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An inverse near-field data method for

electromagnetic scattering for chiral bodies
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Abstract

We consider a time-harmonic spherical electromagnetic wave that
propagates in achiral medium and is incident upon a chiral body. In
order to study the inverse scattering problem we formulate the dir-
ect transmission electromagnetic problem, we define the corresponding
interior transmission problem and study its well-posedness.We use ap-
propriately the Reciprocity Gap Functional and study its properties in
order to introduce a new method to identify the unknown chiral scat-
terer.Such problems arise in medicine, target identification, chemistry
and detection of chemical waste deposit.
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1 Introduction

In this work we study a reconstruction method of a chiral body embedded

in an achiral background medium using electromagnetic waves. Chirality is a

physical phenomenon related to handedness and optical activity and interacts

with passing electromagnetic wave by changing its polarization [1]. The micro-

structure of chiral materials, either artificial or physical, causes this alteration.

For the last past years, chiral materials have been studied in different fields

of science such as medicine, chemistry, mathematics and engineering [1],[2],[3].

The fact that scientists approach this research region from different points of

view indicates that applications are numerous and discrete. For the mathem-

atical approach and study of electromagnetic scattering due to chiral bodies

either in chiral [4], or achiral enviroment [2], there is rich literature.

The issue of detection and determination of geometrical and physical prop-

erties of buried objects is the main reason that many reconstruction methods

using acoustic, electromagnetic and elastic waves are introduced in the last

past years [5],[6],[7].

Nowadays, this kind of inverse scattering problems arises in many fields of

science. A few typical examples are target identification, medical imaging and

detection of chemical waste deposit.

A typical reconstruction method and maybe the most known one, is Lin-

ear Sampling Method which was introduced by Colton and Kirsch. Though

this imaging method is not depending on a priori knowledge of geometrical

and physical characteristics of the scatterer it requires computation of Greens

tensor for the background medium . This is the reason why when it is used

for solving problems with buried scatterers [8] the method is ineffective.

In order to overcome these kind of problems Cakoni, Fares and Haddar

in [5] introduced a modified version of the classical Linear Sampling Method

that was based on the study of an ill-posed integral equation of the first kind

including Reciprocity Gap Functional. This new method has a ′′more flexible

mathematical framework′′ than the classical Linear Sampling Method due to

the fact that Greens tensor does’t have to be computed [9]. On the other hand

the scatterer must be embeded in a bounded, homogeneous region and the

tagential components of both the electric and magnetic field have to be known

on the boundary of this region.
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At this point, it is important to mention that chiral nature of the scatterer

affects the structure of the transmission problem and modifies the interior prob-

lem that corresponds to achiral scatterer [10]. Consequently, we have to define

the corresponding interior transmission problem and study its well-posedness.

In general, the inverse scattering problem is related with the interior transmis-

sion problem [11] and the existence of transmission eigenvalues. In our case,

after defining the interior problem and transmission eigenvalues, by solving the

integral equation that contains Reciprocity Gap Functional we get approxim-

ating solutions of the interior transmission problem. To state the theorem that

reconstructs the scatterer, providing us a boundary characterization, we first

need to define the Reciprocity Gap Operator and study its properties. More

specifically, in section 2 we formulate the transmission problem. In section

3 we define the interior transmission problem for chiral bodies and study its

well-posedness. In section 4 we define the Reciprocity Gap Functional, the Re-

ciprocity Gap Operator and prove required properties for the reconstruction

algorithm that we present in section 5.

2 Formulation of the problem

We begin with creating the appropriate mathematical framework in order

to study the problem of identifying buried chiral objects. Let D be an isotropic,

homogeneous chiral scatterer embedded in an achiral homogeneous background

medium Ω. Let ε1 be the electric permitivity, µ1 be the magnetic permeability

and β1 the chirality measure. Additionally, ε0, µ0 characterize the background

medium. The electric permitivity and the magnetic permeability of both of

the scatterer and the background medium are real values whereas the chirality

measure in general takes complex values.

We consider an auxiliary open surface S where an electric dipole producing

the incident electric field is located at x0 ∈ S with polarization p ∈ R3 given

by

Ed(x,x0,p, κ) =
i

κ
∇×∇× p

eiκ|x−x0|

4π|x− x0| .

In the interior of the scatterer D the total electric field E1 satisfies the modified
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Helmholtz equation

∇×∇× E1 − 2β1γ
2
1∇× E1 − γ2

1E1 = 0 (1)

where κ2
1 = ε1µ1ω

2, γ2
1 =

κ2
1

1− β2
1κ

2
1

and ω is the angular frequency. In the

region Ω \D the total electric E0 field satisfies the Helmholtz equation

∇×∇× E0 − κ2
0E0 = 0 (2)

where

κ2
0 = ε0µ0ω

2.

The electric fields E0,E1 satisfy appropriate transmission conditions on the

boundary of the scatterer ∂D.

n̂× E0 = n̂× E1 on ∂D, (3)

n̂×∇× E0 = an̂×∇× E1 − bn̂× E1 on ∂D. (4)

where a =
ε1

ε0

κ2
0

γ2
1

, b = κ2
0β1

ε1

ε0

. Finally the scattered electric field satisfy the

Silver-Müller radiation condition

limr→∞(∇× Es × x− iκrEs) = 0, r = |x|, x̂ =
x

|x| . (5)

In this work, by using the known measurements of the tagential components

of the total electromagnetic wave on the surface of a bounded domain Ω and

by the transmission conditions, we get information about the physical and

geometrical characteristics of the scatterer. In the following section we state

and study the interior transmission problem which is crucial for solving the

inverse scattering problem.

3 Interior Transmission Problem

The interior transmission problem and transmission eigenvalues are related

to the inverse transmission scattering problem. More precisely, the existence of

non-trivial solution of the interior transmission problem implies the existence

of an incident wave with no corresponding scattered wave. The values of



E. Athanasiadou, S. Dimitroula and E. Kikeri 85

κ for which that happens are called transmission eigenvalues. The issue of

the interior transmission problem has been studied in detail for the case of

electromagnetic waves in inhomogeneous and homogeneous media [10],[12].

For the case of chiral materials in achiral medium we present the following

results. The homogeneous interior transmission problem for chiral scatterer is

about to find E ∈ H inc(D),E1 ∈ L2(D) such that

∇× E = iκH in D, (6)

∇×H = −iκE in D, (7)

∇× E1 =
κ2εµβ1

1− κ2εµβ2
1

E1 +
iωµ1

1− κ2εµβ2
1

H1 in D, (8)

∇×H1 =
κ2εµβ1

1− κ2εµβ2
1

H1 − iωε1

1− κ2εµβ2
1

E1 in D (9)

and

n̂× E1 = n̂× E on ∂D, (10)

n̂×H1 = n̂×H on ∂D, (11)

where κ0 = κ and ε =
ε1

ε0

, µ =
µ1

µ0

are the corresponding relative electric

permitivity and magnetic permeability and

H inc = {W ∈ H(curl, D) : ∇×∇×W − κ2
0W = 0 in D}.

Before we continue with the study of the well-posedeness of the interior trans-

mission problem we first have to refer to some basic related concepts such as

transmission eigenvalues. The values of κ for which the interior transmission

problem has a nontrivial solution are called transmission eigenvalues.Using

Bohren’s decomposition [1] we rewrite the electromagnetic field

E = QR0 − iηQL0, H =
1

iη
QL0 + QR0,

E1 = QL1 − iηQR1, H1 =
1

iη
QL1 + QR1.

where QR1,QL1 are the Beltrami fields that correspond to the interior elec-

tromagnetic wave and QR0,QL0, the Beltrami fields that correspond to the

exterior electromagnetic wave. The latter satisfy the following relationships

∇×QL0 = κ0QL0, ∇×QR0 = −κ0QR0,
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∇×QL1 = γL1QL1, ∇×QR1 = −γR1QR1,

where κ0 = κ, and γL1 =
κ1

1− κ1β1

, γR1 =
−κ1

1− κ1β1

.

Lemma 3.1 We assume that ImγL1 > 0 and ImγR1 > 0.Then the interior

transmission problem (6)− (11) admits only the trivial solution.

Proof. Applying Gauss’ theorem for E,H in D and using Beltrami Fields we

get

∫

∂D

n̂ · (E×H)ds

=

∫

D

{H · (∇× E)− E · (∇×H)}dx

=

∫

D

{(− 1

iη
QL0 + QR0) · ∇ × (QL0 − iηQR0)

−(QL0 − iηQR0) · ∇ × (− 1

iη
QL0 + QR0)}dx

=

∫

D

4iκImQL0 ·QR0dx

Now,applying Gauss’ theorem for E1,H1 in D and using Beltrami Fields we

get

∫

∂D

n̂ · (E1 ×H1)ds

=

∫

D

{H1 · (∇× E1)− E1 · (∇×H1)}dx

=

∫

D

{(− 1

iη
QL1 + QR1) · ∇ × (QL1 − iηQR1)

−(QL1 − iηQR1) · ∇ × (− 1

iη
QL1 + QR1)}dx

=

∫

D

{−2ImγL1
|QL1|2

η
− 2ηImγR1|QR1|2 + 2iIm[QL1 ·QR1(γL1 + γR1)]}dx

By using the transmission condition (3) we get

∫

D

{[2ImγL1
|QL1|2

η
+ 2ηImγR1|QR1|2]}dx

+i

∫

D

{[−2ImQL1 ·QR1(γL1 + γR1) + 4κImQL0 ·QR0}dx = 0
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From the real part of the above equation and by taking into account that

ImγL1 > 0 and ImγR1 > 0 we get QR1 = QL1 = 0 which also implies that

E = H = 0.Using unique continuation principle [11] and taking into account

the transmission conditions (10), (11) we get n̂ × E = n̂ × E1 = 0, n̂ ×H =

n̂×H1 = 0.Finally, by using Stratton-Chu formula [11] we get

E1 = E = 0, H1 = H = 0.

4 Reciprocity Gap Functional

First we define the function spaces that we will use later.

H(curl, Ω) = {u ∈ L2(D) : ∇× u ∈ L2(D)},
H(Ω) = {W ∈ H(curl, Ω) : ∇×∇×W − κ0

2W = 0},
L2

t (S) = {u ∈ S : n̂ · u = 0 on S}.

Let E,H be the total electric and magnetic field,respectively.For every W ∈
H(Ω) we define the Reciprocity Gap Functional by

R(E,W) =

∫

∂Ω

[(n̂× E) · (∇×W)− (n̂×W) · (∇× E)]ds (12)

In order to study the inverse scattering problem we need to treat the Re-

ciprocity Gap Functional in the sense of an operator.Hence, we define the

Reciprocity Gap Operator R : H(Ω) → L2
t (S) by

R(W)(x0) = R(E(·,x0,p(x0)),W)p(x0) (13)

for all point sources x0 ∈ S and polarization p tangent to S at x0.Subsequently,we

study the properties of the Reciprocity Gap Operator.

Lemma 4.1 We assume that κ is not a transmission eigenvalue for D.The

opeator R : H(Ω) → L2
t (S) defined by (13) is injective.

Proof.

We assume that RW = 0 and we will prove that W = 0.

RW = 0 or R(E0,W)p(x0) = 0 or R(E0,W) = 0,∫

∂Ω

[(n̂× E0) · (∇×W)−(n̂×W) · (∇× E0)]ds = 0.
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Using 2nd Green’s theorem for E0,W in Ω\D̄ and the transmission conditions

(3),(4) we get
∫

∂Ω

[(n̂× E0) · (∇×W)− (n̂×W) · (∇× E0)]ds

=

∫

∂D

[(n̂× E0) · (∇×W)− (n̂×W) · (∇× E0)]ds

=

∫

∂D

[(n̂× E1) · (∇×W) + W · (an̂×∇× E1 − bn̂× E1)]ds

Now, let (Ẽ0, Ẽ1) be the unique solution to the following transmission problem

∇×∇× Ẽ1 − 2β1γ
2
1∇× Ẽ1 − γ2

1Ẽ1 = 0 in D,

∇×∇× Ẽ0 − κ2
0Ẽ0 = 0 in R3 \ D̄,

n̂× (Ẽ0 + W ) = n̂× Ẽ1 on ∂D,

n̂×∇× (Ẽ0 + W ) =
ε1

ε0

κ2
0

γ2
1

n̂×∇× Ẽ1 − κ2
0β

ε1

ε0

n̂× Ẽ1 on ∂D.

Then,
∫

∂D

[−E1 · (n̂×∇×W) + (n̂×W) · (−a(∇× E1) + bE1)]ds

=

∫

∂D

[(n̂× Ẽ0) · (∇× E0)− (n̂× E0) · (∇× Ẽ0)]ds

+

∫

∂D

[(n̂× E1)(a∇× Ẽ1 − bẼ1)− (n̂× Ẽ1)(a∇× E1 − bE1)]ds

Using appropriately 2nd Green’s and Gauss’ theorem for Ẽ0,E0 and Ẽ1,E1 in

D we get
∫

∂D

[(n̂× Ẽ0) · (∇× E0)− (n̂× E0) · (∇× Ẽ0)]ds = 0

But E0 = Es +Gp where G is the background Green’s function.

0 =

∫

∂D

[(n̂× Ẽ0) · (∇× E0)− (n̂× E0) · (∇× Ẽ0)]ds

=

∫

∂D

[(n̂× Ẽ0) · (∇× (Es +Gp))− (n̂× (Es +Gp)) · (∇× Ẽ0)]ds

=p · Ẽ(x0)

Due to p being arbitary polarization on the tangent plane to S at x0, n̂ ×
Ẽ0(x0) = 0 for all x0 ∈ S as .



E. Athanasiadou, S. Dimitroula and E. Kikeri 89

Using uniqueness theorem for perfect conductor and unique continuation

principle [11] we have that Ẽ0 = 0 inside and outside D. Therefore, (E0,E1)

is a solution to the interior transmission problem.Finally, from the assumption

that κ is not a transmission eigenvalue we conclude to W = 0.

Lemma 4.2 We assume that κ is not a transmission eigenvalue for D.The

opeator R : H(Ω) → L2
t (S) defined by (13) has dense range.

Proof.

We assume that (RW, c)L2
t (S) = 0 for all W ∈ H(Ω) and we will prove that

c = 0.

(RW, c)L2
t (S) =

∫

S

(RW) · cds =

∫

S

R(E0(·,x0,p(x0)),W)p(x0) · c ds(x0)

=

∫

S

R(E0(·,x0, α(x0)),W)ds(x0) = R(E0,W),

where

E0(x) =

∫

S

E0(x,x0, α(x0))ds(x0), α = (c · p)p.

We define E1(x) =
∫

S
E1(x,x0, α(x0))ds(x0) and one can easily see that

E0, E1 satisfy the transmission problem (1)-(5).Using 2nd Green’s and Gauss’

theorem for E0,W in Ω \ D̄ and the transmission conditions (3)− (4) we get
∫

∂Ω

[(n̂×E0) · (∇×W)− (n̂×W) · (∇×E0)]ds

=

∫

∂D

[(n̂×E0) · (∇×W)− (n̂×W) · (∇×E0)]ds

=

∫

∂D

[(n̂×E1) · (∇×W) + W · (an̂×∇×E1 − bn×E1)]ds

By using 2nd Green’s and Gauss’ theorem we conclude to

0 =

∫

D

W · [κ2(
ε1

ε0

− 1)E1 + (κ2β1
ε1

ε0

)(∇×E1)]dx

+

∫

D

∇×W · [(κ2 ε1

ε0

)E1 − (
ε1

ε0

κ2

γ2
1

− 1)(∇×E1)]dx.

Now let H be the space of the vector spherical wave functions

H = span{Mm
n ,Nm

n , n = 1, ..., m = −n, ..., n}
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H is dense in, [11]

H inc = {W ∈ H(curl, D) : ∇×∇×W − κ2
0W = 0 in D}.

So,E1 = 0, ∇ × E1 = 0 in D and also n̂ × E1 = n̂ × ∇ × E1 = 0 on ∂D

which implies that n̂×E0 = n̂×∇×E0 = 0 on ∂D.

Furthermore, using unique continuation principle [11] we can see that E0 = 0

inside and outside D bounded by S.From the fact that

E0(x) =

∫

S

(Es
0(x,x0, α(x0)) +G(x,x0)α(x0))ds(x0), α = (c · p)p

we can see that n̂ × E0 is continuous across S. Also, from the uniqueness

theorem for the exterior problem for the perfect conductor [11] E0 = 0 outside

S. From the jump relations for the vector potential across S [11] we get

α = (c · p)p = 0,

c = 0.

5 Reconstruction of the chiral body

At this point we recall the definition of the Herglotz functions.

Let υg is a Herglotz wave function defined by

υg(x) =

∫

Ω

g(d̂)eikx·d̂ds(d̂),g ∈ L2(Ω) (14)

and S2 is the unit sphere and κ is the transmission eigenvalue with non-trivial

corresponding solution of the interior transmission problem. An electromag-

netic Herglotz pair

E(r) =

∫

Ω

g(d̂)eikx·d̂ds(d̂), H(r) =
1

ik
∇× E(r) (15)

where the square integrable tagential field g ∈ L2(Ω) is the kernel of the elec-

tromagnetic pair E,H.Our aim is to investigate the solvability of the equation

R(E,Hg) = R(Ed,W) (16)
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for every W ∈ H(Ω)

where H(Ω) = {W ∈ H(curl, Ω) : ∇×∇×W − κ2
0W = 0}.

In particular, we want to get approximating solutions of the equation (16)

by the parametric family of Herglotz wave functions. As a norm-depending

reconstructing approach, this method provides us a boundary characterization

of the chiral body for a set of sampling points z. Finally, the proof follows the

steps as in [9].

Theorem 5.1 Assume that the interior transmission problem is well-posed.Then

1. For z ∈ D and a given ε > 0 there exists a gε
z ∈ L2

t (S
2) such that

||R(E,Hgε
z)−R(E,Ed(·, z,q, κ))||L2

t (S) < ε

and the corresponding electric Herglotz wave function Hgε
z converges to

the solution of the interior transmission problem, as ε → 0.

2. For a fixed ε > 0, we have that

limz→∂D||Hgε
z||Hinc = ∞ and limz→∂D||gε

z||L2
t (S) = ∞.

3. For z ∈ R3 \ D̄ and a given ε > 0 every gε
z ∈ L2

t (S
2) that satisfies

||R(E,Hgε
z)−R(E,Ed(·, z,q, κ))||L2

t (S) < ε

is such that

limz→∂D||Hgε
z||Hinc = ∞ and limz→∂D||gε

z||L2
t (S) = ∞.
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