Journal of Applied Mathematics \& Bioinformatics, vol.6, no.2, 2016, 21-28
ISSN: 1792-6602 (print), 1792-6939 (online)
Scienpress Ltd, 2016

A generalized univalent functions with missing coefficients

 of alternating typeDeborah Olufunmilayo Makinde ${ }^{1}$ and O.A. Fadipe-Joseph ${ }^{2}$

Abstract

The normalized univalent function of the type $$
f(z)=z+\sum_{n=2}^{\infty}(-1)^{n+k} a_{n+k} z^{n+k}, k \geq 1,
$$ has negative coefficient when $n+k$ is odd,and positive coefficient when $(\mathrm{n}+\mathrm{k})$ is even. In this paper, the author investigated some properties of univalent functions with negative coefficients of the type $f(z)=z+$ $\sum_{n=2}^{\infty}(-1)^{n+k} a_{n+k} z^{n+k}, k \geq 1$ and obtain some conditions for which the function $f(z)$ belong to the subclass $S^{*}(\alpha, \beta, k), C^{*}(\alpha, \beta, k)$.

Mathematics Subject Classification: 30C45; 30C50
Keywords: univalent; missing coefficients alternating series

[^0]
1 Introduction and Preliminary Notes

Let S denote the class of normalized univalent functions of the form:

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

analytic in the unit disc $U=\{z:|z|<1\}$
let T denote the subclass of S of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad a_{n} \geq 0, \quad n=2,3, \ldots \tag{1}
\end{equation*}
$$

Let $J(\alpha, \lambda):=\left\{f(z) \in A:\left|-\alpha z^{2}(z \mid f(z))^{\prime \prime}+f^{\prime}(z)(z \mid f(z))^{2}-1\right| \leq \lambda\right\}, \quad z \in E$ where $\lambda>0$ and $\alpha \in \Re \backslash\left\{-\frac{1}{2}, 0\right\}$. Kaur et al [3] established conditions under which functions in the class $J(\alpha, \lambda)$ are starlike of order $\Gamma, 0 \leq \Gamma<1$ while Yi-Ling Cang and Jin-Lin Liu [1] showed certain sufficient conditions for univalency of analytic functions with missing coefficients.

Silverman [4] studied the properties of T in D, where

$$
D=\{w: w \text { is analytic in } U ; w(0)=0,|w(z)|<1 \text { in } U\} .
$$

Khairnar and More [2] studied $G(A, B)$, a subclass of analytic function in U, which are of the form $\frac{1+A w(z)}{1+B w(z)},-1 \leq A<\beta \leq 1$ where $w(z) \in D$.

Now, we define a subclass H of T to consist of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty}(-1)^{n+k} a_{n+k} z^{n+k}, \quad a_{k+1} \geq 0, \quad k \geq 1 \tag{2}
\end{equation*}
$$

And let $G(\alpha, \beta, k)$ denote a subclass of analytic functions in U, which are of the form $\frac{1+\alpha w(z)}{1+\beta w(z)},-1 \leq \alpha<\beta \leq 1$ where $w(z) \in D$.
We shall in this paper investigate a subclass H of T in $G(\alpha, \beta, k)$.

We define $S^{*}(\alpha, \beta, k)$ and $C(\alpha, \beta, k)$ respectively as follows:

$$
\begin{gathered}
S^{*}(\alpha, \beta, k)=\left\{f: f \in H \text { and } \frac{z f^{\prime}}{f} \in G(\alpha, \beta)\right\} \\
C(\alpha, \beta, k)=\left\{f: f \in H \text { and }\left(\frac{z f^{\prime}}{f}\right)^{\prime} \in G(\alpha, \beta)\right\}
\end{gathered}
$$

Lemma 1 [1]: A function

$$
f(z)=z+\sum_{n=2}^{\infty}(-1)^{n+1} a_{n+1} z^{n+1}, a_{n+1} \geq 0
$$

is in $M(A, B)$ iff

$$
\sum_{n=2}^{\infty}\left(\frac{n(B+1)-(A-B)}{A-B}\right) a_{n+1} \leq 1
$$

Lemma 2 [1]: A function

$$
f(z)=z+\sum_{n=2}^{\infty}(-1)^{n+1} a_{n+1} z^{n+1}, a_{n+1} \geq 0
$$

is in $C(A, B)$ iff

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left(\frac{[n(B+1)-(A-B)](n+1)}{A-B}\right) a_{n+1} \leq 1 \\
& M(A, B)=\left\{f: f \in M a n d \frac{z f^{\prime}}{f} \in G(A, B)\right\}
\end{aligned}
$$

and

$$
C(A, B)=\left\{f: f \in \operatorname{Mand}\left(\frac{z f^{\prime}}{f}\right)^{\prime} \in G(A, B)\right\}
$$

2 Main Results

We now state and proof the main results of this paper.
Theorem 2.1. Let a function

$$
f(z)=z+\sum_{n=2}^{\infty}(-1)^{n+k} a_{n+k} z^{n+k}, a_{n+k} \geq 0
$$

be in $S^{*}(\alpha, \beta, k)$, then,

$$
\sum_{n=2}^{\infty}\left(\frac{n+k-1(\beta+1)-(\alpha-\beta)}{\alpha-\beta}\right) a_{n+k} \leq 1
$$

Proof Let

$$
f(z)=z+\sum_{n=2}^{\infty}(-1)^{n+k} a_{n+k} z^{n+k}, \quad k \geq 1
$$

Then,

$$
f^{\prime}(z) \geq 0
$$

Thus,

$$
\begin{aligned}
\frac{z f^{\prime}(z)}{f(z)} & =\frac{z+\sum_{n=2}^{\infty}(-1)^{n+k}(n+k) a_{n+k} z^{n+k}}{z+\sum_{n=2}^{\infty}(-1)^{n+k} a_{n+k} z^{n+k}}=\frac{1+\alpha w(z)}{1+\beta w(z)} \\
& \Longrightarrow\left|\frac{\sum_{n=2}^{\infty}(-1)^{n+k}(n+k-1) a_{n+k} z^{n+k-1}}{(\alpha-\beta)+\sum_{n=2}^{\infty}(-1)^{n+k}[\alpha-\beta(n+k)] a_{n+k} z^{n+k-1}}\right|=1
\end{aligned}
$$

for $r \rightarrow 1$ we obtain

$$
\begin{aligned}
& \frac{\sum_{n=2}^{\infty}(n+k-1) a_{n+k}}{\alpha-\beta+\sum_{n=2}^{\infty}(-1)^{n+k}[\alpha-\beta(n+k)] a_{n+k}} \leq 1 \\
& \Longrightarrow \sum_{n=2}^{\infty}(n+k-1) a_{n+k}<(\alpha-\beta)+\sum_{n=2}^{\infty}[\alpha-\beta(n+k)] a_{n+k} \\
& \Longrightarrow \sum_{n=2}^{\infty}[(n+k-1)-\alpha+\beta(n+k)] a_{n+k} \leq \alpha-\beta \\
& \Longrightarrow \sum_{n=2}^{\infty}[(n+k-1)-\alpha+\beta((n+k-1)+1)] a_{n+k} \leq \alpha-\beta \\
& \Longrightarrow \sum_{n=2}^{\infty}[(n+k-1)(\beta+1)+\beta-\alpha] a_{n+k} \leq \alpha-\beta \\
& \Longrightarrow \sum_{n=2}^{\infty}\left[\frac{(n+k-1)(\beta+1)-(\alpha-\beta)}{\alpha-\beta}\right] a_{n+k} \\
& \quad<\sum_{n=2}^{\infty}\left[\frac{(n+k)(\beta+1)-(\alpha-\beta)}{\alpha-\beta}\right] a_{n+k} \leq 1
\end{aligned}
$$

This concludes the proof of Theorem 1.
Theorem 2.2. Let a function

$$
f(z)=z+\sum_{n=2}^{\infty}(-1)^{n+k} a_{n+k} z^{n+k}, a_{n+k} \geq 0
$$

be in $C(\alpha, \beta, k)$, then

$$
\sum_{n=2}^{\infty}\left\{\frac{(n+k)(n+k-1)(\beta+1)-(\alpha-\beta)}{\alpha-\beta}\right\} a_{n+k} \leq 1
$$

Proof Suppose $f(z) \in C(\alpha, \beta, k)$. We have

$$
\begin{aligned}
& \frac{1+\sum_{n=2}^{\infty}(-1)^{n+k}(n+k)^{2} a_{n+k} z^{n+k-1}}{1+\sum_{n=2}^{\infty}(-1)^{n+k}(n+k) a_{n+k} z^{n+k-1}}=\frac{1+\alpha w(z)}{1+\beta w(z)} \\
& \quad \Longrightarrow \frac{\sum_{n=2}^{\infty}(-1)^{n+k}(n+k-1)(n+k) a_{n+k} z^{n+k-1}}{(\alpha-\beta)+\sum_{n=2}^{\infty}(-1)^{n+k}(n+k)[\alpha-\beta(n+k)] a_{n+k} z^{n+k-1}}=w(z) \\
& \quad \Longrightarrow\left|\frac{\sum_{n=2}^{\infty}(-1)^{n+k}(n+k-1)(n+k) a_{n+k} z^{n+k-1}}{(\alpha-\beta)+\sum_{n=2}^{\infty}(-1)^{n+k}(n+k)[\alpha-\beta(n+k)] a_{n+k} z^{n+k-1}}\right| \leq 1
\end{aligned}
$$

since $|w(z)| \leq 1$. Let $|z| \longrightarrow 1$, we obtain

$$
\begin{aligned}
& \frac{(n+k-1)(n+k) a_{n+k}}{(\alpha-\beta)+\sum_{n=2}^{\infty}(n+k)[\alpha-\beta(n+k)] a_{n+k}} \leq 1 \\
& \Longrightarrow \sum_{n=2}^{\infty}(n+k-1)(n+k) a_{n+k} \leq(\alpha-\beta)+\sum_{n=2}^{\infty}(n+k)[\alpha-\beta(n+k)] a_{n+k} \\
& \Longrightarrow \sum_{n=2}^{\infty}\left\{\frac{(n+k)[(n+k-1)(\beta+1)-(\alpha-\beta)]}{\alpha-\beta}\right\} a_{n+k} \\
& \leq \sum_{n=2}^{\infty}\left\{\frac{(n+k)[(n+k)(\beta+1)-(\alpha-\beta)]}{\alpha-\beta}\right\} a_{n+k}<1,
\end{aligned}
$$

which is the required result.
Theorem 2.3. Let a function

$$
f(z)=z+\sum_{n=2}^{\infty}(-1)^{n+k} a_{n+k} z^{n+k}, a_{n+k} \geq 0
$$

be in $S_{k}^{*}(\alpha, \beta)$ then $(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}$ is also in $S^{*}(\alpha, \beta, k) 0 \leq \alpha<1$
Proof Let $f(z) \in S^{*}(\alpha, \beta, k)$ then,

$$
\sum_{n=2}^{\infty}\left(\frac{(n+k-1)(\beta+1)-(\alpha-\beta)}{\alpha-\beta}\right) a_{n+k} \leq 1
$$

But,

$$
\begin{aligned}
& \frac{(1-\lambda)\left\{z+\sum_{n=2}^{\infty}(-1)^{n+k}(n+k) a_{n+k} z^{n+k}\right\}}{z+\sum_{n=2}^{\infty}(-1)^{n+k} a_{n+k} z^{n+k}}=\frac{1+\alpha w(z)}{1+\beta w(z)} \\
& \Rightarrow z+\sum_{n=2}^{\infty}(-1)^{n+k}(n+k) a_{n+k} z^{n+k}-\left\{\lambda z+\lambda \sum_{n=2}^{\infty}(-1)^{n+k}(n+k) a_{n+k} z^{n+k}\right\} \\
& +z \beta w(z)+\beta w(z) \sum_{n=2}^{\infty}(-1)^{n+k}(n+k) a_{n+k} z^{n+k} \\
& -\left\{\lambda z \beta w(z)+\lambda \beta w(z) \sum_{n=2}^{\infty}(-1)^{n+k}(n+k) a_{n+k} z^{n+k}\right\} \\
& =z+\sum_{n=2}^{\infty}(-1)^{n+k} a_{n+k} z^{n+k}+z \alpha w(z)+\alpha w(z) \sum_{n=2}^{\infty}(-1)^{n+k} a_{n+k} z^{n+k} \\
& \Rightarrow \frac{\sum_{n=2}^{\infty}(-1)^{n+k}[(1-\lambda)(n+k)-1] a_{n+k} z^{n+k-1}-\lambda}{(\alpha-(1-\lambda) \beta)+\sum_{n=2}^{\infty}(-1)^{n+k}[\alpha-(1-\lambda) \beta(n+k)] a_{n+k} z^{n+k-1}}=w(z) \\
& \Rightarrow\left|\frac{\sum_{n=2}^{\infty}(-1)^{n+k}[(1-\lambda)(n+k)-1] a_{n+k} z^{n+k-1}-\lambda}{(\alpha-(1-\lambda) \beta)+\sum_{n=2}^{\infty}(-1)^{n+k}[\alpha-(1-\lambda) \beta(n+k)] a_{n+k} z^{n+k-1}}\right|=|w(z)| \leq 1
\end{aligned}
$$

for $|z|=r \rightarrow 1$

$$
\begin{aligned}
& \Rightarrow \frac{\sum_{n=2}^{\infty}[(1-\lambda)(n+k)-1] a_{n+k}-\lambda}{(\alpha-(1-\lambda) \beta)+\sum_{n=2}^{\infty}[\alpha-(1-\lambda) \beta(n+k)] a_{n+k}} \leq 1 \\
& \Rightarrow \sum_{n=2}^{\infty}[(1-\lambda)(n+k)-1] a_{n+k}-\lambda \leq \alpha-(1-\lambda) \beta+\sum_{n=2}^{\infty}[\alpha-(1-\lambda) \beta(n+k)] a_{n+k} \\
& \Rightarrow \sum_{n=2}^{\infty}[(1-\lambda)(n+k)-1] a_{n+k}-\sum_{n=2}^{\infty}[\alpha-(1-\lambda) \beta(n+k)] a_{n+k} \leq \alpha-(1-\lambda) \beta \\
& \Rightarrow \sum_{n=2}^{\infty}[((1-\lambda)(n+k)-1)-\alpha+(1-\lambda) \beta(n+k)] a_{n+k} \leq \alpha-(1-\lambda) \beta \\
& \Rightarrow \sum_{n=2}^{\infty}[((1-\lambda)(n+k)-1)-\alpha+\beta\{(1-\lambda)((n+k)-1)+1\}] a_{n+k} \leq \alpha-(1-\lambda) \beta \\
& \Rightarrow \sum_{n=2}^{\infty}[((1-\lambda)(n+k)-1)(\beta+1)-\alpha+(1-\lambda) \beta] a_{n+k} \leq \alpha-(1-\lambda) \beta
\end{aligned}
$$

But,

$$
\begin{aligned}
& \sum_{n=2}^{\infty}[((1-\lambda)(n+k)-1)(\beta+1)-(\alpha-(1-\lambda) \beta)] a_{n+k} \\
\Rightarrow & \frac{\alpha-(1-\lambda) \beta}{\alpha-\beta} \\
\leq & \frac{\sum_{n=2}^{\infty}(n+k-1)(\beta+1)-(\alpha-\beta)}{\alpha-\beta}
\end{aligned}
$$

This shows that $(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}$ belongs to $S_{k}^{*}(\alpha, \beta)$.
Theorem 2.4. Let

$$
f(z)=z+\sum_{n=2}^{\infty}(-1)^{n+k} a_{n+k} z^{n+k}, a_{n+k} \geq 0
$$

belong to the class $C(\alpha, \beta, k)$ then $(1-\lambda)\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\prime}$ also belong to the class $C(\alpha, \beta, k)$

Proof

$$
\frac{(1-\lambda)\left\{1+\sum_{n=2}^{\infty}(-1)^{n+k}(n+k)^{2} a_{n+k} z^{n+k-1}\right\}}{1+\sum_{n=2}^{\infty}(-1)^{n+k}(n+k) a_{n+k} z^{n+k-1}}=\frac{1+\alpha w(z)}{1+\beta w(z)}
$$

and following the proof of Theorem 3, we obtain the result.

ACKNOWLEDGEMENTS. We wish to acknowledge the comments of the anonymous reviewers.

References

[1] Y. Cang and and J. Liu, On Certain Univalent functions with missing Coefficients, Advances in Difference Equations, 89(doi:10.1186/1687-18472013 - 89), (2013).
[2] S.M. Khairmar and M. More, convolution properties of univalent functions with missing second coefficient of alternating type, Int. Journal of Math. Analysis, 2(12), (2008), 569-580.
[3] M. Kaur, S.Gupta and S. Singh, Geometric Properties of a class of Analytic functions defined by a Differential Inequality, International Journal of Analysis, V Article I.D. 185635, 4 pages, (12).
[4] H. Silverman, On a close-to-convex functions, Proc. Amer. Math. Soc., 36(2), (1972), 477-484.

[^0]: ${ }^{1}$ Department of Mathematics, Obafemi Awolowo University, Ile Ife 220005, Nigeria. E-mail: funmideb@yahoo.com; dmakinde@oauife.edu.ng
 ${ }^{2}$ Department of Mathematics, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria. E-mail: famelov@unilorin.edu.ng

