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Abstract

In this paper security aspects of the existing symmetric key encryp-
tion schemes based on Hadamard matrices are examined. Hadamard
matrices itself have symmetries like one circulant core or two circulant
core. Here, we are exploiting the inherent symmetries of Hadamard ma-
trices and are able to perform attacks on these encryption schemes. It
is found that entire key can be obtained by observing the ciphertext.
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1 Introduction

Hadamard matrices [4] are square matrix with entries are +1 and -1. These

matrices are having a special property that the rows/columns of a Hadamard
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matrix are pairwise orthogonal. Let H be a Hadamard matrix then HH ′ =

NIn where ′ for transposition and In is the identity matrix of order N .

There are several operations on Hadamard matrices which preserve the

Hadamard property:

(a) permuting rows, and changing the sign of some rows;

(b) permuting columns, and changing the sign of some columns;

(c) transposition.

We call two Hadamard matrices H1 and H2 equivalent if one can be ob-

tained from the other by operations of types (a) and (b); that is, if H2 =

P−1H1Q, where P and Q are matrices (having just one non-zero element in

each row or column) with non-zero entries +1 and -1. Hadamard matrices

having one circulant core can take one of the forms described below.

1 1 · · · 1

1

... C

1

1

1
... C

1 -1 · · · -1

For the following case a Hadamard matrix of order N +1 with one circulant

core can be constructed if

• N ∼= 3 mod 4 is a prime [4];

• N = q(q + 2) where q and q + 2 are both primes [6, 7];

• N = 2w − 1 where w is a positive integer [5];

• N = 4w2 + 27 where N is a prime and w a positive integer [1].

Hadamard matrices based encryption schemes were discussed by Christos

and Dimitris [2]. They proposed symmetric key cipher based on several con-

structions of Hadamard matrices. Here, encryption and decryption algorithm

given by Christos and Dimitris are discussed.
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Encryption Algorithm

k ← (H, d) key

m← message

c← mH + den

H is Hadamard matrix, d is a constant, c is cipher, en is 1 × N vector of

ones.

Decryption Algorithm

Receive c

s← c− den

m← sH ′/N recovered message

In section 2, various attacks on the symmetric key encryption scheme based

on Hadamard matrices are discussed.

2 Attacks on the Scheme

Authors [2] claimed that above discussed schemes are secure against brute

force attacks, ciphertext-only attacks, known plaintext attacks and chosen

plaintext attacks. By using the symmetries in the Hadamard matrices these

attacks are possible.

2.1 Ciphertext only Attack

This attack can be launched by observing the value of cipher text only. By

analysing the cipher text if one can get a part of a key or part of plain text

then the method is susceptible to this attack.

2.1.1 Finding d part of the Key

By observing the cipher vectors one can obtain d. When all values of cipher

vector are equal, which is possible when input is all zeros then the cipher
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c← den itself contains the value of d.

When input is not equal to zero then also it is possible to find the value of

d as described

Theorem 2.1. Let m be the message vector of size 1×N ,H be the Hadamard

matrix of size N ×N , c be a constant, en is 1×N vector of ones. Then mH

= cen is possible if and only if m = (c 0 · · · 0)

Proof. Let m = (c 0 · · · 0) then mH = cen which is trivial to observe.

Now consider the other part where

mH = cen (1)

Then multiplying both sides by H ′ we get

mHH ′ = cenH
′ (2)

Since HH ′ = NIn and sum of all but first columns of Hadamard matrix is

zero. Therefore above equation becomes

mNIn = c(N0 · · · 0)

= (cN0 · · · 0)
(3)

which gives the desired m.

Lemma 2.2. If message m is of the form (0 0 c · · · 0) then mH = cfn,

where fn has entries ± 1.

Since cipher c is given by

ci = miH + den (4)

where each ci corresponds to mi. Let mi has the form (ki 0 · · · 0). Using

Theorem 2.1 cipher ci = dien where di corresponds to ki + d. Therefore all ci’s

will have the form (ki + d · · · ki + d). Let us assume that we have collection

of N ci’s. There are two methods to find d from the captured ci’s.

First Method
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Authors[2] have designed this algorithm for ASCII input which cannot take

negative values. Hence ki’s can taken positive values. With high probability d

can be find out by min(d1, d2 · · · , dn). As N increases probability of getting

correct value of d also increases.

Second Method

Since di’s are of the form ki + d where ki are ASCII values. So by applying

frequency test on di’s we can get highest frequency di corresponding to english

alphabet ‘e’ (This alphabet has the highest frequency among English Alpha-

bets). By subtracting ASCII value of ‘e’ from di we can obtain the value of d

as shown in the Figure 1 below.

Figure 1: Frequency plot of ki + d

2.1.2 Finding d part of Key(Message Independent)

In section 2.1.1 we observe that we can find d if messages take particular form.

In this section our aim is to deduce d independent from messages structure.

Hadamard matrices possess Hadamard property which leads them to orthog-

onal matrices. Let H be the Hadamard matrix and en be a column vector of

ones then

Hen = (N, 0, 0, ..., 0)′

cipher can be written
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c = mH + de′n (5)

multiplying equation 5 by en we get

cen = mHen + de′nen

N∑
i=1

ci = [m1 · · ·mN ]


N

0
...

0

 + dN

m1 + d =
1

N

N∑
i=1

ci

By using second method as explained in section 2.1.1 we can obtain value of

d. This method is independent from the structure of message.

2.1.3 Finding part of Plaintext

As we know that the Hadamard matrix with one circulant core has structure

as given in section 1 above where C is a circulant matrix. As in section 2.1.1

we have suggested methods to find out d which is a part of key. Now we can

define

c̃ = c′ − den (6)

C is a circulant matrix which is part of Hadamard matrix. So to fulfil the

Hadamard property, each columns/rows of C should have N/2 numbers of

−1′s. As we can see that c̃ = mH. This can be expressed as
1 1 1 · · · 1

1 a1 a2 · · · aN−1

1 a2 a3 · · · a1

...
...

...

1 aN−1 a1 · · · aN−2




m0

m1

m2

...

mN−1

 =


c̃0

c̃1

c̃2

...

c̃N−1


where a′ks = ±1
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m0 +
N−1∑
i=1

mi = c̃0 (7)

m0 +
N−1∑
i=1

ai+k−1mi = c̃k, k = 1, 2 · · ·N − 1 (8)

So, here we have N − 1 equations. By adding all of these,we get

(N − 1)m0 −
N−1∑
i=1

mi =
N−1∑
k=1

c̃k (9)

By adding equation 7 and 9, we get

m0 =
1

N

N−1∑
k=0

c̃k (10)

Here we have applied cipher text only attack and we are able to get part

of plain text m0. Therefore this scheme is vulnerable to such type of attacks.

Ciphertext also reveals about plaintext. When all the values of ciphertext are

equal then also from theorem 2.1 we get that atleast N − 1 values of plaintext

are zero.

2.2 Known Plaintext Attack

In known plaintext attack we are given with pair of plaintext and its cor-

responding cipher text. Authors [2] have claimed that if the adversary has

knowledge of less than n messages of length n of the plaintext and the cor-

responding ciphertext then all encryption schemes using Hadamard matrices

with circulant cores are secure against known-plaintext attacks. As we can see

from equation 8 only one pair of message and its corresponding cipher text is

sufficient to find the entries of circulant core of Hadamard matrices.

2.3 Chosen Plaintext Attack

In this attack we can choose the plain text and obtain the corresponding

cipher text. By choosing a particular form of message similar to the one shown
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in Lemma 2.2 we can deduce row of a Hadamard matrix. Since Hadamard ma-

trices have one circulant core, therefore one row is sufficient to reconstruct the

entire Hadamard matrix. Therefore by choosing a particular form of message,

complete Hadamard matrix can be reconstructed. Hence entire key can be

obtained by launching this attack.

3 Concluding Remarks

In this paper we have examined the security aspects of Hadamard based

symmetric key encryption scheme. It was found that this scheme is vulnerable

to two type of attacks: ciphertext only attack and known plaintext attack.

Cipher text only attack is more difficult to mount but we applied this attack

and were able to retrieve the part of the key and part of plaintext.In chosen

plaintext attack we were able to retrieve the entire key by choosing only one

message.
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