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Abstract

In the present article we study multistate k-out-of-n structures com-
posed of n independent mixed components (k = (k1, k2, . . . , kρ)). We
assume that, at time t = 0, ni components are in state i, where i =
1, 2, . . . , ρ. Such a situation occurs, whenever a certain number of
components is supplied from a used system. The design parameters
k1, k2, . . . , kρ are strongly connected to the systemPersonName’s life-
time, since the state that the system is considered to be, depends on
them. Closed formulae for the reliability function and the mean lifetime
of the aforementioned structures are derived under the assumption that
the components’ lifetimes distributions belong to the family of Lehmann
alternatives. Several numerical results are displayed and some interest-
ing remarks are also concluded.
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1 Introduction

In a multistate system modeling, both the system and its components are

allowed to stand on more than two possible states, such as perfect functioning,

partially working or complete failure state. Multistate reliability models have

attracted a great research interest, because of their great variety of applica-

tions in many areas. For example, multistate models are useful in describing

several engineering structures, such as oil supply systems, lightning grids or

manufacturing apparatus, while many military equipments, such as missiles of

high technology, are formulated in terms of multistate structures.

The well-known k -out-of-n: G system assumes that both the system and

its components can stand on only two possible states, while in the multi-state

modeling more than two states are available. Many generalizations of the

aforementioned binary reliability structure have been proposed in the litera-

ture. Huang et al. [4] and Tian et al. [6] introduced generalized multi-state

k -out-of-n: G systems considering a different number of components at each

possible state at time t = 0. In addition, Levitin [5] brought in a new general

model, named the multi-state vector k -out-of-n system and suggested an algo-

rithm for evaluating its state probabilities. Moreover, Eryilmaz et al. [1] deal

with three-state k -out-of-n systems composed of mixed components.

Consider a system consisting of n non-repairable components such that at

time t = 0 n1 components are in a partially working condition (state “1”)

and n2 components are perfectly functioning (state “2”) where n = n1 + n2

(hereafter, state “0” will be used to describe the non-functional (failed) state

of the components). It is assumed that a direct transition from state ”2”

to state ”0” is not feasible, while the transition from state ”1” to state ”2”

is not attainable. Note that the components of the same type are identical.

That is, the components that are in a perfectly functioning state and the

components that are in a partially working state at the beginning of the mission

are identical.

Let T1i and T2i denote respectively the time that the i − th component

enters into state “0” (lifetime of the i− th component) and the time that the

i−th component enters into state “1” (lifetime of the i−th component in state

“2”), i = 1, 2, ..., n. If Xi expresses the time spent by the i− th component in
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a partially working state, i = 1, 2, ..., n., we may write

T1i =

{
Xi, i = 1, 2, ..., n1

T2i + Xi , i = n1 + 1, n1 + 2, ..., n.

In the present paper, we consider a three-state k-out-of-n system under the

aforementioned modeling, with independent components. According to the

definition given by Tian et al [7] , a three-state k-out-of-n system is in state

“1” or above if at least k1 components are in state “1” or above. Moreover,

the system is said to be in state “2” if at least k1 components are in state “1”

or above and at least k2 components are in state “2”. It should be noted that

the system parameter k involves both k1 and k2. Reliability evaluation of such

systems has been considered by Eryilmaz et al. [1] , Zuo and Tian [9], Tian et

al [6], Zhao and Cui [8] and Eryilmaz [8].

The lifetime or equivalently the time that is spent by the three-state k-out-

of-n system in state “1” or above, can be represented as

T1 = T1,n−k1+1:n, (1)

where T1,r:n is the r − th smallest among T11, T12, ..., T1n . The time spent by

the system in the perfect functioning state is given as follows

T2 = min(T1,n−k1+1:n, T2,n2−k2+1:n2), (2)

where T2,r:n2 is the r − th smallest among T21, T22, ..., T2n2 .

2 General results

Let us denote by

F1(t; 1) = P (T1i ≤ t), i = n1 + 1, n1 + 2, ..., n1 + n2

F2(t; 1) = P (T1i ≤ t), i = 1, 2, ..., n1

and

F1(t; 2) = P (T2i ≤ t), i = n1 + 1, n1 + 2, ..., n

the cumulative density functions of the random variables T1i and T2i. Let us

next introduce the following notation(
x

x1, x2, x3

)
=

x!

x1!x2!x3!
, (3)
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where x, x1, x2, x3 are non-negative integers provided that x = x1 + x2 + x3

(otherwise

(
x

x1, x2, x3

)
= 0).

The following proposition offers some expressions for the survival function

of the lifetime of the three-state k-out-of-n system, that will be proved useful

in the sequel.

Proposition 2.1 For the three-state k-out-of-n system consisting of n1 com-

ponents in a partially working state “1” and n2 components in a perfect func-

tioning state (n = n1 + n2) at time t = 0, the survival function of the lifetime

of the system can be expressed as follows

(i)

P (T1 > t) =

n∑
i=k1

min(n2,i)∑
m=max(0,i−n1)

m∑
r=0

i−m∑
s=0

(−1)r+s
(

n2
r, m− r, n2 −m

)(
n1

s, i−m− s, n1 − i + m

)
× (F1(t; 1))n2−m+r(F2(t; 1))

n1−i+m+s (4)

(ii)

P (T1 > t) =

n∑
i=k1

min(n2,i)∑
m=max(0,i−n1)

n2−m∑
q=0

n1−i+m∑
p=0

(−1)p+q
(

n2
q, m, n2 − q −m

)(
n1

p, i−m, n1 − p− i + m

)
× (F̄1(t; 1))m+q(F̄2(t; 1))

i−m+p (5)

where F̄i(t; 1) = 1− Fi(t; 1), i = 1, 2.

Proof.(i) Eryilmaz et al. [1] proved that the survival function of the lifetime

of the three-state k-out-of-n system consisting of n1 components in state ”1”

and n2 components in state ”2” can be expressed as follows

P (T1 > t) =
n∑

i=k1

min(n2,i)∑
m=max(0,i−n1)

(
n2

m

)(
n1

i−m

)
(F̄1(t; 1))

m

× (F1(t; 1))n2−m(F̄2(t; 1))i−m(F2(t; 1))
n1−i+m. (6)
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Since the following binomial expansions hold true

(F̄1(t; 1))
m =

m∑
r=0

(
m

r

)
(−1)r(F1(t; 1))r, (F̄2(t; 1))

i−m

=
i−m∑
s=0

(
i−m

s

)
(−1)s(F2(t; 1))

s (7)

the desired result is readily deduced by substituting the above expressions in

formula (6).

(ii) Making use of the following binomial expressions

(F1(t; 1))
n2−m =

n2−m∑
q=0

(
n2 −m

q

)
(−1)q(F̄1(t; 1))

q, (F2(t; 1))
n1−i+m

=

n1−i+m∑
p=0

(
n1 − i + m

p

)
(−1)p(F̄2(t; 1))

p (8)

and substituting next these formulae in equation (6), the proof is easily com-

pleted by carrying out some straightforward algebraic manipulations. �

It is worth mentioning that under the Lehmann-type alternatives (see, e.g.

Gibbons and Chakraborti [3]) one may easily deduce some interesting formu-

lae for the computation of the survival function of the three-state k-out-of-n

system consisting of mixed components. More precisely, based on the results

proved in Proposition 2.1, we conclude that the following hold true

1. Under the Lehmann alternatives Fi(t; 1) = (F (t))ai , i = 1, 2, where

ai > 0, the survival function of the lifetime of the three-state k-out-

of-n system takes on the following form

P (T1 > t) =

n∑
i=k1

min(n2,i)∑
m=max(0,i−n1)

m∑
r=0

i−m∑
s=0

(
n2

r, m− r, n2 −m

)(
n1

s, i−m− s, n1 − i + m

)
× (−1)r+s(F (t))a1(n2−m+r)+a2(n1−i+m+s). (9)

2. Under the Lehmann alternatives Fi(t; 1) = 1 − (1 − F (t))ai , i = 1, 2,

where ai > 0, the survival function of the lifetime of the three-state
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k-out-of-n system takes on the following form

P (T1 > t) =

n∑
i=k1

min(n2,i)∑
m=max(0,i−n1)

n2−m∑
q=0

n1−i+m∑
p=0

(
n2

q, m, n2 − q −m

)(
n1

p, i−m, n1 − p− i + m

)
× (−1)p+q(F̄ (t))a1(m+q)+a2(i−m+p). (10)

The following corollary offers some expressions for the survival function of

the time spent by the three-state k-out-of-n system in the perfect functioning

state.

Proposition 2.2 For the three-state k-out-of-n system consisting of n1 com-

ponents in a partially working state and n2 components in a perfect functioning

state (n = n1 + n2) at time t = 0, the survival function of the time spent by

the system in the perfect functioning state can be expressed as

(i)

P (T2 > t) =
min(k1−1,n1)∑

m=0

n2∑
i1=max(k2,k1−m)

i1∑
i2=k2

i2∑
r=0

i1−i2∑
s=0

m∑
q=0

(
n1

q, m− q, n1 −m

)(
n2

r, i2 − r, n2 − i2

)
×
(

n2 − i2
s, i1 − i2 − s, n2 − i1

)
(−1)r+s+q(F1(t; 1))n2−i1+s(F2(t; 1))

n1−m+q(F1(t; 2))
i1−i2−s+r

+

n1∑
m=k1

n2∑
i2=k2

i2∑
r=0

m∑
q=0

(
n2

i2 − r, r, n2 − i2

)(
n1

q, m− q, n1 −m

)
× (−1)r+q(F1(t; 2))n2−i2+r(F2(t; 1))n1−m+q. (11)

(ii)

P (T2 > t) =
min(k1−1,n1)∑

m=0

n2∑
i1=max(k2,k1−m)

i1∑
i2=k2

i1−i2∑
s=0

n2−i1∑
r=0

n1−m∑
q=0

(
n1

m, q, n1 −m− q

)(
i1

s, i2, i1 − s− i2

)
×
(

n2
i1, r, n2 − i1 − r

)
(−1)s+r+q(F̄1(t; 1))i1−i2−s+r(F̄2(t; 1))

m+q(F̄1(t; 2))
i2+s

+

n1∑
m=k1

n2∑
i2=k2

n2−i2∑
p=0

n1−m∑
q=0

(
n2

i2, p, n2 − i2 − p

)(
n1

m, q, n1 −m− q

)
× (−1)p+q(F̄1(t; 2))i2+p(F̄2(t; 1))m+q. (12)
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Proof. (i) Eryilmaz et al. [1] proved that the survival function of the time

spent by the three-state k-out-of-n system consisting of n1 components in

state “1” and n2 components in state “2” in the perfect functioning state, can

be expressed as follows

P (T2 > t) = (13)
min(k1−1,n1)∑

m=0

n2∑
i1=max(k2,k1−m)

i1∑
i2=k2

(
n2

i2, i1 − i2

)(
n1

m

)
× (F̄1(t; 2))

i2(F̄1(t; 1)− F̄1(t; 2))i1−i2(F1(t; 1))n2−i1(F̄2(t; 1))
m(F2(t; 1))

n1−m

+

n1∑
m=k1

n2∑
i2=k2

(
n2

i2

)(
n1

m

)
(F̄1(t; 2))i2(F1(t; 2))

n2−i2(F̄2(t; 1))
m(F2(t; 1))

n1−m.

The desired result is readily deduced by substituting the expressions

(F̄1(t; 2))
i2 =

i2∑
r=0

(
i2

r

)
(−1)r(F1(t; 2))r,

(F̄2(t; 1))
m =

m∑
q=0

(
m

q

)
(−1)q(F2(t; 1))q,

(F̄1(t; 1)− F̄1(t; 2))
i1−i2 =

i1−i2∑
s=0

(
i1 − i2

s

)
(−1)s(F1(t; 2))

i1−i2−s(F1(t; 1))
s

in equation (13).

(ii) On substituting the following binomial expressions

(F1(t; 1))
n2−i1 =

n2−i1∑
r=0

(
n2 − i1

r

)
(−1)r(F̄1(t; 1))r,

(F2(t; 1))
n1−m =

n1−m∑
q=0

(
n1 −m

q

)
(−1)q(F̄2(t; 1))

q,

(F1(t; 2))
n2−i2 =

n2−i2∑
p=0

(
n2 − i2

p

)
(−1)p(F̄1(t; 2))

p,

(F1(t; 2)− F1(t; 1))
i1−i2 =

i1−i2∑
s=0

(
i1 − i2

s

)
(−1)s(F̄1(t; 1))

i1−i2−s(F̄1(t; 2))
s

in equation (13), the proof is easily completed after some straightforward al-

gebraic manipulations. �
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It is worth mentioning that under the Lehmann-type alternatives, one may

easily arrive out some interesting formulae for the computation of the survival

function of the time spent by the system in the perfect functioning state. More

precisely, based on the results proved in Proposition 2.2, we may effortlessly

derive the following:

1. Under the Lehmann alternatives Fi(t; 1) = (F (t))ai , i = 1, 2, F1(t; 2) =

(F (t))a3 (a1, a2, a3 > 0), the survival function of the time spent by the

three-state k-out-of-n system in the perfect functioning state takes on

the form

P (T2 > t) = (14)
min(k1−1,n1)∑

m=0

n2∑
i1=max(k2,k1−m)

i1∑
i2=k2

i2∑
r=0

i1−i2∑
s=0

m∑
q=0

(
n1

q, m− q, n1 −m

)(
n2

r, i2 − r, n2 − i2

)
×
(

n2 − i2
s, i1 − i2 − s, n2 − i1

)
(−1)r+q+s(F (t))a1(n2−i1+s)+a2(n1−m+q)+a3(r+i1−i2−s)

+

n1∑
m=k1

n2∑
i2=k2

i2∑
r=0

m∑
q=0

(
n2

i2 − r, r, n2 − i2

)(
n1

q, m− q, n1 −m

)
× (−1)r+q(F (t))a2(n1−m+q)+a3(n2−i2+r).

2. Under the Lehmann alternatives Fi(t; 1) = 1 − (1 − F (t))ai , i = 1, 2

(a1, a2, a3 > 0), the survival function of the time spent by the three-state

k-out-of-n system in the perfect functioning state takes on the following

form

P (T2 > t) = (15)
min(k1−1,n1)∑

m=0

n2∑
i1=max(k2,k1−m)

i1∑
i2=k2

i1−i2∑
s=0

n2−i1∑
r=0

n1−m∑
q=0

(
n1

m, q, n1 −m− q

)(
i1

s, i2, i1 − s− i2

)
×
(

n2
i1, r, n2 − i1 − r

)
(−1)r+q+s(F̄ (t))a1(i1−i2−s+r)+a2(m+q)+a3(i2+s)

+

n1∑
m=k1

n2∑
i2=k2

n2−i2∑
p=0

n1−m∑
q=0

(
n2

i2, p, n2 − i2 − p

)(
n1
m, q, n1 −m− q

)
× (−1)r+q(F̄ (t))a2(m+q)+a3(i2+p).

In closing this section, we shall derive a closed formula for the mean of the

random variables T1, T2 under the Lehmann distribution models Fi(t; 1) =
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1 − (1 − F (t))ai , i = 1, 2 and F1(t; 2) = 1 − (1 − F (t))a3 . Let us first denote

by vF (k) the mean value of the greatest order statistic for a random sample

Z1, Z2, ..., Zk from a distribution with cdf F, i.e.

vF (k) = E(max(Z1, Z2, ..., Zk)),

with Zi˜ F , i = 1, 2, ..., k.

Corollary 2.3 Under the Lehmann alternatives Fi(t; 1) = 1 − (1 − F (t))ai ,

i = 1, 2 (a1, a2 > 0), the mean lifetime of the three-state k-out-of-n system

takes on the following form

E(T1) =
n∑

i=k1

min(n2,i)∑
m=max(0,i−n1)

n2−m∑
q=0

n1−i+m∑
p=0

(
n2

q, m, n2 − q −m

)(
n1

p, i−m, n1 − p− i + m

)
× (−1)p+qvF (a1(m + q) + a2(i−m + p))

Proof. Follows immediately from expression (6) by taking into account that

(F̄ (t))a1(m+q)+a2(i−m+p) is the tail probability of the maximum of a1(m + q) +

a2(i−m+p) i.i.d. random variables following a distribution with cdf F (t) and

making use of the well known formula

E(T1) =

∫ ∞

0

P (T1 > t)dt.

�

Corollary 2.4 Under the Lehmann alternatives Fi(t; 1) = 1 − (1 − F (t))ai,

i = 1, 2 and F1(t; 2) = 1 − (1 − F (t))a3 where a1, a2, a3 > 0, the mean time

spent by the three-state k-out-of-n system in the perfect functioning state takes

on the following form

E(T2) =
min(k1−1,n1)∑

m=0

n2∑
i1=max(k2,k1−m)

i1∑
i2=k2

i1−i2∑
s=0

n2−i1∑
r=0

n1−m∑
q=0

(
n1

m, q, n1 −m− q

)(
i1

s, i2, i1 − s− i2

)
×
(

n2
i1, r, n2 − i1 − r

)
(−1)r+q+svF (a1(i1 − i2 − s + r) + a2(m + q) + a3(i2 + s))

+

n1∑
m=k1

n2∑
i2=k2

n2−i2∑
p=0

n1−m∑
q=0

(−1)p+q
(

n2
i2, p, n2 − i2 − p

)(
n1

m, q, n1 −m− q

)
× vF (a2(m + q) + a3(i2 + p)).
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Proof. Follows immediately from expression (13) by using once more the

argument stated in the proof of Corollary 2.3. �

3 Numerical results

Let us consider a three-state k-out-of-n system consisting of n components

such that at time t = 0 n1 components are in a partially working condition

(state “1”) and n2 components are perfectly functioning (state “2”) where

n = n1 + n2. We next assume that the time that the i− th component spends

in states ”1” and ”2”, e.g. the random variables T1i and T2i, follow a Lehmann-

type distribution model, with the baseline F (t) being Weibull distribution, i.e.

F1(t; 1) = P (T1i ≤ t) = (F (t))a1 , i = n1 + 1, n1 + 2, ..., n1 + n2, a1 > 0,

F2(t; 1) = P (T1i ≤ t) = (F (t))a2 , i = 1, 2, ..., n1, a2 > 0,

F1(t; 2) = P (T2i ≤ t) = (F (t))a3 , i = n1 + 1, n1 + 2, ..., n1 + n2, a3 > 0,

where

F (t) = 1− e−(λt)β

, t ≥ 0.

In Tables 1, 2 and 3, we compute the mean lifetime E(T1) and the mean

time E(T2) spent by the system in a perfect functioning state, when λ = 1

for selected values of the design parameters k1, k2, n1, n2, several values of the

parameters a1, a2, a3 and three different choices of the shape parameter β.

Each E(T1) cell contains the mean lifetime for two different Lehmann-type

alternatives: the upper value corresponds to (a1 = 1, a2 = 2) and the lower

value corresponds to (a1 = 3, a2 = 2). Moreover, each E(T2) cell contains the

mean lifetime for three different cases: the upper value corresponds to (a1 =

1, a2 = 2, a3 = 3), the middle value corresponds to (a1 = 3, a2 = 1, a3 = 2) and

the lower value corresponds to (a1 = 2, a2 = 3, a3 = 1).

Based on the numerical results displayed in the above tables, one may easily

observe that, as intuitively suspected, the mean lifetimes E(T1) and E(T2) of

the three-state k-out-of-n system are increasing with respect to n1, n2 and

decreasing with respect to k1, k2.
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Table 1: Mean lifetime of a three-state k-out-of-n system for design parameters

k1 = 3, k2 = 2.

n1 n2 E(T1) E(T2)

β = 2 β = 0.5 β = 1 β = 2 β = 0.5 β = 1

5 3 1.25092

1.38445

2.91892

4.17959

1.61253

1.95896

1.22667

1.08390

0.85380

2.79215

1.85934

1.01086

1.56098

1.23939

0.82456

4 1.28369

1.43931

3.19440

4.80849

1.69412

2.11168

1.31540

1.20716

0.99146

3.50303

2.63596

1.52164

1.77741

1.51346

1.06905

5 1.31293

1.48543

3.45779

5.39383

1.76878

2.24478

1.36525

1.29401

1.08852

3.97927

3.33613

2.00248

1.90729

1.72554

1.26357

6 1.33934

1.52505

3.71051

5.94096

1.83769

2.36259

1.39457

1.36080

1.16279

4.29150

3.97466

2.45309

1.98679

1.89923

1.42500

7 1.36340

1.55968

3.95368

6.45461

1.90174

2.46820

1.41179

1.41486

1.22255

4.48525

4.56258

2.87600

2.03441

2.04660

1.56294

8 1.38551

1.59039

4.18823

6.93881

1.96161

2.56386

1.42145

1.46015

1.27232

4.59165

5.10818

3.27420

2.06092

2.17469

1.68337

In addition, Figures 1.1 and 1.2 provide a graphical representation of the

probabilities P (T1 > t), P (T2 > t) for several choices of the design parame-

ters of the three-state k-out-of-n system and the Lehmann-type alternatives

models.
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Table 2: Mean lifetime of a three-state k-out-of-n system for design parameters

k1 = 5, k2 = 2.

n1 n2 E(T1) E(T2)

β = 2 β = 0.5 β = 1 β = 2 β = 0.5 β = 1

5 3 0.95207

1.10835

1.03139

1.75553

0.94325

1.26078

1.01707

0.89849

0.83193

1.29090

0.85594

0.81815

1.06863

0.84744

0.76906

4 1.00301

1.18308

1.23191

2.21767

1.04093

1.42956

1.03660

1.02367

0.96065

1.36217

1.33014

1.22030

1.10555

1.08346

0.98790

5 1.04586

1.24376

1.42453

2.66052

1.12724

1.57497

1.05064

1.11671

1.05052

1.41236

1.80394

1.59706

1.13217

1.27925

1.16029

6 1.08293

1.29455

1.61036

3.08295

1.20494

1.70246

1.07056

1.18942

1.11897

1.50425

2.26210

1.95004

1.17299

1.44455

1.30276

7 1.11564

1.33806

1.79017

3.48554

1.27582

1.81585

1.09696

1.24860

1.17399

1.64992

2.70010

2.28205

1.23035

1.58707

1.42441

8 1.14493

1.37604

1.96455

3.86949

1.34114

1.91788

1.12768

1.29825

1.21987

1.84094

3.11738

2.59278

1.29987

1.71214

1.53074

In the diagrams, the more briskly the discontinuous line is, the smaller is

the value of the parameter n2. It is easy to observe that we are able to increase

the value of the survival function of a three-state k-out-of-n system at time

t by increasing the number of components (n2) that are perfectly functioning

(state “2”) at time t = 0.
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Table 3: Mean lifetime of a three-state k-out-of-n system for design parameters

k1 = 2, k2 = 3.

n1 n2 E(T1) E(T2)

β = 2 β = 0.5 β = 1 β = 2 β = 0.5 β = 1

5 3 1.44393

1.56503

5.18412

6.87183

2.14808

2.50577

0.95490

0.79214

0.51166

1.22783

0.70222

0.22222

0.97897

0.70000

0.33333

4 1.47054

1.61220

5.52182

7.63915

2.22409

2.65315

1.15060

0.99652

0.71731

2.20538

1.37473

0.51389

1.37789

1.05357

0.58333

5 1.49473

1.65226

5.84423

8.34426

2.29442

2.78190

1.26613

1.11889

0.84793

3.05140

1.99808

0.82722

1.65090

1.30595

0.78333

6 1.51688

1.68697

6.15302

8.99711

2.35990

2.89614

1.34825

1.20620

0.94313

3.80412

2.57453

1.14389

1.86175

1.50473

0.95000

7 1.53731

1.71754

6.44953

9.60552

2.42117

2.99877

1.41179

1.27384

1.01762

4.48525

3.10962

1.45613

2.03441

1.66939

1.09286

8 1.55626

1.74479

6.73492

10.1757

2.47877

3.09192

1.46348

1.32886

1.07852

5.10911

3.60882

1.76060

2.18093

1.81022

1.21786
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