chaotic Mobile Robot, IEEE Trans.
Robot. Autom., 17(6), (2001), 898 - 904.

Ch.K. Volos, .M. Kyprianidis and I.N. Stouboulos, Chaotic Path Plan-
ning Generator for Autonomous Mobile Robots, Robotics and Au-
tonomous Systems, 60, (2012), 651 - 656.

Ch.K. Volos, I.M. Kyprianidis and I.N. Stouboulos, Motion Control of
Robots Using a Chaotic Truly Random Bits Generator, Journal of Engi-
neering Science and Technology Review, 5(2), (2012), 6 - 11.

Ch.K. Volos, N.G. Bardis, .M. Kyprianidis and I.N. Stouboulos, Mo-
tion Control of a Mobile Robot Based on Double-Scroll Chaotic Circuits,
WSEAS Trans. Systems, 11(9), (2012), 479 - 488.

Ch.K. Volos, .M. Kyprianidis, I.N. Stouboulos, S.G. Stavrinides and A.N.
Anagnostopoulos, An Autonomous Mobile Robot Guided By a Chaotic
True Random Bits Generator, In: Proceedings of the 4th International
Interdisciplinary Symposium on Chaos and Complex Systems, Antalya,
Turkey, April 29 - May 2 2012, Springer, (2013), 337 - 343.

Ch.K. Volos, .M. Kyprianidis and I.N. Stouboulos, Experimental Investi-
gation on Coverage Performance of a Chaotic Autonomous Mobile Robot,
Robotics and Autonomous Systems, 61(12), (2013), 1314 - 1322.



Christos K. Volos, et al. 141

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

Ch.K. Volos, N. Doukas, I.M. Kyprianidis, [.N. Stouboulos and T.G.
Kostis, Chaotic Autonomous Mobile Robot for Military Missions, In: Ad-
vanced Techniques and Simulations for Defence Applications. Proceedings

of the 17th International Conference on Communications, (July, 2013),
197 - 202, Rhodes, Greece.

Ch.K. Volos, Motion Direction Control of a Robot Based on Chaotic Syn-
chronization Phenomena, Journal of Automation, Mobile Robotics and
Intelligent Systems, 7(2), (2013), 64 - 69.

T. Kapitaniak, Chaos for Engineers: Theory, Applications, and Control,
Springer-Verlag, Berlin Heidelberg, 2000.

S. Banerjee, M. Mitra and L. Rondoni, Applications of Chaos and Non-
linear Dynamics in Engineering, Springer-Verlag, Berlin Heidelberg, 1,
2011.

M. Nakagawa, Chaos and Fractals in Engineering, World Scientific Pub-
lishing, Singapore 1999.

A.T. Azar and S. Vaidyanathan, Chaos Modelling and Control Systems
Design, Studies in Computational Intelligence, Springer-Verlag, Berlin
Heidelberg, 1, 2015.

Ch.K. Volos, I.M. Kyprianidis and I.N. Stouboulos, Image Encryption
Scheme Based on Continous-Time Chaotic Systems, In: Progress in Data
Encryption Research, Nova Science Publishers, USA, 2013, 1 - 44.

Ch.K. Volos, .M. Kyprianidis, [.N. Stouboulos and S. Vaidyanathan Ran-
dom Bit Generator Based on Non-Autonomous Chaotic Systems, Ad-

vanced Intelligent Control Engineering and Automation, IGI Global,
USA, 2015, 203 - 229.

.M. Kyprianidis, V. Papachristou, I.N. Stouboulos and Ch.K. Volos, Dy-
namics of Coupled Chaotic Bonhoeffer - van der Pol Oscillators, WSEAS
Trans. Systems, 11(9), (2012), 516 - 526.

B. Hasselblatt and A. Katok, A First Course in Dynamics: With a

Panorama of Recent Developments, University Press: Cambridge, 2003.



142

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

Cooperation of Autonomous Mobile Robots ...

A.S. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Uni-
versal Concept in Nonlinear Sciences, Cambridge University Press, Cam-
bridge, 2003.

E. Mosekilde, Y. Maistrenko and D. Postnov, Chaotic Synchronization:
Applications to Living Systems, World Scientific, Singapore, 2002.

I. Szatmri and L.O. Chua, Awakening Dynamics via Passive Coupling
and Synchronization Mechanism in Oscillatory Cellular Neural/Nonlinear
Networks, Int. J. Circ. Theor. Appl., 36, (2008), 525 - 553.

N.H. Holstein-Rathlou, K.P. Yip, O.V. Sosnovtseva and E. Mosekilde,
Synchronization Penomena in Nephron-Nephron Interaction, Chaos, 11,
(2001), 417 - 426.

S. Jafari, M. Haeri and M.S. Tavazoei, Experimental Study of a Chaos-
based Communication System in the Presence of Unknown Transmission
Delay, Int. J. Circ. Theor. Appl., 38, (2010), 1013 - 1025.

Ch.K. Volos, I.M. Kyprianidis and I.N. Stouboulos, Experimental Demon-
stration of a Chaotic Cryptographic Scheme, WSEAS Trans. Circ. Syst.,
5, (2006), 1654 - 1661.

A.S. Dimitriev, A.V. Kletsovi, A.M. Laktushkin, A.I. Panas and S.O.
Starkov, Ultrawideband Wireless Communications Based on Dynamic
Chaos, J. Commun. Technol. Electron., 51, (2006), 1126 - 1140.

H. Fujisaka and T. Yamada, Stability Theory of Synchronized Motion in
Coupled-Oscillator Systems, Prog. Theory Phys., 69, (1983), 32 - 47.

A.S. Pikovsky, On the Interaction of Strange Attractors, Z. Phys. B -
Condensed Matter, 55, (1984), 149 - 154.

L.M. Pecora and T.L. Carroll, Synchronization in Chaotic Systems, Phys.
Rev. Lett., 64, (1990), 821 - 824.

N.V. Kuznetsov, G.A. Leonov and V.I. Vagaitsev, Analytical-Numerical
Method for Attractor Localization of Generalized Chua’s System, IFAC
Proceedings Volumes (IFAC-PapersOnline), 4(1), (2010), 29 - 33.



Christos K. Volos, et al. 143

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

G. Leonov, N. Kuznetsov and V. Vagaitsev, Localization of Hidden Chua’s
Attractors, Phys. Lett. A, 375, (2011), 2230 - 2233.

G. Leonov, N. Kuznetsov, O. Kuznetsova, S. Seldedzhi and V. Vagaitsev,
Hidden Oscillations in Dynamical Systems, Trans. Syst. Contr., 6, (2011),
54 - 67.

G. Leonov, N. Kuznetsov and V. Vagaitsev, Hidden Attractor in Smooth
Chua System, Physica D, 241, (2012), 1482 - 1486.

V.-T. Pham, Ch.K. Volos, S. Jafari, X. Wang and S. Vaidyanathan, Hid-
den Hyperchaotic Attractor in a Novel Simple Memristive Neural Net-

work, Journal of Optoelectronics and Advanced Materials - Rapid Com-
munications, 8(11-12), (2014), 1157 - 1163.

V.-T. Pham, S. Jafari, Ch.K. Volos, X. Wang and S. Mohammad Reza
Hashemi Golpayegani, Is That Really Hidden? The Presence of Complex
Fixed-points in Chaotic Flows With No Equilibria, Int. J. Bifurcat. Chaos,
24(11), (2014), 1450146.

Z. Gao and C. Zhang, A Novel Hyperchaotic System, J. Jishou Univ.,
Natural Science Edition, 32, (2011), 65 - 68.

G. Van der Schrier and L..R.M. Maas, The Diffusionless Lorenz Equations:
Shil’nikov Bifurcations and Reduction to an Explicit Map, Phys. Nonlin.
Phenom., 141, (2000), 19 - 36.

E. Padmanaban, C. Hens and K. Dana, Engineering Synchronization of
Chaotic Oscillator Using Controller Based Coupling Design, Chaos, 21,
(2011), 013110.

S. Choset, Coverage for Robotics - A Survey of Recent Results, Ann.
Math. Artif. Intel., 31, (2006), 113 - 126.



